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Abstract: This paper presents an on-chip fully integrated analog front-end (AFE) with a non-coherent
digital binary phase-shift keying (DBPSK) demodulator suitable for short-range magnetic field wire-
less communication applications. The proposed non-coherent DBPSK demodulator is designed based
on using comparators to digitize the received differential analog BPSK signal. The DBPSK demodu-
lator does not need any phase-lock loop (PLL) to detect the data and recover the clock. Moreover,
the proposed demodulator provides the detected data and the recovered clock simultaneously. Even
though previous studies have offered the basic structure of the AFEs, this work tries to amplify
and generate the required differential BPSK signal without missing data and clock throughout the
AFE, while a low voltage level signal is received at the input of the AFE. A DC-offset cancellation
(DCOC), a cascaded variable gain amplifier (VGA), and a single-to-differential (STOD) converter are
employed to construct the implemented AFE. The simulation results indicate that the AFE provides
a dynamic range of 0 dB to 40 dB power gain with 2 dB resolution. Measurement results show the
minimum detectable voltage at the input of AFE is obtained at 20 mV peak-to-peak. The AFE and the
proposed DBSPK demodulator are analyzed and fabricated in a 130 nm Bipolar-CMOS-DMOS (BCD)
technology to recover the maximum data rate of 32 kbps where the carrier frequency is 128 kHz.
The implemented DCOC, cascaded VGA, STOD, and the demodulator occupy 0.15 mm2, 0.063 mm2,
0.045 mm2, and 0.03 mm2 of area, respectively. The AFE and the demodulator consume 2.9 mA and
0.15 mA of current from an external 5 V power supply, respectively.

Keywords: DBPSK; demodulator; AFE; magnetic field communication; wireless network sensors

1. Introduction

The development of wireless communication devices to monitor difficult-to-access
areas (e.g., when a wireless sensor is used underground or underwater to monitor the
fluency of oil, gas, etc.) has increased. The challenges of power consumption, noise, gain,
linearity, and high-cost fabrication in radio frequency integrated circuit (RF IC) design led
to the design of magnetic field wireless sensor networks (WSNs) as one of the alternative
applications in short-range wireless communications [1–3].

Amplitude-shift keying (ASK) [4], on-off keying (OOK) [5], and phase-shift keying
(PSK) [6] are some of the conventional data modulation techniques for wireless data transfer.
In an ASK modulation technique, the data are carried by the amplitude. Therefore, the sen-
sitivity of carrier amplitude to noise causes missing data in short-range applications when
the input amplitude is very low. In other words, while the distance between transmitter
(TX) and receiver (RX) is not very short, due to the attenuation of signal and sensitivity of
carrier amplitude to noise, data would be missed. Hence, the ASK modulation technique is
not recommended in this application.

To detect the data in a conventional coherent binary phase-shift keying (BPSK) de-
modulator, the clock first needs to be recovered to resample the BPSK signal [7]. In general,
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Costas loops, squaring loops, and demodulators are employed to adopt phase-lock loops
(PLLs) to recover the required clock [8]. Hence, a considerable silicon die and power
consumption have to be devoted to the PLL. Moreover, PLLs need a significant settling
time to generate the operational clock. The proposed non-coherent DBPSK demodulator
is designed based on using comparators and delay cells to digitalize input signals. In
the proposed structure, there is no implemented PLL to detect data and recover clock.
Furthermore, the detected data and recovered clock are generated at the same time.

Since the received analog BPSK signal at the input of the demodulator might not
be large enough to guarantee the operation of the comparators (e.g., in the case of using
the sensors underground or underwater), the received analog BPSK signal has to be
amplified without any change in the shape of the signal. Moreover, in the proposed DBPSK
demodulator, to detect the data and recover the clock, the inverted analog BPSK signal is
required. Consequently, employing an analog front-end (AFE) to amplify and provide the
differential analog signal is inevitable. At the interface of the architecture to the analog
BPSK signal, the DC voltage of the input signal is adjusted to half of the supply voltage
(VDD/2) by a DC-offset cancellation (DCOC), which is located at the first stage of the AFE.
A cascaded variable gain amplifier (VGA) offers 0 dB to 40 dB of power gain to amplify the
input analog signal. This variation in power gain guarantees coverage of a wide dynamic
range of input voltage levels. A single-to-differential (STOD) converter is placed at the last
stage of the AFE to generate the required differential analog BPSK signal.

