SPR Sensor Based on a Tapered Optical Fiber with a Low Refractive Index Liquid Crystal Cladding and Bimetallic Ag–Au Layers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. TOFs Covered with Bimetallic Au/Ag Film
3.2. TOFs Covered with Bimetallic Ag/Au Film
4. Conclusions
- Resonant peaks obtained for Au/Ag cover are shifted by approx. 138 nm and 214 nm for Ag/Au compared to the peaks obtained for gold layers. Additionally, no resonant peak is observed in the case of the twisted cell covered with Ag/Au.
- For both bimetallic covers, the highest reduction in the peak width occurs for orthogonal cells. For parallel cells covered with Ag/Au film, as an electric field increases, the dip width also increases.
- Regarding the SNR, it is difficult to find any relation between value of the SNR and the LCC type or cover, but the highest values of the SNR were obtained for orthogonal and twisted Au/Ag cells, while for Ag/Au, these parameters could not be estimated. The SNR of the parallel cell with Ag/Au is three times higher than the same type of cell with the Ag/Au layer.
- The level of absorption peak in each case is very high and, excluding the results obtained for the orthogonal cell covered with Au/Ag, reaches at least 90%.
Author Contributions
Funding
Conflicts of Interest
References
- Kissinger, C. Fiber Optic Proximity Probe. United States of America Patent U.S. 3327584, 27 June 1967. [Google Scholar]
- Culshaw, B.; Kersey, A. Fiber-Optic Sensing: A Historical Perspective. J. Lightwave Technol. 2008, 26, 1064–1078. [Google Scholar] [CrossRef]
- Villuendas, F.; Pelayo, J. Optical fibre device for chemical seming based on surface plasmon excitridon. Sens. Actuators A Phys. 1990, 23, 1142–1145. [Google Scholar] [CrossRef]
- Walter, J.-G.; Eilers, A.; Alwis, L.S.M.; Roth, B.W.; Bremer, K. SPR Biosensor Based on Polymer Multi-Mode Optical Waveguide and Nanoparticle Signal Enhancement. Sensors 2020, 20, 2889. [Google Scholar] [CrossRef]
- Kretschmann, E.; Rather, H. Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Z. Nat. A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Li, J. A review: Development of novel fiber-optic platforms for bulk and surface refractive index sensing applications. Sens. Actuators Rep. 2020, 2, 100018. [Google Scholar] [CrossRef]
- Stasiewicz, K.A.; Moś, J.E. Influence of a thin metal layer on a beam propagation in a biconical optical fibre taper. Opto-Electron. Rev. 2016, 24, 196–208. [Google Scholar] [CrossRef]
- Melo, A.A.; Santiago, M.F.; Silva, T.B.; Moreira, C.S.; Cruz, R.M. Investigation of a D-Shaped Optical Fiber Sensor with Graphene Overlay. IFAC-PapersOnLine 2018, 5, 309–314. [Google Scholar] [CrossRef]
- Hernaez, M.; Zamarreno, C.; Matias, I.; Arregui, F. Optical fiber humidity sensor based on surface plasmon resonance in the infra-red region. J. Phys. Conf. Ser. 2009, 178, 012019. [Google Scholar] [CrossRef]
- Ahn, J.; Seong, T.; Kim, W.; Lee, T.; Kim, I.; Lee, K.S. Fiber-optic waveguide coupled surface plasmon resonance sensor. Opt. Express 2012, 20, 21729–21738. [Google Scholar] [CrossRef]
- Takagi, K.; Watanabe, K. Near Infrared Characterization of Hetero-Core Optical Fiber SPR Sensors Coated with Ta2O5 Film and Their Applications. Sensors 2012, 12, 2208–2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulchin, Y.; Vitrik, O.; Dyshlyuk, A. Analysis of surface plasmon resonance in bent single-mode waveguides with metal-coated cladding by eigenmode expansion method. Opt. Express 2014, 22, 22196–22201. [Google Scholar] [CrossRef]
- Singh, L.; Kumar, G.; Jain, S.; Kaushik, B. A novel plus shaped cavity based optical fiber sensor for the detection of Escherichia-Coli. Results Opt. 2021, 5, 100156. [Google Scholar] [CrossRef]
- Korec, J.; Stasiewicz, K.A.; Garbat, K.; Jaroszewicz, L.R. SPR Effect Controlled by an Electric Field in a Tapered Optical Fiber Surrounded by a Low Refractive Index Nematic Liquid Crystal. Materials 2020, 13, 4942. [Google Scholar] [CrossRef]
