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Abstract: Visible light positioning (VLP) has attracted intensive attention from both academic and
industrial communities thanks to its high accuracy, immunity to electromagnetic interference, and low
deployment cost. In general, the receiver in a VLP system determines its own position by exploring
the received signal strength (RSS) from the transmitter according to a pre-built RSS attenuation
model. In such model-based methods, the LED’s emission power and the receiver’s height are usually
required known and constant parameters to obtain reasonable positioning accuracy. However, the
LED’s emission power is normally time-varying due to the fact that the LED’s optical output power
is prone to changing with the LED’s temperature, and the receiver’s height is random in a realistic
application scenario. To this end, we propose a height-independent three-dimensional (3D) VLP
scheme based on the RSS ratio (RSSR), rather than only using RSS. Unlike existing RSS-based VLP
methods, our method is able to independently find the horizontal coordinate, i.e., two-dimensional
(2D) position, without a priori height information of the receiver, and also avoids the negative effect
caused by fluctuation of the LED’s emission power. Moreover, we can further infer the height of
the receiver to achieve three-dimensional (3D) positioning by iterating the 2D results back into
positioning equations. To quickly verify the proposed scheme, we conduct theoretical analysis with
mathematical proof and experimental results with real data, which confirm that the proposed scheme
can achieve high position accuracy without known information of the receiver’s height and LED’s
emission power. We also implement a VLP prototype with five LED transmitters, and experimental
results show that the proposed scheme can achieve very low average errors of 2.73 cm in 2D and
7.20 cm in 3D.

Keywords: visible light positioning; indoor position system; received signal strength; high accuracy;
weighted least squares

1. Introduction

The development of the Internet of Things (IoT) is facilitating a rapid increase in the
number of automated robots and transporters used in factory warehouses and indoor public
places [1,2]. One of the basic requirements of these devices is to know their own locations.
Traditional methods of indoor positioning are based on radio frequency (RF) technologies
such as WiFi [3,4] and Bluetooth [5]. However, they have some weaknesses, such as high
power consumption, congested channel interference, and low accuracy. As a developed
classic technology, sound-based positioning is also used in some large indoor scenes (e.g.,
greenhouses) and provides better accuracy than RF-based positioning [6,7], but it generates
noise and requires a low level of environmental noise. SLAM-based positioning systems
have also been applied to indoor positioning [8]; however, they are normally expensive
because of the use of specialized equipment, such as laser sensors, to scan the surroundings
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and construct the map. In recent years, the widespread use of light emitting diode (LED)
lights has promoted visible light communication (VLC) technology, which also supports
positioning. The LED-based positioning is also known as visible light positioning (VLP),
which is considered a potential indoor positioning technology thanks to its advantages of
high accuracy, low deployment cost, weak multipath effect, immunity to electromagnetic
interference, and sufficient channel resources [9,10].

A VLP system generally consists of multiple LED transmitters (also known as anchors)
and a receiver. A photodiode (PD) receiver explores the received signal strength (RSS)
from multiple LED transmitters, normally more than three transmitters, to locate its own
position. To be more detailed, the distance between the receiver and one transmitter can
be inferred from the RSS given the known emission power of the LED transmitter and
light propagation model [11]. By further combining the multi-distances from the other
transmitters, we can finally position the receiver with trilateration. Moreover, there are
some other ranging methods, such as time difference of arrival (TDOA) [12] and time of
arrival (TOA) [13] for localization. However, TDOA requires clock synchronization of
either the transmitter or the receiver, while TOA requires clock synchronization of both,
which is hardly realized in a practical low-cost VLP system. Although the angle-of-arrival
(AOA) [14] localization has no such requirement of clock synchronization, it typically
needs a sensor array consisting of multiple PDs, cameras, or other hardware at the receiver
side, which is also not suitable for very low-cost IoT applications. Additionally, the VLP
system can also be achieved by using an image sensor (e.g., CMOS) as a receiver to derive
the distance using the ratio of the LED size to its projection size [15–18], but cameras
are normally high-cost and power-intensive and not suitable for low-power scenarios.
Compared to the above-mentioned methods, RSS-based positioning is preferred in VLP
since the RSS is easy to be measured with low-power and low-cost hardware.