2. Overall Architecture and Building Blocks

Figure 1 illustrates the overall architecture of the proposed RX, which consists of a
DCOC, a cascaded VGA, a STOD, a conventional common-mode voltage generator (VCM
Gen.), and a serial peripheral interface (SPI).

Figure 1. Architecture of the proposed RX.

In the proposed architecture, an external magnetic field antenna receives the transmit-
ted analog BPSK signal from a low-frequency (LF) TX as stated in Figure 1. Depending
on the distance and the barriers between the LF TX and the antenna, the attenuation of
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the transmitted analog BPSK signal cannot be constant. In other words, the amplitude of
the received signal at the antenna is variable. Therefore, a reconfigurable gain amplifier is
required to provide a dynamic range of amplification of the input signal from low to high
voltage levels.

As indicated in Figure 1, the DCOC is employed at the first stage to adjust the DC
voltage level of the input signal to the desired VCM (VDD/2) for the subsequence stage
(VGA) where operational amplifiers (Op-amps) need to offer their best performance. The
required VCM of 2.5 V (VDD/2) is provided by VCM Gen. To digitalize the input analog
BPSK signal through the proposed DBPSK demodulator, the amplified input analog signal
and its invert are required. The STOD circuit converts the single input analog signal to the
required differential signal [9]. Through the SPI, a graphic user interface (GUI) programmer
on a computer controls the RX’s digital controller.

3. Hysteresis Comparator Analysis

Comparators are basic circuits to convert an analog signal to its digital format. To
switch the output of a comparator from 0 to VDD and vice versa, a hysteresis comparator
offers the possibility of having different down (VHYS−) and up (VHYS+) threshold voltages.
The loop characteristics of an inverting comparator are illustrated in Figure 2.

Figure 2. Loop characteristics of an inverting comparator.

The operation of the inverting comparator would be described in two scenarios: (1) an
analog signal is applied to the negative input of the comparator, while the positive input is
connected to a reference voltage (Vre f ). In this case, the input signal is compared with Vre f ,
and the output shows the inverted digitalized signal. (2) A differential analog sinewave
signal with a DC level: in this scenario, the negative input is compared with the DC level,
which can be assumed as Vre f . The output voltage of the inverting comparator can be
described by the following expression:{

VINB > Vre f −VHYS−; VOUT = 0
VINB < Vre f + VHYS+; VOUT = VDD

(1)

The structure of a hysteresis comparator is stated in Figure 3. In this structure, VHYS−
and VHYS+ can be defined by MN3 and MN4 [10]. VHYS− and VHYS+ can be calculated by
the following expressions [10]:

VHYS− =

√√√√ 2Ibias

µCox

(
W
L

)
4,5

×
√

b− 1√
b + 1

(2)
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VHYS+ =

√√√√ 2Ibias

µCox

(
W
L

)
4,5

×
√

a− 1√
a + 1

(3)

where a and b are greater than 1 and described by the W ratio of MN3 with MN2 and MN4
with MN5, respectively. It is worth mentioning that the output voltage of the hysteresis
comparator is dependent on the values of the input voltage at the same time and its
passed time.

Figure 3. Structure of the implemented hysteresis comparator.

4. DBPSK Demodulator

The structure of the proposed DBPSK demodulator is illustrated in Figure 4. Two
hysteresis comparators, three dynamic flip-flips (DFFs), two XOR gates, and an inverter
gate are formed as the building blocks of the proposed DBPSK demodulator to detect the
data and recover the clock. Figure 5 depicts the simulation results of the proposed DBPSK
demodulator. To detect the data and recover the clock, a double clock frequency from the
differential BPSK signal is recovered by employing a full wave rectifier and a comparator
(Comp.2).

