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Abstract: Recently, target analysis using satellite SAR images has received much attention in the area
of satellite SAR remote sensing. Because the spatial resolution of the target response in the satellite
SAR image is a main factor that has a large effect on target analysis performances, the improvement of
the spatial resolution of target response is required to enhance the target analysis capability. However,
the spatial resolution is already determined in the satellite SAR system design process. To solve the
above problem, the super-resolution techniques that have been applied to radar images can be utilized.
However, the application of the super-resolution techniques to the target response in the satellite SAR
image is not simple due to the following reasons. First, the target’s motion induces severe blurring
of the target response, which impedes the successful improvement of spatial resolution. Next, the
zero-region in the frequency spectrum of the target image containing the target response also hinders
the generation of the super-resolved image. To successfully improve spatial resolution of the satellite
SAR image, the super-resolution techniques should be combined with proper preprocessing steps
that can cope with the above two issues. In this paper, the whole super-resolution procedure for
target responses in KOMPSAT-5 images is described. To the best of the authors’ knowledge, the
description of the whole super-resolution procedure for target responses is the first ever attempt
in the area of satellite SAR. First, a target image containing the target response is extracted from
a large-scale KOMPSAT-5 image. Subsequently, the target image is transformed to be appropriate
for the utilization of super-resolution techniques by proper preprocessing steps, considering the
direction of super resolution and the motion of the target. Then, some super-resolution techniques
are utilized to improve the spatial resolutions and qualities of the target images. The super-resolution
performances of the proposed scheme are validated using various target images for point static,
extended static, and extended moving targets. The novelties of this paper can be summarized as
follows: (1) the practical design of whole super-resolution processing for real satellite SAR images;
(2) the performance evaluation of super-resolution techniques on real satellite SAR images. The
results show that the proposed scheme can led to noticeable improvements of spatial resolution
of the target images for various types of targets with reliable computation times. In addition, the
proposed scheme also enhanced PSLR, ISLR, and IC, leading to clearer scattering information of the
principal scatterers. Consequently, the proposed method can assist in extracting more precise and
meaningful information for targets represented in KOMPSAT-5 images, which means great potential
for target recognition.

Keywords: KOMPSAT-5; SAR remote sensing; satellite SAR; super-resolution; target response

1. Introduction

Recently, in the area of satellite synthetic aperture radar (SAR) remote sensing, many
studies have focused on target analysis, such as detection and classification of target re-
sponses [1–8]. Generally, the spatial resolution of a satellite SAR system has a large effect
on the interpretation of the scattering mechanisms of the target in satellite SAR images [9];
therefore, it is a key factor in target analysis using satellite SAR images. The spatial resolu-
tion of satellite SAR images is directly associated with the 3 dB bandwidth of the impulse
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response functions (IRFs) of scatterers in satellite SAR images. Thus, as the spatial resolu-
tion improves in the range and azimuth directions, sharper IRFs can be obtained and the
interferences among the IRFs are reduced, leading to more accurate scattering information
(i.e., geometric locations and radar cross sections of principal scatterers) in satellite SAR
images. Thus, the improvement of the spatial resolution of satellite SAR images plays a
crucial role in improving target analysis capability using satellite SAR images. However, the
spatial resolution of satellite SAR images has already been determined in the satellite SAR
system design process, considering the operational objectives and application area of the
corresponding satellite SAR mission. Specifically, the frequency bandwidth and synthetic
aperture length are set to determine the range and azimuth resolutions, respectively; in
general, they cannot be controlled by the user.

In the areas of airborne SAR and inverse SAR (ISAR), the super-resolution (SR) concept
has been introduced in many studies [9–15] to generate super-resolved radar images
for specific targets. The SR algorithms in [9–15] are based on high-resolution spectral
estimation (SE) techniques, such as autoregressive (AR) model-based linear prediction
(LP), multiple signal classification (MUSIC), estimation of signal parameters via rotational
invariance techniques (ESPRIT), and relaxation (RELAX), which successfully generate
super-resolved radar images for various targets, solving the limitations of predetermined
spatial resolutions. In addition, some studies have demonstrated that super-resolved target
images can enhance target recognition capabilities [16,17].

In [18], compressive sensing (CS), an up-to-date technology, was used to generate
super-resolved radar images of targets. According to the CS theory [19,20], a certain signal
can be effectively recovered from incomplete measurements whose sampling rates are
lower than the Nyquist sampling rate if the signal is sparsely representable in redundant
basis functions. Because the principal scattering centers of targets are sparsely distributed
in a small part of the radar image domain, CS algorithms have been successfully used to
recover target information from incomplete scattered field signals in the areas of SAR and
ISAR imaging [21–24]. The CS concept can also be applied to generate super-resolved target
images. If we assume that the received radar signals are incomplete measurements, the
super-resolved target image can be generated by applying CS algorithms to the received
radar signals [18].