Current research attention towards RSS-based positioning is devoted to improving
accuracy and robustness by introducing more hardware. The study in [19] applies two
kinds of LEDs in a single lamp to deal with the performance loss in multi-path propagation
scenes. The proposed DM-LED system has been validated through both simulation and
experimental results. The work of [20] equips two PDs in a receiver to avoid the ambient
light noise by transforming the ratio of RSS to the incidence angles of two PDs, where the
proposed DarkVLP system has been corroborated by experimental results. The channel
state information (CSI) was considered in [21] to extract the received power of the line-
of-sight (LoS) signal to reduce interference from the reflected paths so that the accuracy
loss of triangulation can be alleviated. However, the practicability is uncertain since there
is only simulation validation. The model-based methods described above have achieved
significant results, but most of them have additional requirements for a priori information,
e.g., object height, rotation angle, and LED emission power, which should be known and
constant. In practical applications, these a priori parameters are usually difficult to obtain
and are varying, especially the relative height of the receiver. In large buildings, e.g.,
warehouses and factories, the floor is not always horizontal at the same height, and the
relative height of the receiving device may be changing with its movement, which makes
these methods not applicable.

The prosperity of machine learning (ML) provides many data-driven methods to solve
nonlinear problems, including VLP. The methods based on regression [22], reinforcement
learning [23], and neural networks (NNs) [24,25] typically obtain higher accuracy and
stability than the traditional ones. However, they require offline progress to collect data
sets or fingerprints to train models. Once the environment or the system changes, the
network probably provides poor positioning estimation. As the running time increases,
these changes are inevitable, so the accuracy loss cannot be avoided. In such a case, new
data need to be collected, and the model should be trained again. Although researchers
are dedicated to reducing the amount of data collection [26,27], ML-based methods are
still highly time-consuming and have poor environmental stability compared to their
model-based counterparts.
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This paper focuses on removing the dependence on height in the VLP system and
developing a high-accuracy positioning method. The RSS measurements are transmitted to
the ration (RSSR) in preprocessing so that the emission power is unnecessary. An accurate
height-independent positioning method based on RSSR is proposed, which solves hori-
zontal coordinates without the a priori information of the vertical, relative height between
transmitter and receiver. Then, the vertical coordinate can be estimated after putting the
horizontal estimation back into the original equation, composing a three-dimensional (3D)
position estimator of the target receiver. Due to this feature, the proposed method is ca-
pable of achieving high accuracy. We construct a test platform in a 1.5 m × 1.5 m × 2.7 m
space with five LEDs and one PD to evaluate the performance of the prototype. The pro-
posed method achieves a mean error of 2.73 cm on the horizontal plane and 7.20 cm in
3D. Comparing the horizontal localization performance, the proposed method has better
accuracy than that of the trilateral positioning [28] designed for 2D only and using the
a priori height of the receiver and emission power of transmitters. We also compare the
proposed method with the successive linear least squares (SLLS)-based method [29] and
the ML-based method [22] for 3D localization when the receiver height and LED emission
power are unknown. The proposed method outperforms both the SLLS-based and the
ML-based methods.

The rest of the paper is organized as follows. Section 2 introduces the background of
the classical 2D VLP method and points out the problems of its generalization to 3D VLP
from a mathematical point of view. Section 3 presents the proposed system’s architecture
and method. Section 4 evaluates the performance of the proposed method by design-
ing experiments and comparing it with existing methods. Finally, Section 5 concludes
this paper.

