Classification of Drivers’ Mental Workload Levels: Comparison of Machine Learning Methods Based on ECG and Infrared Thermal Signals
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Participants
- -
- possession of a driver’s license;
- -
- aged 18 years old or over;
3.2. Experimental Protocol
- Forward DST (repetition of digits in the same order to their presentation)
- Backward DST (repetition of digits in the reverse order to their presentation)
3.3. Data Acquisition and Analysis
- Mean value (MeanTemp);
- Standard deviation (STD);
- Kurtosis (K);
- Skewness (S);
- 90th percentile (90th P);
- Sample Entropy (SampEn);
- Ratio of the power spectral density evaluated in the low-frequency band (LF = [0.04–0.15] Hz) and in the high-frequency band (HF = [0.15–0.4] Hz) (LF/HF);
- Mean value of the power spectral density evaluated in the low-frequency band (LF = [0.04–0.15] Hz);
- Mean value of the power spectral density evaluated in the high-frequency band (HF = [0.15–0.4] Hz).
- Mean value (RRmean);
- Standard deviation (SDNN);
- Root mean square of successive differences (RMSSD);
- Ratio of the power spectral density evaluated in the low-frequency band (LF = [0.04–0.15] Hz) and in the high-frequency band (HF = [0.15–0.4] Hz) (LF/HF);
- Mean value of the power spectral density evaluated in the low-frequency band (LF = [0.04–0.15] Hz);
- Mean value of the power spectral density evaluated in the high-frequency band (HF = [0.15–0.4] Hz).
3.4. Application of Supervised Machine Learning for Classification
4. Results
4.1. Drivers’ Performances on Cognitive Tasks
4.2. IR-Visible Video Processing
4.3. Performances of Supervised Machine Learning Approaches
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. IR Features
- Mean value (MeanTemp)—average value of the thermal signal T over time (i.e., N samples) defined as:
- 2.
- Standard deviation (STD)—standard deviation of the thermal signal T overtime (i.e., N samples) defined as:
- 3.
- Kurtosis (K): fourth standardized moment, and it is the ratio between the fourth cental moment and the standard deviation. It is evaluated as follows:
- 4.
- Skewness (S)—third standardized moment, and it is the ratio between the third cental moment and the standard deviation. It is evaluated as follows:
- 5.
- 90th percentile (90th P): is the temperature value below which the 90% of all temperature frequency distribution falls;
- 6.
- Sample Entropy (SampEn): is defined as the negative natural logarithm of the conditional probability that signals that the subseries of length m (pattern length) that match pointwise within a tolerance r (similarity factor) also match at the m + 1 point. SampEn of a time series {t1,...,tN} of length N is computed employing the following set of equations:
- 7.
- Mean value of the power spectral density evaluated in the low-frequency band (LF = [0.04–0.15] Hz)
- 8.
- Mean value of the power spectral density evaluated in the high-frequency band (HF = [0.15–0.4] Hz)
- 9.
- Ratio of the power spectral density evaluated in the low-frequency band (LF = [0.04–0.15] Hz) and in the high-frequency band (HF = [0.15–0.4] Hz) (LF/HF).
Appendix A.2. HRV Features
- Mean value (RRmean)—average value of the RR intervals (RRi), evaluated as follows:
- 2.
- Standard deviation (SDNN)—Standard deviation of normal-to-normal interval, calculated as follows:
- 3.
- Root mean square of successive differences (RMSSD): root-mean-square of successive RR interval differences, evaluated as follows:
- 4.
- Mean value of the power spectral density evaluated in the low-frequency band (LF = [0.04–0.15] Hz);
- 5.
- Mean value of the power spectral density evaluated in the high-frequency band (HF = [0.15–0.4] Hz).
- 6.
- Ratio of the power spectral density evaluated in the low-frequency band (LF = [0.04–0.15] Hz) and in the high-frequency band (HF = [0.15–0.4] Hz) (LF/HF).