The aforementioned SR techniques can be applied to satellite SAR images. In [25], the
SR procedure was roughly described and applied to KOrea the SATellite-5 (KOMPSAT-5)
image, which is a high-resolution satellite SAR image acquired in the X-band. Specifically,
the Burg algorithm was applied to the target image containing the target response of a point
target to improve the spatial resolution in the slant-range and azimuth directions. Among
the many SE techniques, the Burg algorithm has been adopted because of its efficiency
with respect to accuracy and complexity (computation time). The experiments in [25]
demonstrated some improvements in the IRFs of the point target.

However, the experiments in [25] considered only a point target and a specific algo-
rithm (i.e., the Burg algorithm), leading to limited performance assessments. Thus, further
investigations are needed to analyze the applicability of SR techniques to KOMPSAT-5
images. In addition, the entire SR procedure must be refined for practical application. For
example, the SR procedure for a moving target requires additional preprocessing steps,
such as refocusing [26,27]. In addition, the zero-region removal in the frequency spectrum
should be executed differently depending on the SR direction.

Therefore, we designed the entire SR procedure for target responses in KOMPSAT-5
images. To best of the authors’ knowledge, the description of whole SR processing for
target responses is the first ever attempt in the area of satellite SAR. Briefly, target images
containing different types of targets were first extracted from large-scale KOMPSAT-5
images. Next, appropriate preprocessing steps were applied to the target images based on
their characteristics. Thereafter, the AR-model-based LP and CS algorithms were applied
to the preprocessed target images to generate super-resolved target images. Then, in the
experiments, the SR capabilities of the proposed scheme were evaluated using various
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target images for static, extended static, and extended moving targets in a number of
different ways.

2. Generation of Super-Resolved Target Image from Large-Scale KOMPSAT-5 Image
2.1. Overall Flow of the Proposed Scheme

The overall flow of the proposed scheme is illustrated in Figure 1. The proposed
scheme consists of two steps: (1) preprocessing, and (2) utilization of SR techniques.
In (1), the target image extracted from the KOMPSAT-5 image is transformed to be appro-
priate for the utilization of SR techniques. Then, the SR techniques are used to generate
super-resolved target images in (2). In the next sections, the above-mentioned steps will be
specifically explained.

Figure 1. Overall flow of the proposed scheme.

2.2. SAR Signal Model of Target Image for the Proposed Scheme

According to the high-frequency scattering theory, a backscattered field in the high-
frequency region can be represented as a sum of fields from a discrete set of independent
scattering centers (SCs) on a target [28]. For simplicity, we utilize an undamped exponential
model without the angle dependence as well as the frequency dependence term included
in the geometrical theory of diffraction (GTD) model. Thus, the scattered field signals from
I SCs at different look angles φ of target image can be modeled as [22]:

sφ, f =
I

∑
i=1

ai exp(−j2k sin φ · yi) exp(−j2k cos φ · xi) (1)
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where ai denotes the amplitude of the ith SC at (xi, yi) and k = 2π f /c denotes the cor-
responding wavenumber at the frequency f . Let fx = f cos φ and fy = f sin φ. Then,
Equation (1) can be expressed as:

snaz ,nsl =
I

∑
i=1

exp
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When we consider only one direction (slant-range or azimuth direction) for the SR, 
the signal model in Equation (3) can be simplified as follows [24]: 
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where n is azn  or sln . 

2.3. Preprocessing 
To conduct SR processing, a small target image was first extracted from a large-scale 

KOMPSAT-5 image. Figure 1 shows examples of target images for static and moving tar-
gets extracted from KOMPSAT-5 images. The automatic identification system (AIS) infor-
mation was used to verify the ship’s velocity. 

As shown in Figure 2a, if a target has no motion, then the target image contains a 
clear target response. In contrast, if a target has dynamic motion, the target response in 
the target image may be severely blurred owing to motion-induced phase errors in the 
scattered field signals, as shown in Figure 2b. In [26,27], the refocusing concept was intro-
duced to remove phase errors and effectively mitigate the blurring effect of target re-
sponses. Thus, in this study, the refocusing strategy was applied to a target image if it 
contained the target response of a moving target with a blurring effect. Specifically, phase 
errors were removed based on the minimization of the Shannon entropy of the target im-
age [29]. 

−j2πnaz ·
yi
Ry
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where Ry = c/(2∆ fy) and Rx = c/(2∆ fx) denote the maximum unambiguous range in the
azimuth and slant-range directions. naz and nsl are indices to azimuth and slant range. If
the two-dimensional (2D) SAR image domain is discretized by a 2D R×U grid, Equation (2)
can be expressed as:

snaz ,nsl =
R−1

∑
r=0
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∑
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2.3. Preprocessing

To conduct SR processing, a small target image was first extracted from a large-scale
KOMPSAT-5 image. Figure 1 shows examples of target images for static and moving targets
extracted from KOMPSAT-5 images. The automatic identification system (AIS) information
was used to verify the ship’s velocity.