2. Indoor Positioning with Visible Light

The layout of a basic RSS-based VLP system is shown in Figure 1. The system consists
of M LED transmitters that are deployed on the ceiling with the same height hLED. The hor-
izontal coordinates of these LED transmitters are denoted by si = (xi, yi)

T(i = 1, · · · , M).
Assume that the PD of the receiver is placed vertically. It can convert light signals to
electrical signals whose strength is proportional to the RSS. The unknown PD receiver
has the horizontal coordinate u = (xu, yu)T and height hPD. Thus, the relative height of
these transmitters to the receiver is denoted as h = hLED − hPD. The distances between the
transmitters and the receiver are denoted by di(i = 1, · · · , M).
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Figure 1. The basic model of VLP.
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In this section, assuming that the value of RSS has been extracted in some way (e.g.,
frequency or time domain), according to the Lambert model, the RSS from the i-th LED
is [11]

Pi =
(n + 1)A

2π(di)
2 cosn(θi) cos(ϕi)P0, (i = 1, · · · , 5) (1)

where A is the receiving area of PD, θi is the radiation angle of the i-th LED, ϕi is the
incident angle between the PD and the LEDi, and P0 is the emitted signal strength of the
LED. n is the Lambert order that describes the divergence of the LED light, which is given
by n = − ln(2)

ln(cos(φ1/2))
, where φ1/2 represents the semi-power angle of LEDs. Since the normals

of LEDs are parallel to that of the PD, this makes θi equal to ϕi. Thus, (1) can be simplified as

Pi =
(n + 1)A

2π(di)
2 cosn+1(θi)P0 =

(n + 1)AP0hn+1

2π

1

(di)
n+3 , (i = 1, · · · , M). (2)

The parameters A and P0 related to the LEDs and the PD can be measured in advance, and,
in 2D VLP applications, the relative height h is also known as a constant so that di can be
determined as

di =
n+3

√
(n + 1)AP0hn+1

2πPi
, (i = 1, · · · , M). (3)

The distance di can also be given by the geometric relationship between the i-th transmitter
and the receiver so that the horizontal coordinates can be expressed by the following system
of equations: 

(xu − x1)
2 + (yu − y1)

2 + h2 = d2
1

(xu − x2)
2 + (yu − y2)

2 + h2 = d2
2

...
(xu − xM)2 + (yu − yM)2 + h2 = d2

M

. (4)

To ensure a unique solution, the number of equations cannot be less than three. Applying
the least squares (LS) method to the system of equations, the horizontal coordinates of the
receiver can be calculated as

u =
(

CTC
)−1

CTD (5)

where

C =

 x2 − x1
...

xM − x1

y2 − y1
...

yM − y1

, D =
1
2


(
d2

1 − d2
2
)
+
(
x2

2 + y2
2
)
−
(
x2

1 + y2
1
)

...(
d2

1 − d2
M
)
+
(
x2

M + y2
M
)
−
(
x2

1 + y2
1
)
. (6)

This is a proven, low-complexity method that has good performance when the RSS
is interfered with by a low non-line-of-sight (NLoS) signal. However, it can be concluded
from (3) that the method requires the relative height and the emission power as a priori
information. As mentioned in Section 1, the height of the receiver is unknown in 3D
positioning and the emission power varies with the environment (e.g., voltage fluctuations,
temperature, and LED aging), which makes it challenging to generalize the trilateral
localization designed for 2D scenes to 3D.

3. Height-Independent 3D VLP Enabled by RSSR
3.1. System Overview

As illustrated in Figure 1, the proposed system also consists of two main parts: trans-
mitter and receiver. The transmitter modulates the LEDs and embeds the position informa-
tion of the LEDs in different frequencies. As for the receiver, it is designed for receiving the
light signals through a PD and positioning by processing the received signals. To address
the challenges in Sections 1 and 2, we equip the receiver with the proposed method, which
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mathematically circumvents the influence of the unknown height on the 2D positioning,
and also performs 3D positioning in the absence of a priori information of the vertical
plane. The workflow block diagram of the proposed system is shown in Figure 2, and the
following subsections elaborate on the details one by one.