Figure 4. Structure of the proposed DBPSK demodulator.
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Figure 5. Simulated timing diagram of the proposed non-coherent DBPSK demodulator.

The specified full-wave rectifier in Figure 4 consists of a comparator (Comp.1) and a
switch that is controlled by the output of Comp.1. The operating principles of the proposed
full-wave rectifier are as follows: when the input voltage level of the negative input (IN)
is greater than (VDD/2) + VHYS+, the output of Comp.1 (Node 1) is 0. In this case, the
switch connects the IN to the negative input of Comp.2, while if the voltage level of the
negative input of Comp.1 is lower than down (VDD/2)−VHYS−, the output voltage of
the comparator is VDD; hence, INB appears at the input of Comp.2 through the switch.
Consequently, the output of the switch (Node 2) presents the full-wave rectified signal with
DC level of VDD/2 as shown in Figure 3. The provided low-path filter (LPF) by (R = 1 MΩ)
and (C = 20 pF) at the inputs of Comp.2 ensures the voltage difference of ∆V between the
inputs of Comp.2. As the negative input swings, the Comp.2 recovers the double frequency
clock with respect to crossing points (Node 3).

The implemented DBPSK demodulator using delay and a data detector monitors the
location of rising and falling edges of the unmodulated data where the pulse width of the
output of Comp.1 lasts longer, and some unmodulated edges are skipped. Since the double
frequency clock is used to sample the BPSK signal to detect the data, the recovered clock
and detected data are generated synchronously. To simulate the operation of the proposed
DBSPK demodulator, the data signal is multiplied with a sinewave signal (carrier signal)
to provide the required modulated signal, where the amplitude of the modulated BPSK
signal is defined by the amplitude of the carrier signal. Figure 5 shows the original data
signal without modulation, the differential modulated BPSK signal, the internal digitalized
signals of the demodulation, the detected data, and the recovered clock.
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5. Analog Front-End

The DCOC circuit is located at the interface of the AFE to regulate the DC voltage
level of the received analog BPSK signal to the desirable VCM of 2.5 V, which is generated
by the conventional VCM Gen. As indicated in Figure 6, the DCOC Cap. bank (10–90 pF)
blocks the DC level voltage of the input signal and adjusts the DC level voltage to 2.5 V
through the DCOC Res. Bank (1–3.3 MΩ).

Figure 6. Block diagram of the DCOC and the cascaded VGA.

Two single-stage VGAs are implemented to construct the cascaded VGA block as
depicted in Figure 6. The provided power gain of a single-stage VGA by using R f and R in
the feedback is given by the following expression:

Vout

Vin
= 1 +

R f

R
(4)

Therefore, by using a reconfigurable resistor (R) in the feedback path, as indicated
in Figure 6, a dynamic range of power gain from 0 dB to 20 dB with 2 dB resolution is
obtained. It is noteworthy that 0 dB gain is achieved when the switch (SW) connects the
output of the operational amplifier (Op-Amp) to its negative input; in this condition, the
VGA operates as an analog buffer. Thus, the total dynamic range of amplification from
0 dB to 40 dB of power gain is provided by the cascaded VGA to amplify the received BPSK
signal. It should be noted that the cutoff frequency of DCOC and the gain of cascaded VGA
are controlled through the SPI part.

As discussed in the DBPSK demodulator section, to detect the data and recover the
clock, the differential signal of the analog BPSK signal is required. The STOD consists of two
analog buffers and an analog inverter to convert the single BPSK signal to its differential
form as illustrated in Figure 7. The gain of the analog inverter can be written by following
equation:

Vout

Vin
= −R1

R2
(5)

Since the gain of the analog invert should be −1, R1 and R2 are equal. It should be
noted that the required VCM for operation of the analog inverter circuit is provided by
VCM Gen.
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Figure 7. Block diagram of the STOD.