As shown in Figure 2a, if a target has no motion, then the target image contains a clear
target response. In contrast, if a target has dynamic motion, the target response in the target
image may be severely blurred owing to motion-induced phase errors in the scattered
field signals, as shown in Figure 2b. In [26,27], the refocusing concept was introduced to
remove phase errors and effectively mitigate the blurring effect of target responses. Thus,
in this study, the refocusing strategy was applied to a target image if it contained the target
response of a moving target with a blurring effect. Specifically, phase errors were removed
based on the minimization of the Shannon entropy of the target image [29].

Figure 2. Examples of small target images: (a) static target, (b) moving target.
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Next, the small target image is decompressed using a fast Fourier transform (FFT)
along the SR direction in which the spatial resolution is improved, yielding the frequency
spectra shown in Figure 3. In Figure 3, the frequency spectra contain zero-regions in the
slant-range or azimuth directions, which are induced by oversampling in the SAR processor
(SARP) [30].

Figure 3. Frequency spectrum of target image. (a) Slant-range frequency spectrum, (b) azimuth
frequency spectrum.

To achieve high-quality SR results, the frequency spectrum must contain only con-
tinuous target information. However, the zero-regions break the continuity of the target
information in the frequency spectrum, hindering the successful generation of super-
resolved images. Thus, zero-regions should be removed in the SR direction. In the case of
the slant-range frequency spectrum, the zero-regions are always located in the middle part
of the spectrum by the characteristics of SAR processing, which can be directly removed us-
ing meta-information provided by SARP. Meanwhile, in the case of the azimuth frequency
spectrum, the location of the zero-region is circularly shifted, depending on the Doppler
centroid. Thus, the Doppler centroid is estimated to circularly shift the frequency spectrum
in the azimuth direction such that the zero-regions are located in the middle part of the
azimuth frequency spectrum. The zero-regions are then removed from the slant-range or
azimuth frequency spectrum using the meta-information provided by SARP. In this study,
we refer to the frequency spectrum whose zero-regions are removed as S ∈ CNaz×Nsl , Naz,
and Nsl , which denote the number of pixels in the azimuth (or azimuth frequency) and
slant-range (or slant-range frequency) directions, respectively.

S was then used to generate the SR image using the following SR techniques.

2.4. SR Technique Using AR-Model-Based LP Algorithm

In the case of radar images, the spatial resolutions are inversely proportional to the
frequency bandwidths in the slant-range and azimuth directions. The AR-model-based LP
extends the frequency bandwidths of the scattered field signals using extrapolation and
then generates a new target image with improved spatial resolution.

Let the scattered field signal at a specific slant-range bin (in the case of the azimuth
frequency spectrum) or azimuth bin (in the case of the slant-range frequency spectrum)
be noted by sn; n = 1, 2, . . . , N, where N is either Naz or Nsl . The AR model assumes
that sn is a sum of undamped exponentials [11,16,17]. In the AR model, sn should satisfy
the following forward and backward linear prediction conditions along the slant-range
frequency or azimuth frequency directions:
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ŝn =


−

k
∑

i=1
aisn−i, n = k + 1, k + 2, . . . , N

−
k
∑

i=1
a∗i sn+i, n = 1, 2, . . . , N − k

(5)

where ∗ denotes the complex conjugate, N can be either Nsl (in the case of the AR model
in the slant-range frequency direction) or Naz (in the case of the AR model in the azimuth
frequency direction), ai denotes the coefficients of the AR model, k is the AR model order,
and ŝn is the estimated data using forward or backward prediction. The forward prediction
error e f

n and backward prediction error eb
n can then be defined as follows:

e f
n = |sn − ŝn|2 =

∣∣∣∣∣ k

∑
i=0

aisn−i

∣∣∣∣∣
2

, n = k + 1, k + 2, . . . , N, (6)

eb
n = |sn − ŝn|2 =

∣∣∣∣∣ k

∑
i=0

a∗i sn+i

∣∣∣∣∣
2

, n = 1, 2, . . . , N − k (7)

where a0 = 1. The LP method determines the coefficients of the AR model ai to minimize
the sum of the forward and backward prediction errors in Equations (6) and (7). Among
the many LP methods, we adopted the Burg method [11] and modified covariance method
(MCM) [11], which have been widely used in radar imaging [16,17]. In addition, we selected
k = N/3 because it provides a robust estimation of ai [31].