Frequency

Selecting

Square Wave

Generation

MCU
Intensity


Modulation


DC 

Generation

Voltage

Control

AC-DC Converter

LED
Light
Signal

LED Driving

MOSFET

(a)

Positioning
Algorithm

RSSR
Extraction FFT Flat-top


Window
Sequence

Sampling Amplification

Host Computer

Mixed Light Signal

Photocurrent

by PDMCU

(b)

Figure 2. The diagrams of the main parts of the proposed VLP system: (a) low-cost MCU-based
transmitter, (b) PD-based receiver.

3.2. VLP Transmitter

The transmitter consists of an AC-DC converter, a modulation circuit, and an LED light.
Its real object is shown in Figure 3b. The modulation circuit consists of the microcontroller
and its peripheral circuit. The workflow diagrams of the transmitter are shown in Figure 2a.
The alternating current (AC) is sent into an AC-DC converter to obtain a stable direct
current (DC), which can be further converted to square waves of different frequencies by
generating a PWM wave to control the MOSFET in the peripheral circuit. Considering
the requirement to separate the light signal from the frequency domain, and in order to
avoid the harmonic frequencies of square waves interfering with each other, for the selected
frequencies, it should be ensured that the harmonic frequencies are kept at a certain distance
from the remaining main frequencies. Meanwhile, the VLC-based VLP system needs to
satisfy the requirement of high-speed communication, so the frequencies must not be at a
low level. According to the above constraints, combined with the microcontroller’s own
clock frequency, the frequencies of the five LEDs are empirically set as 81 kHz, 100 kHz,
121.7 kHz, 143.4 kHz, and 153.7 kHz. In addition, to avoid saturation of the PD by excessive
light from multiple LEDs, the voltage of the LEDs should be properly limited. We design a
flyback converter to limit the voltage by low-frequency PWM before the DC passes through
the MOSFET, which in turn controls the amplitude of the modulated signals.
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(a)

PD

Amplifier Circuit

AC-DC Converter Modulation
Circuit

(b)

Figure 3. The experimental setup. (a) The experimental layout, and (b) the hardware design.

3.3. VLP Receiver

The receiver is designed for sensing the light signals and processing the sampled data
for extracting RSS to positioning. Specifically, the receiver consists of a PD, an amplifier
circuit, and a microcontroller. As Figure 2b shows, the PD converts the light signal to the
tiny current signal, which is further transferred by an amplifier circuit into the voltage signal
capable of driving the analog-to-digital (ADC) of the microcontroller. Since the memory
capacity of the microcontroller is limited, and to facilitate the experimental analysis, the
sampled data are forwarded to the computer via a serial port. We consider real-time
positioning on the microcontroller as future work.

The RSS is extracted by applying the fast Fourier transform (FFT) on the sampled
sequence, and its accuracy is influenced by both the real frequency of the received signal
and the frequency resolution. Some existing experiments [19,23] use a function generator
to modulate the LED, while, in practical applications, a low-cost MCU is used to generate
a frequency signal for modulation, which has difficulty in keeping the frequency stable.
Moreover, the high frequency of the VLC system signal and the limited sampling window
make the frequency resolution poor, meaning that the peak amplitude will leak to both
sides if the main frequency of the signal cannot satisfy an integer multiple of the frequency
resolution (i.e., spectral leakage). The above two issues are addressed by setting up a
window function, and since the selected frequencies are far enough apart from each other
and the peak amplitudes are the quantity of greater interest, the flat-top window is chosen
to be applied to the sample data. It is able to focus the energy on the main lobe as much
as possible, with a certain loss of frequency resolution, so that the spectral leakage is
effectively limited.