6. Experimental Results

The proposed fully integrated AFE with the DBPSK demodulator for short-range
magnetic field WSN is fabricated in a 130 nm Bipolar-CMOS-DMOS (BCD) technology with
an active area of 0.67 mm2 and 0.03 mm2, respectively. The proposed DBPSK demodulator
offers 25% data-rate-to-carrier frequency (DRCF). Figure 8 indicates the location of AFE,
DBPSK demodulator, SPI, and VCM Gen. in the top layout. The print circuit board (PCB)
and the device under test (DUT) for measurement is stated in Figure 9. The required supply
voltage is offered by an external 5 V power supply to measure the performance of the AFE
and the DBPSK demodulator. The modulated BPSK signal is provided by multiplying a
sinewave (carrier signal) and a pulse (data signal).

Figure 8. The top layout of the chip and location of AFE, DBPSK demodulator, SPI, and VCM Gen.

Figure 9. PCB and the device under test of the proposed architecture.
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Figure 10 indicates the post-layout simulation results of the gain performance through-
out the AFE, which is provided by the cascaded VGA. AFE can offer a wide range of power
gain from 0 dB to 40 dB with 2 dB resolution.

Figure 10. Post-layout simulation results of the provided power gain by AFE.

Figure 11 illustrates the measurement results of the detected data and recovered clock
with 50% duty cycle. The measurement results show the received BPSK signal is successfully
amplified by AFE and demodulated through the proposed DBPSK demodulator.

Figure 11. Measurement results of the device under test.

To compare the performance of the proposed DBPSK demodulator with previous
structures, two figure of merits (FoMs) are suggested [11,12]. The maximum DRCF, power
consumption, and occupied area are the most important factors to summarize the per-
formance of a demodulator. Therefore, the suggested FoM1 and FoM2 can be written by
following expressions [11,12]:

FoM1 =
DRCF

Power(mW)
(6)

FoM2 =
FoM1

A(mm2)
(7)
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The summarized performance of the proposed DBPSK demodulator and comparison
with other studies are reported in Table 1. When compared to recent works, the proposed
demodulator provides superior DRCF performance while consuming only 0.75 mW of
power. Furthermore, Table 1 depicts the FoMs of the proposed DBPSK demodulator and
other works for a fair comparison.

Table 1. Performance of the proposed DBPSK demodulator and comparison with other studies.

Parameter This Work [13] [14] [15] [16] [17] [18]

Year 2022 2013 2015 2016 2018 2019 2021
Modulation scheme DBPSK OOK-PM BPSK OOK/ASK BPSK FSK OOK/BFSK/DBPSK

Tech. (nm) 130 BCD 350 130 CMOS 180 180 130 180
Active area

(
mm2 ) 0.03 0.36 * 0.084 N.A 0.137 0.222 N.A

Power (mW) 0.75 <0.4 1.4 0.184 0.217 0.184 0.054/0.01
Carrier freq. (MHz) 0.128 1 21 1 13.56 405 433

Data rate (kbps) 32.0 25 1312.5 50.0 211 2500 200
DRCF (%) 25 2.5 6.25 5 1.55 0.617 0.046

FoM1 33.33 6.25 4.46 27.17 7.17 3.35 0.85/4.6
FoM2 1111 17.36 53.09 N.A 52.53 15.09 N.A

FoM1 = DRCF
Power(mW)

; FoM2 = FoM1
A(mm2)

; * Estimated area occupation from die photo.

7. Conclusions

In this article, the fully integrated AFE along with a DPBSK demodulator are imple-
mented in a 130 nm BCD process with a die size of 0.7 mm2. The power consumption of
the proposed DBPSK demodulator is 0.75 mW to detect the data and recover the clock.
Experimental results show the system offers a maximum data rate of 32 kbps where the
carrier frequency is 128 kHz.
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