Once ai is obtained, the number of additional cells for extrapolation is determined
as follows:

L = Round
[
0.5× N ×

(
resbe/resa f − 1

)]
, (8)

where Round[·] denotes the round-off operator, resbe and resa f are the spatial resolutions
in the slant-range or azimuth direction before and after the SR procedure, respectively.
Note that LP assumes that L is proportional to the increment of the frequency bandwidth
in the slant-range or azimuth direction after extrapolation [14]. Thus, L is crucial in
determining the adjusted spatial resolution of the resulting super-resolved target image.
Next, L cells were added to the first and last cells of sn along the SR direction, as shown
in Figure 4. Thereafter, the scattered field signals of the 2L cells were estimated using
ai. The above steps are iterated for all slant-range or azimuth bins. Finally, inverse FFT
(IFFT) is applied in the SR direction, yielding a super-resolved target image. In the case
of the super-resolution procedure using Burg algorithm, the computational cost consists
of one FFT, Burg algorithm, and one IFFT. The computational complexity of the FFT and
the IFFT are O(N log N) and O[(N + 2L) log(N + 2L)], respectively [32]. In addition, the
Burg algorithm requires 3Nk− k2− 2N− k complex additions, 3Nk− k2− N + 3k complex
multiplications, and k real divisions [33].

Figure 4. Increase in the number of cells in SR direction.
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2.5. SR Technique Using CS Algorithm

In the area of radar imaging in the high-frequency region, a scattered field signal vector
z ∈ CP×1 can be represented as a linear combination of I columns in a Fourier dictionary
F ∈ CP×P as follows:

z = Fa =
I

∑
i=1

fia(i) (9)

where a ∈ CP×1 denotes the scattering coefficient vector and fi ∈ CP×1 denotes the ith
column of the matrix F. Because the scattering information of the target is concentrated
in a small part of the radar image domain, c is generally small. When a has I non-zero
elements, it is said to be I-sparse. If z is fully and uniformly sampled, with complete data,
the unique solution of a can be easily estimated from Equation (9). However, in some cases,
the radar system experiences missing data, leading to nonuniform undersampled scattered
field signal vector y ∈ CQ×1 (Q < P). In this case, the linear equation in Equation (9) is
represented differently:

y = ΦFa = Wa =
I

∑
i=1

wia(i), (10)

where Φ ∈ CQ×P denotes the partial sensing matrix and W ∈ CQ×P denotes the partial
Fourier dictionary. Because Q < P Equation (10) is an underdetermined system, leading to
an infinite number of solutions for a. With regard to digital signal processing, the sampling
rates in Equation (10) do not satisfy the Nyquist sampling theory; thus, intact recovery of a
from y is impossible with severe aliasing.

However, according to the CS theory, a can be successfully recovered from the limited
measurements y if W satisfies the restricted isometry property (RIP) condition [19]. Because
the partial Fourier dictionary W satisfies the RIP condition, the solution can be obtained by
minimizing the l0-norm of a:

(P0) : min
a
‖a‖0 subject to y = Wa, (11)

where ‖·‖0 refers to the l0 norm of a vector (the number of non-zero elements). However,
the optimization of nonconvex (P0) is an NP-hard problem that is extremely complex and
difficult to solve [19,21,22]. To cope with this problem, many studies have utilized convex
relaxation, which replaces the l0 norm with the l1 norm, as follows [19,20]:

(P1) : min
a
‖a‖1 subject to y = Wa, (12)

where ‖·‖1 is the l1 norm. In addition, the equality constraint y = Wa in Equation (12) is
frequently replaced with a quadratic constraint to mitigate strictness, as follows [19,20]:

(Pε
1) : min

a
‖a‖1 subject to ‖y−Wa‖2 ≤ ε, (13)

where ‖·‖2 denotes the l2 norm, and ε denotes the error tolerance, which is a small posi-
tive value.

In this study, we utilize Equations (12) and (13), which are widely known as basis
pursuit (BP) and BP denoising (BPDN) [19,20,34], to generate super-resolved images. There
are several reliable software packages that implement CS algorithms. In this study, we
used l1-magic software by Candes and Romberg [34]. In [34], Equation (12) can be recast as
linear programs (LPs). Then, the LPs are solved using a generic path-following primal–dual
method. In addition, Equation (13) can be recast as second-order cone programs (SOCPs).
Then, the SOCPs are solved with a generic log-barrier algorithm. In Equation (13), ε is the
parameter that affects both the computation time (CT) and accuracy of optimization. If ε is
set to low, the CT is increased and the accuracy can become better, and vice versa. Thus, it
is preferable to find ε to make the CT as small as possible while maximizing the accuracy.
Thus, we tried to search the optimal ε heuristically, and then ε was set to 0.05 in this study.
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In addition, log-barrier tolerance, γ, which determines the number of log-barrier iterations,
is set to 0.001, referring to [34]. Let the scattered field signal vector at a specific slant-range
bin (in the case of the azimuth spectrum) or azimuth bin (in the case of the slant-range
spectrum) in S be denoted by s ∈ CN×1, where N is either Nsl or Naz. We first consider
s ∈ CN×1 as an incomplete signal vector with undersampling [that is, y in Equation (10)],
which consists of only part of the total scattered field signal vector t ∈ C(N+2L)×1 [that is, z
in Equation (9)]; L can be set by the user. Then, the 1D super-resolved scattering coefficient
vector can be obtained by solving Equations (12) and (13) for s instead of y. Finally, the
above steps are iterated for all slant-range or azimuth bins, yielding a super-resolved
target image. In the case of the super-resolution procedure using compressive sensing
algorithm, the computational cost consists of one FFT [i.e., O(N log N)], and compressive
sensing algorithm. The computational complexity of the compressive sensing algorithm
is influenced by several factors, such as problem sizes, parameter settings, and signal
complexity [20].