3.4. Height-Independent Positioning

We aim to solve the issues mentioned in Sections 1 and 2 and propose this method
based on a trade-off between hardware and computational complexity constraints. It can
be derived from (2) that the RSSR between the i-th and j-th LEDs is
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τij =
Pi
Pj

=

(dj

di

)n+3

, (i = 1, · · · , M, j = i + 1, · · · , M). (7)

In practical environments, the measured RSSR contains noise ∆τij,

τ̂ij = τij + ∆τij =
P̂i

P̂j
. (8)

Now, the problem is finding the coordinate u from the measurement τ̂ij. Since RSSR
varies nonlinearly with distance, to deal with the nonlinear problem, we shall denote
ρij = m

√
τ2

ij, where m = n + 3, and then (7) can be transformed into

d2
j = ρijd2

i , (i = arg max
i

Pi, j = 1, · · · , M, j 6= i). (9)

Further, we express the distance in the form of vectors by d2
i = (si−u)T(si−u) + h2 and (9)

can be shown as
bij − aT

iju + uTu = 0 , (10)

where

bij =
sT

j sj − ρijsT
i si

1− ρij
+ h2 , aij =

2
(
sj − ρijsi

)
1− ρij

. (11)

It is important to emphasize that the coordinates u and s in (10) are 2D rather than 3D. The
relative height h is presented separately. The noise in RSSR is relatively small due to the
Lambert order and distance between the transmitter and receiver. Thus, we can expand ρij
at the measured τ̂ij by Taylor series and retain the first-order term. Substituting the result
into (10), after simplification, yields

b̂ij − âT
iju + uTu = (αT

iju− βij)∆τij , (12)

where

b̂ij =
sT

j sj − ρ̂ijsT
i si

1− ρ̂ij
+ h2 , βij =

2τ
( 2

m−1)
ij

m
(
1− ρij

)2

(
sT

j sj − sT
i sj

)
, (13)

âij =
2
(
sj − ρ̂ijsi

)
1− ρ̂ij

, αij =
4τ

( 2
m−1)

ij

m
(
1− ρ̂ij

)2

(
sj − si

)
. (14)

Without losing generality, i is fixed at 1 so that j = 2, · · · , M. By utilizing (13) and (14), all
the (10) can be stacked into a matrix as

b1 −A1ψ = B∆τ , (15)

where

b1 =

 b12
...

b1M

, A1 =

 a12
...

a1M

−1
...
−1

, B =

 αT
12u− β12

. . .
αT

1Mu− β1M

, (16)

∆τ =

 ∆τ12
...

∆τ1M

, ψ =

[
u

uTu

]
. (17)

Without losing generality, i is fixed at 1 so that j = 2, · · · , M. The solution can be given by
weighted least squares (WLS) as
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ψ̂ = (AT
1 WA)−1AT

1 Wb1 , (18)

where W = (BQB)−1, Q = E[∆τ∆τT ] is the covariance matrix of RSSR measurements. In
practice, Q is unknown. The WLS is only sensitive to the structure of Q, rather than the
actual value [30,31]. Since the propagation channels of each LED are similar, an alternative
is replacing Q with an identity matrix.

After obtaining the estimated 2D position û = ψ̂(1:2), we can turn to estimating the
height to obtain the 3D coordinate. Since the third element of ψ̂ depends on the height,
which is unknown, and the estimation from (18) is inaccurate (see Section 3.5), we shall
use ûTû to replace ψ̂(3). Denoting b1 = b + 1Lh2 and ψ̃ = [ûT , ûTû]T and putting them
into (15) yields

(b−A1ψ̃) + 1Lh2 ≈ B∆τ , (19)

where L is the number of combinations of RSSR and 1L is an all-one column vector of length
L. Thus, the solution of h in terms of WLS is

ĥ =
√
−(1T

LW1L)−11T
LW(b−A1ψ̃) . (20)

The net effect of using such a W is the reduction in the covariance matrix of the estimate
for ψ [32]. Therefore, we can obtain higher accuracy in receiver position estimation.