References
- Kajiwara, S. Evaluation of Driver’s Mental Workload by Facial Temperature and Electrodermal Activity under Simulated Driving Conditions. Int. J. Automot. Technol. 2014, 15, 65–70. [Google Scholar] [CrossRef]
- Kantowitz, B.H.; Simsek, O. Secondary-task measures of driver workload. In Stress, Workload, and Fatigue; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-1-4106-0044-8. [Google Scholar]
- Da Silva, F.P. Mental Workload, Task Demand and Driving Performance: What Relation? Procedia Soc. Behav. Sci. 2014, 162, 310–319. [Google Scholar] [CrossRef]
- Paxion, J.; Galy, E.; Berthelon, C. Mental Workload and Driving. Front. Psychol. 2014, 5, 1344. [Google Scholar] [CrossRef] [PubMed]
- Charles, R.L.; Nixon, J. Measuring Mental Workload Using Physiological Measures: A Systematic Review. Appl. Ergon. 2019, 74, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Foy, H.J.; Chapman, P. Mental Workload Is Reflected in Driver Behaviour, Physiology, Eye Movements and Prefrontal Cortex Activation. Appl. Ergon. 2018, 73, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Marquart, G.; Cabrall, C.; de Winter, J. Review of Eye-Related Measures of Drivers’ Mental Workload. Procedia Manuf. 2015, 3, 2854–2861. [Google Scholar] [CrossRef]
- Heine, T.; Lenis, G.; Reichensperger, P.; Beran, T.; Doessel, O.; Deml, B. Electrocardiographic Features for the Measurement of Drivers’ Mental Workload. Appl. Ergon. 2017, 61, 31–43. [Google Scholar] [CrossRef]
- Borghini, G.; Astolfi, L.; Vecchiato, G.; Mattia, D.; Babiloni, F. Measuring Neurophysiological Signals in Aircraft Pilots and Car Drivers for the Assessment of Mental Workload, Fatigue and Drowsiness. Neurosci. Biobehav. Rev. 2014, 44, 58–75. [Google Scholar] [CrossRef]
- Di Flumeri, G.; Borghini, G.; Aricò, P.; Sciaraffa, N.; Lanzi, P.; Pozzi, S.; Vignali, V.; Lantieri, C.; Bichicchi, A.; Simone, A.; et al. EEG-Based Mental Workload Neurometric to Evaluate the Impact of Different Traffic and Road Conditions in Real Driving Settings. Front. Hum. Neurosci. 2018, 12, 509. [Google Scholar] [CrossRef]
- Di Flumeri, G.; Borghini, G.; Aricò, P.; Sciaraffa, N.; Lanzi, P.; Pozzi, S.; Vignali, V.; Lantieri, C.; Bichicchi, A.; Simone, A.; et al. Chapter 20–EEG-Based Mental Workload Assessment During Real Driving: A Taxonomic Tool for Neuroergonomics in Highly Automated Environments. In Neuroergonomics; Ayaz, H., Dehais, F., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 121–126. ISBN 978-0-12-811926-6. [Google Scholar]
- Perpetuini, D.; Cardone, D.; Filippini, C.; Spadolini, E.; Mancini, L.; Chiarelli, A.M.; Merla, A. Can Functional Infrared Thermal Imaging Estimate Mental Workload in Drivers as Evaluated by Sample Entropy of the FNIRS Signal? In Proceedings of the 8th European Medical and Biological Engineering Conference, Portorož, Slovenia, 29 November–3 December 3 2020; Jarm, T., Cvetkoska, A., Mahnič-Kalamiza, S., Miklavcic, D., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 223–232. [Google Scholar]
- Tao, D.; Tan, H.; Wang, H.; Zhang, X.; Qu, X.; Zhang, T. A Systematic Review of Physiological Measures of Mental Workload. Int. J. Environ. Res. Public Health 2019, 16, 2716. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, K.; Larentzakis, A.V.; Khamis, N.N.; Alsuhaibani, G.I.; Alaska, Y.A.; Giallafos, E.J. Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review. Folia Med. 2018, 60, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Tjolleng, A.; Jung, K.; Hong, W.; Lee, W.; Lee, B.; You, H.; Son, J.; Park, S. Classification of a Driver’s Cognitive Workload Levels Using Artificial Neural Network on ECG Signals. Appl. Ergon. 2017, 59, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Dias, R.D.; Ngo-Howard, M.C.; Boskovski, M.T.; Zenati, M.A.; Yule, S.J. Systematic Review of Measurement Tools to Assess Surgeons’ Intraoperative Cognitive Workload. Br. J. Surg. 2018, 105, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Ammer, K.; Ring, F. The Thermal Human Body: A Practical Guide to Thermal Imaging; Jenny Stanford Publishing: New Delhi, India, 2019; ISBN 0-429-01998-X. [Google Scholar]
- Filippini, C.; Perpetuini, D.; Cardone, D.; Chiarelli, A.M.; Merla, A. Thermal Infrared Imaging-Based Affective Computing and Its Application to Facilitate Human Robot Interaction: A Review. Appl. Sci. 2020, 10, 2924. [Google Scholar] [CrossRef]
- Kosonogov, V.; Zorzi, L.D.; Honoré, J.; Martínez-Velázquez, E.S.; Nandrino, J.-L.; Martinez-Selva, J.M.; Sequeira, H. Facial Thermal Variations: A New Marker of Emotional Arousal. PLoS ONE 2017, 12, e0183592. [Google Scholar] [CrossRef]