3. Experimental Results

To evaluate the SR capacity of the proposed scheme, we conducted SR experiments
using four target images for three different types of targets: point static, extended static,
and extended moving.

3.1. SR Results for Point Static Target

To obtain the target image for a point target, KOMPSAT-5 observed a real corner
reflector (CR) located at the KOMPSAT calibration site in Mongolia using spotlight mode
and HH polarization. The target image was then extracted to contain only the impulse
response function (IRF) of the CR, as shown in Figure 5.

Figure 5. IRF of corner reflector.

A preprocessed target image was first generated to investigate the SR capability of
the proposed scheme, and the preprocessed (PR) target image was first generated. Then,
the spatial resolution of the preprocessed target image was intentionally worsened by
reducing the slant-range or azimuth frequency bandwidth, leading to a low-resolution (LR)
target image, as described in [25]. Let the ratio of the adjusted SR to the original SR be
denoted as r. In this section, r is set to 1.6. Next, the AR-model-based LP and CS algorithms
were applied to the LR target image in both the slant-range and azimuth directions. The
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slant-range cut and azimuth cut were then obtained by cutting the super-resolved target
image at the center pixels in the slant-range and azimuth directions, respectively. Then, the
3 dB bandwidth, peak side-lobe ratio (PSLR), and integrated side-lobe ratio (ISLR) [35,36],
which are widely used as the quality parameters of SAR images, were computed to quantify
the SR capacity. The 3 dB bandwidth is the distance between the points with intensities
3 dB below the maximum intensity of the main lobe peak [35]. In addition, the PSLR is
defined as the ratio of the peak amplitude of the most prominent side lobe to the peak
amplitude of the main lobe, as in the following [35]:

PSLR = 20 log10
PeakP−side
Peakmain

, (14)

where PeakP−side denotes the peak amplitude of the most prominent side lobe, and Peakmain
is the peak amplitude of the main lobe. In addition, the ISLR is the ratio of the total power
in all the side lobes to the power in the main lobe, as in the following [35]:

ISLR = 20 log10
PowerA−side
Powermain

(15)

where PowerA−side denotes total power in all the side lobes, and Powermain is the power in
the main lobe.

Figure 6 shows the slant-range and azimuth cuts of the PR, LR, and super-resolved images.

Figure 6. Slant-range cuts and azimuth cuts of PR, LR, and super-resolved target images: (a) slant-
range cuts, (b) azimuth cuts.

In Figure 6, the solid red line denotes the slant-range and azimuth cuts of the PR target
image; the dashed green line denotes the slant-range and azimuth cuts of the LR target
image generated from the PR target image; the remaining four dotted lines denote the SR
results. From Figure 6, the proposed scheme exhibits remarkable SR performance along
both the slant range and azimuth directions. In particular, the main lobes of the super-
resolved slant range and azimuth cuts approximately match those of the PR slant range
and azimuth cuts. Quantitative comparisons of the quality parameters are summarized
in Tables 1 and 2. The results in Tables 1 and 2 are obtained from the average values
of 100 independent realizations to provide reliable performance evaluations for the BP
and BPDN algorithms. In these tables, the super-resolved slant-range and azimuth cuts
show significant improvements in the three quality parameters compared with the LR
slant-range and azimuth cuts. In particular, as expected from Figure 6, all algorithms almost
perfectly retrieved the 3 dB bandwidth of the PR target image from the LR target image.
Thus, the proposed scheme successfully achieved the objective of SR (i.e., improvement of
3 dB bandwidth) for the KOMPSAT-5 image. In addition, the proposed scheme enhances
the PSLR and ISLR of the LR target image. Although they cannot attain PSLR and ISLR
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equivalent to the PR target image, the qualities of the super-resolved target images are
superior to those of the LR target images.

Table 1. Comparison of three quality parameters of slant-range cuts.

Measure

3 dB Bandwidth [m] PSLR [dB] ISLR [dB]

PR 0.67 −20.93 −16.73
LR 1.02 −15.21 −12.38

Burg 0.69 −19.06 −15.08
MCM 0.72 −19.69 −16.27

BP 0.68 −16.78 −14.48
BPDN 0.68 −16.79 −14.5

Table 2. Comparison of three quality parameters of azimuth cuts.