3.5. Proof of Height Independence

It appears that the above RSSR-based WLS method requires the parameter h, and,
more importantly, uT and uTu in ψ are coupled. However, in fact, the results obtained by
the WLS approach are independent of the height, and we prove this feature mathematically.
Consider the solution without weights

ψ̂ = (A1
TA1)

−1A1
Tb1 = Hb1 , (21)

where
H = (A1

TA1)
−1A1

T . (22)

To extract parameter h, we apply

b1 =
[
b 1L

][
1 h2]T (23)

Then, (21) is developed as

Hb1 =

[
H(1 : 2, :)b + H(1 : 2, :)1Lh2

H(3, :)b + H(3, :)1Lh2

]
. (24)

It can be seen from (24) that the estimated coordinate û contains the item H(1:2,:)1Lh2 that
is relative to h. In order to further simplify H(1:2,:)1L, we define A1 =

[
A −1L

]
. By

exploiting the block matrix inversion to H, we arrive at

H(1 : 2, :)1L =
(

ATA
)−1

[
AT + kAT1L1L

TA
(

ATA
)−1

AT − kAT1L1L
T
]

1L

=
(

ATA
)−1

AT1L

{
1 + k

[
1L

TA
(

ATA
)−1

AT1L − 1L
T1L

]}
,

(25)

where

k = −
[

1L
TA
(

ATA
)−1

AT1L − 1L
T1L

]−1
. (26)

Finally, by substituting (26) into (25), we have

H(1 : 2, :)1L =
(

ATA
)−1

AT1L[1 + (−1)] = 0 . (27)
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The result above shows that the final solved û are constant regardless of h, while the
error caused by the height only affects the redundant term ψ̂(3) instead of û according to
(24) and (27). After obtaining the 2D coordinate û, the third element of ψ̂ can be replaced
by ûTû so that the error is reasonable, which means that ĥ also can be estimated. In the
following experiments, we use the experimental results for verification.

4. Experiment and Results
4.1. Experimental Setup

The experimental setup of the proposed VLP system is shown in Figure 3. The size
of our experimental area is 1.5 m × 1.5 m × 2.7 m, where 5 LED lights with a measured
Lambert order of 2.51 are distributed at the height of 2.7 m with horizontal coordinates
of (0, 0), (0, 1.5), (1.5, 0), (1.5, 1.5), and (0.75, 0.75) in meters, respectively. As detailed in
Sections 3.2 and 3.3, by controlling the MOSFETs (SI2310), the GD32F330 microcontrollers
modulate the converted DC into square-wave signals of different frequencies, and then
drive the LEDs emitting modulated lights. Each LED light (HGC-T003) has a reflector
with a tilt angle of 26 degrees and runs at the same power. As for the receiver side, the
current signal converted from PD (SGPN88MQ) is amplified to the voltage signal by a
two-stage circuit consisting of a transimpedance amplifier and a voltage amplifier based on
the OPA2320, and then the voltage signal is sampled by the built-in ADC of the GD32F330
microcontroller. The microcontroller’s sample rate and sample number are set as 512ksps
and 2048. After applying the FFT to the sampled signal, the four most significant RSS
values are selected to estimate the horizontal coordinate and the height of the receiver.
The positioning error is defined as the Euclidean distance between the estimated and the
actual position. The distribution of sample points is shown in Figure 4a. In particular,
49 sampling points (7× 7) are selected in the 1.5 m× 1.5 m square area of 0 cm, 20 cm, and
40 cm above the ground, respectively, with each point spaced 20 cm apart. The receiver
samples 300 times at each position. Then, it will be moved to the next point manually, until
finishing all 49 test points.

(a) (b)

Figure 4. The sample points of each surface. (a) The original, and (b) the division of ML method.

To evaluate the 3D positioning performance with a limited number of parameters, the
proposed method is compared with the 3D VLP methods, SLLS [29], and the polynomial
trilateral ML [22]. Moreover, to evaluate the horizontal positioning performance, we
additionally consider a trilateration method designed for the 2D case, which takes the
accurate height and the LED emission power as a priori knowledge. The orientation (uR) of
the PD in SLLS is fixed at [0, 0, 1]T and the convergence threshold is set as 1× 10−4. Since
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only the four largest RSS values are used in the experiment, each sampling plane for the
ML-based method is divided into four small squares as positioning cells according to the
combination of selected LEDs, as shown in Figure 4b. The 25 points on the diagonal of each
positioning cell are used for testing, and the remaining 24 points are used for training.

