Smart Sensing Multifunctionalities Based on Barium Strontium Titanate Thin Films
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boutry, C.M.; Kaizawa, Y.; Schroeder, B.C.; Chortos, A.; Legrand, A.; Wang, Z.; Chang, J.; Fox, P.; Bao, Z. A Stretchable and Biodegradable Strain and Pressure Sensor for Orthopaedic Application. Nat. Electron. 2018, 1, 314–321. [Google Scholar] [CrossRef]
- Stadlober, B.; Zirkl, M.; Irimia-Vladu, M. Route towards Sustainable Smart Sensors: Ferroelectric Polyvinylidene Fluoride-Based Materials and Their Integration in Flexible Electronics. Chem. Soc. Rev. 2019, 48, 1787–1825. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Chng, S.S.; Cai, W.; Liu, C.; Du, Z. Piezoelectric Polymer Nanofibers for Pressure Sensors and Their Applications in Human Activity Monitoring. RSC Adv. 2020, 10, 21887–21894. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fan, Y.J.; Li, H.Y.; Cao, J.W.; Xiao, Y.C.; Wang, Y.; Liang, F.; Wang, H.L.; Jiang, Y.; Wang, Z.L.; et al. Ultracomfortable Hierarchical Nanonetwork for Highly Sensitive Pressure Sensor. ACS Nano 2020, 14, 9605–9612. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-C.; Liu, Y.; Ma, C.; Cheng, H.-C.; He, Q.; Wu, H.; Wang, C.; Lin, C.-Y.; Huang, Y.; Duan, X. Sensitive Pressure Sensors Based on Conductive Microstructured Air-Gap Gates and Two-Dimensional Semiconductor Transistors. Nat. Electron. 2020, 3, 59–69. [Google Scholar] [CrossRef]
- Persano, L.; Dagdeviren, C.; Su, Y.; Zhang, Y.; Girardo, S.; Pisignano, D.; Huang, Y.; Rogers, J.A. High Performance Piezoelectric Devices Based on Aligned Arrays of Nanofibers of Poly(Vinylidenefluoride-Co-Trifluoroethylene). Nat. Commun. 2013, 4, 1633. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.I.; Chatterjee, K.; Wang, B.; Drapcho, S.; You, L.; Serrao, C.; Bakaul, S.R.; Ramesh, R.; Salahuddin, S. Negative Capacitance in a Ferroelectric Capacitor. Nat. Mater. 2015, 14, 182–186. [Google Scholar] [CrossRef]
- Yao, K.; Chen, S.; Lai, S.C.; Yousry, Y.M. Enabling Distributed Intelligence with Ferroelectric Multifunctionalities. Adv. Sci. 2022, 9, 2103842. [Google Scholar] [CrossRef]
- You, L.; Zheng, F.; Fang, L.; Zhou, Y.; Tan, L.Z.; Zhang, Z.; Ma, G.; Schmidt, D.; Rusydi, A.; Wang, L.; et al. Enhancing Ferroelectric Photovoltaic Effect by Polar Order Engineering. Sci. Adv. 2018, 4, 1–10. [Google Scholar] [CrossRef]
- Mazon, T.; Zaghete, M.A.; Varela, J.A.; Longo, E. Barium Strontium Titanate Nanocrystalline Thin Films Prepared by Soft Chemical Method. J. Eur. Ceram. Soc. 2007, 27, 3799–3802. [Google Scholar] [CrossRef]
- Han, W.; Kim, T.; Yoo, B.; Park, H.-H. Tunable Dielectric Properties of Poly(Vinylidenefluoride-Co-Hexafluoropropylene) Films with Embedded Fluorinated Barium Strontium Titanate Nanoparticles. Sci. Rep. 2018, 8, 4086. [Google Scholar] [CrossRef] [PubMed]
- Damjanovic, D.; Muralt, P.; Setter, N. Ferroelectric Sensors. IEEE Sens. J. 2001, 1, 191–206. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, S.; Hou, Z.; Tang, Y.; Zhang, J.; Wang, T.; Li, K.; Zhao, W.; Liu, X.; Chen, L.; et al. Recent Progress on Topological Structures in Ferroic Thin Films and Heterostructures. Adv. Mater. 2021, 33, 2000857. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wei, L.; Zhang, Q.; Huang, H.; Zhang, Y.; Zhou, H.; Ma, F.; Gu, L.; Meng, S.; Chen, L.-Q.; et al. Water Printing of Ferroelectric Polarization. Nat. Commun. 2018, 9, 3809. [Google Scholar] [CrossRef]
- Ma, N.; Yang, Y. Boosted Photocurrent in Ferroelectric BaTiO3 Materials via Two Dimensional Planar-Structured Contact Configurations. Nano Energy 2018, 50, 417–424. [Google Scholar] [CrossRef]