Measure

3 dB Bandwidth [m] PSLR [dB] ISLR [dB]

PR 0.96 −23.76 −18.89
LR 1.44 −16.35 −13.15

Burg 0.99 −19.77 −16.68
MCM 1.02 −20.06 −18.48

BP 1.07 −19.07 −18.98
BPDN 1.07 −19.07 −18.98

The results in Tables 1 and 2 demonstrate that the proposed scheme can effectively
enhance the quality of the target image (i.e., the spatial resolution, PSLR, and ISLR).
However, note that r is an important factor affecting SR capability. The capabilities of the
four SR algorithms are sensitive to variations in r. To examine the SR performances of the
four algorithms in detail, we define the relative error rate of the three quality parameters
as follows:

PE3−dB bandwidth, PSLR, ISLR =

∣∣JPR − JSR
∣∣

JPR × 100, (16)

where JPR denotes three quality parameters of the PR target image, and JSR denotes those
of the super-resolved target images obtained using the four SR algorithms. In addition, the
1D relative errors of the slant range and azimuth cuts are defined as follows:

REsl, az =
∑
(∣∣IPR

1D
∣∣− ∣∣ISR

1D

∣∣)2

∑
(∣∣IPR

1D

∣∣)2 , (17)

where IPR
1D denotes the slant-range or azimuth cuts of the PR target image, ISR

1D denotes
those of the super-resolved target images, and ∑(·) denotes the summation of all elements
in a vector. PE3−dB bandwidth, PSLR, ISLR and REsl, az in Equations (16) and (17) were then
computed by varying r from 1.2 to 4 in increments of 0.4, as shown in Figures 7 and 8.

In Figure 7, it can be observed that the PE3−dB bandwidths of all algorithms is low over
the entire range of r. This indicates that the main lobe of the slant-range cut of the PR
target image can be successfully reconstructed from the LR slant-range cut, regardless of
the variation in r. In particular, the BP and BPDN provide reliable PE3−dB bandwidths, the
maximum of which is just lower than 4%. In the case of PEPSLR, PEISLR, and REsl , SR
performance worsens as r increases. For PEPSLR, the AR-model-based LPs yield better
performances than the CS techniques when r < 2.4, and their performances become similar
when r > 2.4. In the case of PEISLR and REsl , the Burg and MCM algorithms also show
better performance than the CS techniques when r < 2. However, CS techniques lead to



Sensors 2022, 22, 7189 11 of 20

lower (better) PEISLRs and REsls when r > 2. In particular, it is remarkable that the REsls
of the Burg and MCM algorithms rapidly increased during r > 2.

In Figure 8, as is the case with slant-range cuts, all algorithms exhibit reasonable
PE3−dB bandwidths. In addition, PEPSLRs, PEISLRs, and REazs tend to deteriorate as r in-
creases. For PEPSLR, PEISLR, and REaz, the AR-model-based LPs exhibit worse results than
the CS techniques for r > 2. In particular, the REazs of the Burg and MCM algorithms
significantly increase when r > 2.

In short, in the case of a point static target, all SR algorithms yielded reliable results
during r < 2. In addition, the CS techniques produced more robust SR results than the
AR-model-based LPs during r > 2.

Figure 7. PE3−dB bandwidth, PEPSLR, PEISLR, and REsl versus r: (a) PE3−dB bandwidth, (b) PEPSLR,
(c) PEISLR, (d) REsl .
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Figure 8. PE3−dB bandwidth, PEPSLR, PEISLR, REaz versus r for azimuth cuts: (a) PE3−dB bandwidth,
(b) PEPSLR, (c) PEISLR, (d) REaz.

3.2. SR Results for Extended Targets

To analyze the SR performance for extended targets, we used two target images
(i.e., extended static target and extended moving target) extracted from two different large-
scale KOMPSAT-5 images, as shown in Figure 2. The KOMPSAT-5 image in Figure 2a was
obtained using stripmap mode and HH polarization, whereas the KOMPSAT-5 image in
Figure 2b was obtained using the spotlight mode and HH polarization.

As in the case of the point target, after the two target images were preprocessed
according to Figure 1, the spatial resolutions of the two PR target images were deliberately
degraded using r = 1.6. The proposed SR scheme was then applied to the LR target image
in both the slant-range and azimuth directions.

Figure 9 shows the PR, LR, and super-resolved target images of the extended static
target. As shown in Figure 9b, the quality of the LR target image is much lower than that
of the PR target image. This is because (1) 3 dB bandwidths of IRFs corresponding to
scattering centers deteriorate (widen) and (2) interference among IRFs increases [16]. Then,
the target response of the ship is focused on improving the 3 dB bandwidths of the IRFs
and reducing the interference among the IRFs, as shown in Figure 9c–f.
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Figure 9. PR, LR, and super-resolved target images of extended static target: (a) PR, (b) LR, (c) Burg,
(d) MCM, (e) BP, (f) BPDN.

In addition, Figure 10 shows the PR, LR, and super-resolved target images of the
extended moving target. Note that in the case of the moving target, the PR target image in
Figure 10a differs considerably from the original target image in Figure 2b. This is because
the refocusing method was applied to Figure 2b to achieve an intact response of the moving
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target. As shown in Figure 10, the proposed scheme successfully improves the quality of the
LR target image. In particular, it appears that the qualities of Figure 10c,d are comparable
to those of the PR target image.