4.2. Horizontal Positioning 2D Performance

Figure 5 shows the mean horizontal positioning error of the four methods considered
in Section 4.1 for all the positioning points on three test planes, where the relative heights are
2.3 m, 2.5 m, and 2.7 m. The mean horizontal error of the proposed method is 2.73 cm, while
the other three methods have the mean error of 5.29 cm, 3.55 cm, and 2.93 cm, respectively.

Horizontal

Proposed
SLLS ML

Trila
teration

0

0.02

0.04

0.06

0.08

0.1

0.12

E
rr

or
 (

m
)

RMSE
Mean error

Figure 5. The overall horizontal positioning result; error bars donate S.D.

Figure 6 shows the horizontal positioning distribution at different heights. When the
receiver height changes, the positioning accuracy varies as well. It decreases because the
signal-to-noise ratio (SNR) is low as h is large and the receiver is far from the transmitters,
and it also degrades when the receiver is close to the transmitters because the tilted
reflectors of the LEDs reflect more NLoS signals and block part of the emitting LoS signal.
Furthermore, the positioning result has a bias of 2–6 cm due to system errors in the
experimental prototype, such as anisotropy, inconsistency of the LEDs, and the radiation
angle of the transmitter being not exactly equivalent to the incident angle of the receiver.

The comparison of these four methods in Figure 6 shows that the proposed method has
better horizontal accuracy in the case of lacking a priori height. It has a lower deterioration
in the accuracy at the edges of the positioning area. Moreover, the comparison of the
proposed method and the 2D trilateration method with accurate height shows that the
proposed method is able to achieve similar accuracy despite the fact that the height and
emission power are unknown. Figure 7 shows the cumulative distribution function (CDF)
of the horizontal positioning errors. In total, 90% of the errors of the proposed method
are below 4.8 cm, which is better than the ML-based method (5.8 cm) and the trilateration
method (5.4 cm). Moreover, the proposed method requires less a priori information and no
offline data collection, making it more operable in practical application scenarios.
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Figure 6. The 2D positioning distribution at different heights: (a) 0 cm, (b) 20 cm, (c) 40 cm.
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4.3. Height Independence Verification

We next evaluate the influence of inaccurate a priori height on the horizontal lo-
calization performance. Since the SLLS and ML methods do not require a priori height
information, we compare the proposed method with the trilateration method designed
for 2D and needing the receiver height. Figure 8 shows the variation in the horizontal
positioning error when the height is inaccurate. For the actual relative heights, we perform
changes in steps of 0.05 m in the range of [−1 m, 1 m] and calculate the mean error.
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Figure 8. Horizontal positioning error at different a priori heights.

The points inside (5 × 5) and the 24 points at the edges are evaluated separately.
Consistent with Section 3.5, the positioning results of the proposed method do not change,
no matter how much error is included in the relative height. The fluctuation of the mean
error is less than 1× 10−14 m, which is caused by the calculation accuracy. As for the
trilateration position, its minimum mean positioning errors are still slightly higher than
the proposed method. Trilateration inside reaches its minimum at an error of −0.05 m,
and one possible conjecture is that the error in height compensates for its bias. The entire
positioning error increases with the height error, which means that it is vulnerable to height
inaccuracy. When the height error exceeds 23.44 cm, the edge positioning accuracy drops
to the decimeter level, and the entire positioning accuracy drops to the decimeter level as
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well when the height error exceeds 27.26 cm. Considering the scene size of this experiment,
the decimeter-level error occurs when the height error exceeds 9–12% of the real relative
height. This case perhaps arises if the receiver is moved manually and its height changes,
where the previously measured height is still used for the trilateration.