- Zhu, M.; Du, Z.; Jing, L.; Yoong Tok, A.I.; Tong Teo, E.H. Optical and Electro-Optic Anisotropy of Epitaxial PZT Thin Films. Appl. Phys. Lett. 2015, 107, 031907. [Google Scholar] [CrossRef]
- Du, Z.H.; Zhang, T.S.; Zhu, M.M.; Ma, J. Perovskite Crystallization Kinetics and Dielectric Properties of the PMN-PT Films Prepared by Polymer-Modified Sol-Gel Processing. J. Mater. Res. 2009, 24, 1576–1584. [Google Scholar] [CrossRef]
- Funakubo, H.; Takeshima, Y.; Nagano, D.; Shinozaki, K.; Mizutani, N. Crystal Structure and Dielectric Property of Epitaxially Grown (Ba,Sr)TiO3 Thin Film Prepared by Molecular Chemical Vapor Deposition. J. Mater. Res. 1998, 13, 3512–3518. [Google Scholar] [CrossRef]
- Park, W.Y.; Park, M.H.; Lee, J.H.; Yoon, J.H.; Han, J.H.; Choi, J.-H.; Hwang, C.S. Strain Evolution of Each Type of Grains in Poly-Crystalline (Ba,Sr)TiO3 Thin Films Grown by Sputtering. Sci. Rep. 2012, 2, 939. [Google Scholar] [CrossRef] [PubMed]
- Engberg, C.J.; Zehms, E.H. Thermal Expansion of Al2O3, BeO, MgO, B4C, SiC, and TiC Above 1000 °C. J. Am. Ceram. Soc. 1959, 42, 300–305. [Google Scholar] [CrossRef]
- He, Y. Heat Capacity, Thermal Conductivity, and Thermal Expansion of Barium Titanate-Based Ceramics. Thermochim. Acta 2004, 419, 135–141. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Y.; Zhu, M. NiO Films Consisting of Vertically Aligned Cone-Shaped NiO Rods. Appl. Phys. Lett. 2006, 88, 033101. [Google Scholar] [CrossRef]
- Craciun, V.; Singh, R.K. Characteristics of the Surface Layer of Barium Strontium Titanate Thin Films Deposited by Laser Ablation. Appl. Phys. Lett. 2000, 76, 1932–1934. [Google Scholar] [CrossRef]
- Yan, H.; Wang, J.; Yang, B.; Wang, S.; Xing, H.; Jin, K. Tunability of Band-Gap in Barium Strontium Titanate Films on Anodic Aluminum Oxide Templates. Thin Solid Films 2018, 649, 187–191. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, H.; Favier, S.W.L.; Zhao, Y.; Guo, H.; Du, Z. A General Strategy towards Controllable Replication of Butterfly Wings for Robust Light Photocatalysis. J. Mater. Sci. Technol. 2022, 105, 286–292. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, H.; Du, Z.; Liu, C. Structural Insight into the Optical and Electro-Optic Properties of Lead Zirconate Titanate for High-Performance Photonic Devices. Ceram. Int. 2019, 45, 22324–22330. [Google Scholar] [CrossRef]
- Ortega, N.; Kumar, A.; Resto, O.; Maslova, O.A.; Yuzyuk, Y.I.; Scott, J.F.; Katiyar, R.S. Compositional Engineering of BaTiO3/(Ba,Sr)TiO3 Ferroelectric Superlattices. J. Appl. Phys. 2013, 114, 104102. [Google Scholar] [CrossRef]
- Mahmood, A.; Naeem, A.; Iqbal, Y.; Ullah, A. Dielectric and Ferroelectric Properties of the Sol-Gel-Derived Zr-Doped Ba0.7Sr0.3TiO3 Polycrystalline Ceramic Systems. Int. J. Appl. Ceram. Technol. 2017, 14, 604–610. [Google Scholar] [CrossRef]
- Ianculescu, A.; Berger, D.; Viviani, M.; Ciomaga, C.E.; Mitoseriu, L.; Vasile, E.; Drăgan, N.; Crişan, D. Investigation of Ba1−xSrxTiO3 Ceramics Prepared from Powders Synthesized by the Modified Pechini Route. J. Eur. Ceram. Soc. 2007, 27, 3655–3658. [Google Scholar] [CrossRef]
- Kang, B.S.; Choi, S.K.; Park, C.H. Diffuse Dielectric Anomaly in Perovskite-Type Ferroelectric Oxides in the Temperature Range of 400–700 °C. J. Appl. Phys. 2003, 94, 1904–1911. [Google Scholar] [CrossRef] [Green Version]
- Surmenev, R.A.; Orlova, T.; Chernozem, R.V.; Ivanova, A.A.; Bartasyte, A.; Mathur, S.; Surmeneva, M.A. Hybrid Lead-Free Polymer-Based Nanocomposites with Improved Piezoelectric Response for Biomedical Energy-Harvesting Applications: A Review. Nano Energy 2019, 62, 475–506. [Google Scholar] [CrossRef]