- Kim, Y.; Peng, W.; Banerji, S.; Booksh, K. Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases. Opt. Lett. 2005, 30, 2218–2220. [Google Scholar] [CrossRef] [PubMed]
- Shan, B.H.; Kong, L.X.; Wu, K.J.; Wu, K.J.; Ou, S.F.; He, P.F.; Jin, G.; Li, Z.; Zhang, Y.S. High sensitivity and ultra compact fiber-optic microtip SPR thermometer coated with Ag/PDMS bilayer film. Opt. Fiber Technol. 2021, 65, 102619. [Google Scholar] [CrossRef]
- Liu, Z.; Wei, Y.; Zhang, Y.; Zhao, E.; Yang, J.; Yuan, L. Twin-core fiber SPR sensor. Opt. Lett. 2015, 40, 2826–2829. [Google Scholar] [CrossRef]
- Boehm, J.; François, A.; Ebendorff-Heidepriem, H.; Monro, T. Chemical Deposition of Silver for the Fabrication of Surface Plasmon Microstructured Optical Fibre Sensors. Plasmonics 2011, 6, 133–136. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, Y.; Zhu, X.; Tang, X.; Shi, Y. Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index. Opt. Express 2013, 21, 32349–32357. [Google Scholar] [CrossRef] [PubMed]
- Jorgenson, R.; Yee, S. A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B Chem. 1993, 12, 213–220. [Google Scholar] [CrossRef]
- Hassani, A.; Skorobogatiy, M. Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. J. Opt. Soc. Am. B Opt. Phys. 2007, 24, 1423–1429. [Google Scholar] [CrossRef]
- Francois, A.; Boehm, J.; Oh, S.; Kok, T.; Monro, T. Collection mode surface plasmon fibre sensors: A new biosensing platform. Biosens. Bioelectron. 2011, 26, 3154–3159. [Google Scholar] [CrossRef]
- Monzon-Hernandez, D.; Villatoro, J.; Talavera, D.; Luna-Moreno, D. Optical-Fiber Surface-Plasmon Resonance Sensor with Multiple Resonance Peaks. Appl. Opt. 2004, 43, 1216–1220. [Google Scholar] [CrossRef] [PubMed]
- Klantsataya, E.; Jia, P.; Ebendorff-Heidepriem, H.; Monro, T.M.; François, A. Plasmonic Fiber Optic Refractometric Sensors: From Conventional Architectures to Recent Design Trends. Sensors 2017, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Popescu, A.; Baschir, L.; Savastru, D.; Stafe, M.; Vasile, G.; Miclos, S.; Negutu, C.; Mihaliesku, M.; Puscas, N. Analytical considerations and numerical simulations for surface plasmon resonance in four layers plasmonic structures which contain high refractive index waveguide. UPB. Sci. Bull. Series A 2015, 77, 233–244. [Google Scholar]
- Gupta, B.D. Chapter 4 Surface Plasmon Resonance Based Fiber Optic Sensors. In Reviews in Plasmonics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Wang, A.X.; Kong, X. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. Materials 2015, 8, 3024–3052. [Google Scholar] [CrossRef] [PubMed]
- Vasimalla, Y.; Singh, L. Design and Analysis of Planar Waveguide-Based SPR Sensor for Formalin Detection Using Ag-Chloride-BP Structure. IEEE Trans. Nanobiosci. 2022, 2010, 1. [Google Scholar] [CrossRef] [PubMed]
- Rani, M.; Sharma, N.K.; Salaj, V. Surface plasmon resonance based fiber optic sensor utilizing indium oxide. Optik 2013, 124, 5034–5038. [Google Scholar] [CrossRef]
- Hosoki, A.; Nishiyama, M.; Igawa, H.; Seki, A.; Watanabe, K.A. Hydrogen curing effect on surface plasmon resonance fiber optic hydrogen sensors using an annealed Au/Ta2O5/Pd multi-layers film. Opt. Express 2014, 22, 18556–18563. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Mishra, S.K.; Gupta, B.D. Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides. Sens. Actuators A Phys. 2013, 193, 136–140. [Google Scholar] [CrossRef]
- Zhu, S.; Pang, F.; Huang, S.; Zou, F.; Dong, Y.; Wang, T. High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD. Opt. Express 2015, 23, 13880–13888. [Google Scholar] [CrossRef]
- Korec, J.; Stasiewicz, K.A.; Garbat, K.; Jaroszewicz, L.R. Enhancement of the SPR Effect in an Optical Fiber Device Utilizing a Thin Ag Layer and a 3092A Liquid Crystal Mixture. Molecules 2021, 26, 7553. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Gupta, B.D. On the performance of different bimetallic combinations in surface plasmon resonance. J. Appl. Phys. 2007, 101, 093111-7. [Google Scholar] [CrossRef]