4.4. 3D Positioning Performance

The overall 3D positioning results are shown in Figure 9, and the 3D mean positioning
error is expressed by stacking the 2D mean error and the incremental error from the height
estimation. The mean error of the 3D positioning for the proposed method is 7.20 cm, while
the mean errors of the SLLS-based and the ML-based methods are 12.64 cm and 15.83 cm,
respectively. It can be found from Figure 9 that the 3D positioning accuracy deteriorates
significantly compared to the 2D accuracy. A common deployment of a VLP system is
that the transmitters are all on one side of the receiver and their heights are the same,
which makes the vertical dilution of precision (VDOP) larger than the horizontal dilution
of precision (HDOP), resulting in the fact that the vertical positioning error is larger than
the horizontal positioning error [33].

Proposed SLLS ML
0
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0.15

0.2

0.25

E
rr

or
 (

m
)

3D

2D RMSE
Incremental RMSE

2D Mean Error
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Figure 9. The overall 3D positioning result; error bars donate S.D.

Figure 10 shows the 3D positioning error distribution of test planes at different heights.
The error of the SLLS method becomes unstable at the edges of the localization area.
The error of the ML method is significantly higher in the vertical direction than in the
horizontal direction, which may be due to the fact that the regression equation in the ML
method cannot provide a good fit for the vertical position estimate. Compared with the
SLLS method and the ML method, the proposed method has more accurate positioning
performance and most of its errors are concentrated at a lower level. As the CDF curves in
Figure 11 show, 90% of the errors of the proposed method are within 13.0 cm. Nonetheless,
the SLLS method is less stable where the error curve deteriorates at 0.1–0.2 m, resulting in
90% of errors reaching 21.7 cm, which is close to the ML method.

The above experiments show that the proposed method is able to maintain the posi-
tioning accuracy for height without losing the accuracy of horizontal positioning. It can be
used in industrial scenarios with automated mobile robots or vehicles, enabling them to
position themselves in the event of changes in floor, ceiling, or their own height.
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Figure 10. The 3D positioning distribution at different heights: (a) the proposed method, (b) the
SLLS-based method, (c) the ML-based method.

0 0.1 0.2 0.3 0.4 0.5
error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F

3D

Proposed
SLLS
ML

Figure 11. The CDF of 3D positioning error.

5. Conclusions

To develop the VLP technology into practical applications, a height-independent
positioning scheme has been proposed in this paper. Essentially, the proposed method
leverages the received RSSR from multiple LED transmitters rather than conventional RSS
to locate the horizontal coordinates of the receiver. It estimates the horizontal coordinate of
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the receiver first and can further obtain the height of the receiver to achieve 3D positioning.
This new method relaxes the requirements of a priori information such as height and LED
emission power, required in traditional positioning techniques. We provide a theoretical
analysis of height independence in mathematics. It reveals that a priori height information
is not necessary for the novel RSSR-based positioning method, which has been validated by
experiments. We build a prototype using low-cost LED luminaires and a microcontroller-
based receiver to evaluate the performance. Experimental results show that the proposed
method can provide the mean error of 2.73 cm in horizontal coordinate estimation and
7.20 cm in 3D positioning. The proposed method is simple and accurate, and it has the
potential for indoor positioning applications with low-cost devices.
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Abbreviations
The following abbreviations are used in this manuscript:

VLP Visible Light Positioning
RSS Received Signal Strength
3D Three-Dimensional
2D Two-Dimensional
VLC Visible Light Communication
LED Light Emitting Diode
IoT Internet of Things
RF Radio Frequency
PD Photodiodes
CMOS Complementary Metal Oxide Semiconductor
TOA Time of Arrival
TDOA Time Difference of Arrival
AOA Angle of Arrival
CSI Channel State Information
LoS Line of Sight
ML Machine Learning
NN Neural Network
SLLS Successive Linear Least Squares
AC Alternating Current
DC Direct Current
PWM Pulse Width Modulation
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
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ADC Analog-to-Digital Converter
FFT Fast Fourier transform
SNR Signal-to-Noise Ratio
NLoS Non-Line-of-Sight
CDF Cumulative Distribution Function
VDOP Vertical Dilution of Precision
HDOP Horizontal Dilution of Precision
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