Figure 10. PR, LR, and super-resolved target images of extended moving target: (a) PR, (b) LR,
(c) Burg, (d) MCM, (e) BP, (f) BPDN.
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Unlike in the case of the point target, the SR performance of the extended target cannot
be quantitatively evaluated using SAR quality parameters. This is because the extended
target consists of a large number of scattering centers, leading to arbitrary interference
among the IRFs, which impedes the exact computation of the quality parameters.

Thus, as alternatives, we adopted Shannon entropy (SE) and image contrast (IC),
which are widely used to evaluate the focus quality of SAR image [23,24,28]. The SE and
IC can be written as follows [28]:

SE = ∑ ∑
|I2D|2

S
· ln S

|I2D|2
, (18)

IC =
σ
[
|I2D|2

]
E
[
|I2D|2

] , (19)

where I2D denotes a 2D image, ∑ ∑(·) denotes the summation of all the elements in a
matrix, and S = ∑ ∑|I2D|2. In addition, E[·] and σ[·] are the mean and standard deviation.

Generally, a lower SE and higher IC imply better focus quality of the SAR image. In
addition, the improvement in focus quality can imply the improvement of 3 dB bandwidths
of IRFs and a reduction in interference among IRFs, provided that other SAR imaging
parameters are the same, as in the case of the PR and LR target images.

Tables 3 and 4 show the SEs and ICs of the target images in Figures 9 and 10, respec-
tively. The results in Tables 3 and 4 are obtained from the average values of 100 independent
realizations to provide reliable performance evaluations for the BP and BPDN algorithms.
As expected, the LR target images have much higher SEs and lower ICs than those of the
PR target images. Meanwhile, the SEs and ICs of the super-resolved target images were
effectively improved. For both case of static and moving targets, the Burg algorithm shows
outstanding SEs and ICs, which are comparable to those of the PR target images.

Table 3. SEs and ICs of target images of extended static target.

Target Image

PR LR Burg MCM BP BPDN

SE 6.98 7.48 6.98 7.02 7.09 7.1
IC 9.92 7.03 9.3 9.1 9.3 9.22

Table 4. SEs and ICs of target images of extended moving target.

Target Image

PR LR Burg MCM BP BPDN

SE 5.06 5.69 4.96 5.07 5.41 5.41
IC 41.87 28.83 41.21 39.59 35.48 35.48

In addition, the computation time (CT) for each super-resolved target image was
measured to investigate the applicability of our scheme in real situations. For this, MATLAB
programs and a PC with its CPU clock speed of 3.7 GHz were used (the MATLAB program
is not optimized to obtain its best computation speed).

Tables 5 and 6 show the CTs for super-resolved target images in Figures 9 and 10.
The results in Tables 5 and 6 are obtained from the average values of 100 independent
realizations to provide reliable performance evaluations for the BP and BPDN algorithms.
As seen in Tables 5 and 6, the proposed scheme has reliable CTs. In particular, the CT is just
0.05 s for the extended static target, when the Burg algorithm is chosen as the SR technique.
Considering that our equipment and software are not optimized for data processing, the
proposed scheme has large potential to be used for real systems.
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Table 5. CTs for super-resolved target images of extended static target.

Target Image

Burg MCM BP BPDN

CT (s) 0.05 0.06 0.18 0.29

Table 6. CTs for super-resolved target images of extended moving target.

Target Image

Burg MCM BP BPDN

CT (s) 0.12 0.17 1.01 1.39

Furthermore, the 2D relative error is defined to compare the SR performances of the
four algorithms, as follows [22]:

RE2D =
∑ ∑

(∣∣IPR
2D
∣∣− ∣∣ISR

2D

∣∣)2

∑ ∑
(∣∣IPR

2D

∣∣)2 , (20)

where IPR
2D denotes the PR target image, ISR

2D denotes the super-resolved target images, and
∑ ∑(·) denotes the summation of all the elements in a matrix. Then, RE2D was computed
for target images of extended targets, varying r from 1.2 to 4 in steps of 0.4.

Figure 11 shows RE2D versus r for target images of extended targets. In Figure 11, all
algorithms yield similar performances in the entire range of r, showing continuous growth
of RE2D. Among them, the Burg algorithms show the best performances versus r.

Figure 11. RE2D versus r for target images of extended targets: (a) static target and (b) moving target.

From Tables 3 and 4 and Figure 11, we can observe that the SR performances of the
Burg algorithm are better than those of the other algorithms in the case of the extended
target used in this study.