- Costa, K.Q.; Dimitriev, V.A.; Del Rosso, T.; Pandoli, O.G.; Aucelio, R.Q. Analysis of surface plasmon resonance sensor coupled to periodic array of gold nanoparticles. In Proceedings of the 2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, Porto de Galinhas, Brazil, 3–6 November 2015. [Google Scholar] [CrossRef]
- Lee, G.J.; Lee, Y.; Jung, B.; Jung, J.; Hwangbo, C.K.; Kim, J.; Yoon, C. Microstructural and Nonlinear Optical Properties of Thin Silver Films Near the Optical Percolation Threshold. J. Korean Phys. Soc. 2007, 51, 1555–1559. [Google Scholar] [CrossRef]
- Kong, L.; Lv, J.; Gu, Q.; Ying, Y.; Jiang, X.; Si, G. Sensitivity-Enhanced SPR Sensor Based on Graphene and Subwavelength Silver Gratings. Nanomaterials 2020, 10, 2125. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, S.; Liang, Y.; Li, L.; Peng, W. Fiber-Optic Surface Plasmon Resonance Sensor with Multi-Alternating Metal Layers for Biological Measurement. Photonic Sens. 2013, 3, 202–207. [Google Scholar] [CrossRef]
- Korec, J.; Stasiewicz, K.A.; Strzezysz, O.; Kula, P.; Jaroszewicz, L.R. Electro-Steering Tapered Fiber-Optic Device with Liquid Crystal Cladding. J. Sens. 2019, 2019, 1617685. [Google Scholar] [CrossRef]
- Meng, X.; Li, J.; Guo, Y.; Li, S.; Wang, Y.; Bi, W.; Lu, H. An optical-fiber sensor with double loss peaks based on surface plasmon resonance. Optic 2020, 216, 164938. [Google Scholar] [CrossRef]
- Cao, E.; Lin, W.; Weihua, S.; Sun, M.; Liang, W. Exciton-plasmon coupling interactions: From principle to applications. Nanophotonics 2018, 7, 145–167. [Google Scholar] [CrossRef]
- Dąbrowski, R.; Garbat, K.; Urban, S.; Woliński, T.R.; Dziaduszek, J.; Ogrodnik, T.; Siarkowska, A. Low-birefringence liquid crystal mixtures for photonic liquid crystal fibres application. Liq. Cryst. 2017, 44, 1911–1928. [Google Scholar] [CrossRef]
LCC | SNR | ||||||||
---|---|---|---|---|---|---|---|---|---|
Orthogonal | 665.8 nm | - | - | 64.3 nm | - | - | 10 | - | 0.036 |
Twist | 831.4 nm | - | - | 47.6 nm | - | - | 17 | - | 0.076 |
Parallel | 786.0 nm | 749.7 nm | 36.3 | 28.9 nm | 31.9 nm | 3 nm | 23 | - * |
Orthogonal Cell | Twisted Cell | |||
---|---|---|---|---|
Au/Ag | Ag/Au | Au/Ag | Ag/Au | |
803.6 nm | 883.6 nm | 968.4 nm | - | |
137.8 nm | 217.8 nm | 137.0 nm | - | |
24.6 nm | 18.4 nm | 44.4 nm | - | |
−39.7 nm → −61.7% | −45.9 nm → −71.4% | 3.2 nm → −6.7% | - | |
Resonant dip ** | - | |||
33 | 48 | 22 | ||
SNR | 0.081 | 0.000 | 0.095 *** | - |
Parallel Cell | ||
---|---|---|
Au/Ag | Ag/Au | |
926.4 nm 890.0 nm 36.4 nm | 996.0 nm 957.8 nm 38.5 nm | |
140.4 nm 140.3 nm | 210.0 nm 208.1 nm | |
24.0 nm 30.0 nm 6 nm | 27.1 nm 33.6 nm 6.5 nm | |
−4.9 nm → −16.9% −1.9 nm → −5.9% | −1.9 nm → −6.6% +1.7 nm → +5.3% | |
Resonant dips ** | ||
39 30 | 37 29 | |
SNR | 0.021 | 0.066 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korec, J.; Stasiewicz, K.A.; Jaroszewicz, L.R. SPR Sensor Based on a Tapered Optical Fiber with a Low Refractive Index Liquid Crystal Cladding and Bimetallic Ag–Au Layers. Sensors 2022, 22, 7192. https://doi.org/10.3390/s22197192
Korec J, Stasiewicz KA, Jaroszewicz LR. SPR Sensor Based on a Tapered Optical Fiber with a Low Refractive Index Liquid Crystal Cladding and Bimetallic Ag–Au Layers. Sensors. 2022; 22(19):7192. https://doi.org/10.3390/s22197192
Chicago/Turabian StyleKorec, Joanna, Karol A. Stasiewicz, and Leszek R. Jaroszewicz. 2022. "SPR Sensor Based on a Tapered Optical Fiber with a Low Refractive Index Liquid Crystal Cladding and Bimetallic Ag–Au Layers" Sensors 22, no. 19: 7192. https://doi.org/10.3390/s22197192
APA StyleKorec, J., Stasiewicz, K. A., & Jaroszewicz, L. R. (2022). SPR Sensor Based on a Tapered Optical Fiber with a Low Refractive Index Liquid Crystal Cladding and Bimetallic Ag–Au Layers. Sensors, 22(19), 7192. https://doi.org/10.3390/s22197192