- Ye, S.; Cheng, C.; Chen, X.; Chen, X.; Shao, J.; Zhang, J.; Hu, H.; Tian, H.; Li, X.; Ma, L.; et al. High-Performance Piezoelectric Nanogenerator Based on Microstructured P(VDF-TrFE)/BNNTs Composite for Energy Harvesting and Radiation Protection in Space. Nano Energy 2019, 60, 701–714. [Google Scholar] [CrossRef]
- Sekine, T.; Sugano, R.; Tashiro, T.; Sato, J.; Takeda, Y.; Matsui, H.; Kumaki, D.; Dos Santos, F.D.; Miyabo, A.; Tokito, S. Fully Printed Wearable Vital Sensor for Human Pulse Rate Monitoring Using Ferroelectric Polymer. Sci. Rep. 2018, 8, 1–10. [Google Scholar]
- Sharma, P.K.; Messing, G.L.; Agrawal, D.K. Structural, Ultraviolet-Shielding, Dielectric and Ferroelectric Properties of Ba1−xSrxTiO3 (X = 0.35) Thin Films Prepared by Sol-Gel Method in Presence of Pyrrole. Thin Solid Films 2005, 491, 204–211. [Google Scholar] [CrossRef]
- Boubaia, A.; Assali, A.; Berrah, S.; Bennacer, H.; Zerifi, I.; Boukortt, A. Band Gap and Emission Wavelength Tuning of Sr-Doped BaTiO3 (BST) Perovskites for High-Efficiency Visible-Light Emitters and Solar Cells. Mater. Sci. Semicond. Process. 2021, 130, 105837. [Google Scholar] [CrossRef]
- Zhu, M.; Du, Z.; Li, H.; Chen, B.; Jing, L.; Tay, R.Y.J.; Lin, J.; Tsang, S.H.; Teo, E.H.T. Tuning Electro-Optic Susceptibity via Strain Engineering in Artificial PZT Multilayer Films for High-Performance Broadband Modulator. Appl. Surf. Sci. 2017, 425, 1059–1065. [Google Scholar] [CrossRef]
- Du, Z.H.; Zhang, T.S.; Zhu, M.M.; Ma, J. Growth Mode of Sol-Gel Derived PLT Seeding Layers on Glass Substrates and Its Effect on Templating the Oriented Growth of PLZT Thin Films. J. Appl. Phys. 2009, 105, 061612. [Google Scholar] [CrossRef]
- Wan, X.; Luo, H.; Zhao, X.; Wang, D.Y.; Chan, H.L.W.; Choy, C.L. Refractive Indices and Linear Electro-Optic Properties of (1-x)Pb(Mg1/3Nb2/3)O3-XPbTiO3 Single Crystals. Appl. Phys. Lett. 2004, 85, 5233–5235. [Google Scholar] [CrossRef]
- Wessels, B.W. Ferroelectric Epitaxial Thin Films for Integrated Optics. Annu. Rev. Mater. Res. 2007, 37, 659–679. [Google Scholar] [CrossRef]
- Dupuy, A.D.; Kodera, Y.; Garay, J.E. Unprecedented Electro-Optic Performance in Lead-Free Transparent Ceramics. Adv. Mater. 2016, 28, 7970–7977. [Google Scholar] [CrossRef]
- Zhu, M.; Du, Z.; Liu, Q.; Chen, B.; Tsang, S.H.; Teo, E.H.T. Ferroelectric BiFeO3 Thin-Film Optical Modulators. Appl. Phys. Lett. 2016, 108, 233502. [Google Scholar] [CrossRef]
- Wang, D.Y.; Li, S.; Chan, H.L.W.; Choy, C.L. Optical and Electro-Optic Anisotropy of Epitaxial Ba0.7Sr0.3TiO3 Thin Films. Appl. Phys. Lett. 2010, 96, 061905. [Google Scholar] [CrossRef]
- Sando, D.; Yang, Y.; Paillard, C.; Dkhil, B.; Bellaiche, L.; Nagarajan, V. Epitaxial Ferroelectric Oxide Thin Films for Optical Applications. Appl. Phys. Rev. 2018, 5, 041108. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhu, M.; Shao, Y.; Zhao, Y.; Wei, C.; Gao, L.; Bao, Y. Smart Sensing Multifunctionalities Based on Barium Strontium Titanate Thin Films. Sensors 2022, 22, 7183. https://doi.org/10.3390/s22197183
Wang L, Zhu M, Shao Y, Zhao Y, Wei C, Gao L, Bao Y. Smart Sensing Multifunctionalities Based on Barium Strontium Titanate Thin Films. Sensors. 2022; 22(19):7183. https://doi.org/10.3390/s22197183
Chicago/Turabian StyleWang, Linghua, Minmin Zhu, Yong Shao, Yida Zhao, Can Wei, Langfeng Gao, and Yiping Bao. 2022. "Smart Sensing Multifunctionalities Based on Barium Strontium Titanate Thin Films" Sensors 22, no. 19: 7183. https://doi.org/10.3390/s22197183
APA StyleWang, L., Zhu, M., Shao, Y., Zhao, Y., Wei, C., Gao, L., & Bao, Y. (2022). Smart Sensing Multifunctionalities Based on Barium Strontium Titanate Thin Films. Sensors, 22(19), 7183. https://doi.org/10.3390/s22197183