In our study, we adopted two super-resolution techniques, namely the AR-model-
based LP algorithms and the compressive sensing algorithms. In the case of the AR-model-
based LP algorithms, the sparsity of the target image does not affect the super-resolution
performances theoretically. Meanwhile, in the case of compressive sensing algorithms, the
sparsity can affect the super-resolution performances. Actually, most target images can be
sparsely representable, because the target response is concentrated in a small part of the
target image. However, the sparsity of the target images can be varied depending on target
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detection algorithms, which determine the region of interest containing the target response
in different ways. Thus, we additionally investigated the super-resolution performances
of the proposed scheme using CS algorithms in the case of different image sparsity. Let
the ratio of the number of pixels corresponding to target response to the total number of
pixels in the target image, χ, be the image sparsity. The pixels of the target responses are
determined using the constant false alarm rate (CFAR) detector [1]. For experiments, we
first extracted another target image of a specific extended static target from the large-scale
KOMPSAT-5 image, as shown in Figure 12a. The χ of Figure 12a is 6.18%. Next, the χ of
the target image was artificially adjusted by cropping the target image, as if the region of
interest (ROI) for target response was changed. For example, Figure 12b is the resulting
target image whose χ is 20.6%. Then, RE2Ds for CS-based SR procedure versus χ were
computed when r = 1.6, as shown in Figure 13. In Figure 13, χs were 6.18, 15.96, 20.6, 30.33,
40.45, and 45.21%. As seen in Figure 13, the relative errors do not seriously change until
the image sparsity reaches 45.21%. Consequently, it is expected that the proposed scheme
can give stable performances in real situations that the image sparsity can be varied by the
target detection algorithms.

Figure 12. Target images of the extended static target having different χ: (a) χ = 6.18 % and
(b) χ = 20.6 %.

Figure 13. RE2D versus χ for target images of extended moving targets in Figure 12.
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4. Discussion

In Section 3, it is demonstrated that the proposed scheme is useful for improving
the quality (i.e., 3 dB bandwidth, PSLR, ISLR, and IC) of target images extracted from a
large-scale KOMPSAT-5 image. Although the four SR techniques result in some differences
in their performances, they mostly work well for various types of targets. We think that
the main application of the proposed scheme may be target recognition using satellite SAR
images, because the super-resolved images can represent the scattering information of
the main scatterers more clearly, as reported in [16,17]. Thus, our future work will use
the proposed scheme for SAR target recognition. Let the ratio of the original SR to the
improved SR be denoted as α. To investigate the potential of the proposed method for
target detection and classification, we applied the proposed scheme to Figure 2a by varying
α from 3 to 7 with steps of 2, as shown in Figure 14. Among the four algorithms, the Burg
algorithm was chosen as the SR technique of the proposed scheme because it exhibited
the best SR performance for extended targets in Section 3. In Figure 14, it can be observed
that the proposed scheme substantially enhances the quality of the original target image.
Consequently, the SR results provide more precise and delicate information about principal
scatterers, effectively removing the messy parts of the target responses. Thus, we expect
that the proposed method has great potential for target recognition.

Figure 14. SR results for Figure 2a: (a) original, (b) α = 3, (c) α = 5, (d) α = 7.
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We can consider utilizing the other spectral estimation techniques (e.g., subspace-
based methods such as MUSIC [13] or ESPRIT [14]), which have been used in the area of
radar signal processing (specifically, direction-of-arrival (DOA) estimation), for step 2 in
the proposed scheme (i.e., super-resolution algorithm), instead of the AR-model-based LP
algorithms. However, the subspace-based methods require much more computation times
than AR-model-based LP algorithm [33,37]. In addition, their accuracies are very sensitive
to the estimation of the number of sources, which is difficult for extended targets. Further-
more, if those are adopted as the super-resolution algorithm for step 2 in the proposed
scheme, the characteristics of the impulse response functions (IRFs) in the resulting target
images is completely lost; this may lead to critical degradation of SAR target recognition
performances. Thus, we think it is desirable to use AR-model-based LP algorithms as
the super-resolution algorithm to increase the efficiency for the main application of the
proposed scheme such as near-real-time SAR target recognition.

5. Conclusions

In this study, we present a detailed SR procedure for target responses in KOMPSAT-5
images. In Sections 3 and 4, the use of the proposed scheme led to remarkable improvements
in the quality (i.e., 3 dB bandwidth, PSLR, ISLR, and IC) of the target images for various
types of targets. Interestingly, the proposed scheme can enhance not only the spatial
resolution (i.e., 3 dB bandwidth) but also PSLR, ISLR, and IC, leading to clearer scattering
information of the principal scatterers. This implies that the proposed method can assist in
extracting more precise and meaningful information for targets represented in KOMPSAT-5
images. Furthermore, the concept of the proposed scheme can be easily extended to other
satellite SAR images, such as ICEEYE, Capella, COSMO-SkyMed, and KOMPSAT-6, if the
preprocessing steps are slightly adjusted depending on the characteristics of those images.
Thus, we expect that the proposed scheme will lead to improvements in target recognition
capability using various satellite SAR images.
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