- Perpetuini, D.; Cardone, D.; Filippini, C.; Chiarelli, A.M.; Merla, A. Modelling Impulse Response Function of Functional Infrared Imaging for General Linear Model Analysis of Autonomic Activity. Sensors 2019, 19, 849. [Google Scholar] [CrossRef]
- Cruz-Albarrán, I.A.; Benítez-Rangel, J.P.; Osornio-Ríos, R.A.; Morales-Hernández, L.A. Human Emotions Detection Based on a Smart-Thermal System of Thermographic Images. Infrared Phys. Technol. 2017, 81, 250–261. [Google Scholar] [CrossRef]
- Engert, V.; Merla, A.; Grant, J.A.; Cardone, D.; Tusche, A.; Singer, T. Exploring the Use of Thermal Infrared Imaging in Human Stress Research. PLoS ONE 2014, 9, e90782. [Google Scholar] [CrossRef]
- Kang, J.; McGinley, J.A.; McFadyen, G.; Babski-Reeves, K. Determining Learning Level and Effective Training Times Using Thermography. In Proceedings of the Army Science Conference, Orlando, FL, USA, 29 November–2 December 2006. [Google Scholar]
- Stemberger, J.; Allison, R.S.; Schnell, T. Thermal Imaging as a Way to Classify Cognitive Workload. In Proceedings of the 2010 Canadian Conference on Computer and Robot Vision, Ottawa, ON, Canada, 31 May–2 June 2010; pp. 231–238. [Google Scholar]
- Cardone, D.; Perpetuini, D.; Filippini, C.; Spadolini, E.; Mancini, L.; Chiarelli, A.M.; Merla, A. Driver Stress State Evaluation by Means of Thermal Imaging: A Supervised Machine Learning Approach Based on ECG Signal. Appl. Sci. 2020, 10, 5673. [Google Scholar] [CrossRef]
- Cardone, D.; Filippini, C.; Mancini, L.; Pomante, A.; Tritto, M.; Nocco, S.; Perpetuini, D.; Merla, A. Driver Drowsiness Evaluation by Means of Thermal Infrared Imaging: Preliminary Results. In Proceedings of the Infrared Sensors, Devices, and Applications XI. Int. Soc. Opt. Photonics 2021, 11831, 118310. [Google Scholar]
- Ebrahimian-Hadikiashari, S.; Nahvi, A.; Homayounfard, A.; Bakhoda, H. Monitoring the Variation in Driver Respiration Rate from Wakefulness to Drowsiness: A Non-Intrusive Method for Drowsiness Detection Using Thermal Imaging. J. Sleep Sci. 2018, 3, 1–9. [Google Scholar]
- Knapik, M.; Cyganek, B. Driver’s Fatigue Recognition Based on Yawn Detection in Thermal Images. Neurocomputing 2019, 338, 274–292. [Google Scholar] [CrossRef]
- Yamakoshi, T.; Yamakoshi, K.; Tanaka, S.; Nogawa, M.; Park, S.B.; Shibata, M.; Sawada, Y.; Rolfe, P.; Hirose, Y. Feasibility Study on Driver’s Stress Detection from Differential Skin Temperature Measurement. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–24 August 2008; pp. 1076–1079. [Google Scholar]
- Zhang, M.; Ihme, K.; Drewitz, U. Discriminating Drivers’ Emotions through the Dimension of Power: Evidence from Facial Infrared Thermography and Peripheral Physiological Measurements. Transp. Res. Part F Traffic Psychol. Behav. 2019, 63, 135–143. [Google Scholar] [CrossRef]
- Or, C.K.L.; Duffy, V.G. Development of a Facial Skin Temperature-Based Methodology for Non-Intrusive Mental Workload Measurement. Occup. Ergon. 2007, 7, 83–94. [Google Scholar] [CrossRef]
- Pavlidis, I.; Dcosta, M.; Taamneh, S.; Manser, M.; Ferris, T.; Wunderlich, R.; Akleman, E.; Tsiamyrtzis, P. Dissecting Driver Behaviors under Cognitive, Emotional, Sensorimotor, and Mixed Stressors. Sci. Rep. 2016, 6, 25651. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, D.; Menassa, C.C.; Kamat, V.R. Can Infrared Facial Thermography Disclose Mental Workload in Indoor Thermal Environments? In Proceedings of the 1st ACM International Workshop on Urban Building Energy Sensing, Controls, Big Data Analysis, and Visualization, New York, NY, USA, 13–14 November 2019; Association for Computing Machinery: New York, NY, USA; pp. 87–96. [Google Scholar]
- Praveena, M.; Jaiganesh, V. A Literature Review on Supervised Machine Learning Algorithms and Boosting Process. Int. J. Comput. Appl. 2017, 169, 32–35. [Google Scholar] [CrossRef]
- PMC, E. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2000, 284, 3043–3045. [Google Scholar]
- City Car Driving–Car Driving Simulator, PC Game. Available online: https://citycardriving.com/ (accessed on 26 June 2020).
- Orsini, A.; Grossi, D.; Capitani, E.; Laiacona, M.; Papagno, C.; Vallar, G. Verbal and Spatial Immediate Memory Span: Normative Data from 1355 Adults and 1112 Children. Ital. J. Neuro. Sci. 1987, 8, 537–548. [Google Scholar] [CrossRef]
- Carlesimo, G.A.; Caltagirone, C.; Gainotti, G.; Fadda, L.; Gallassi, R.; Lorusso, S.; Marfia, G.; Marra, C.; Nocentini, U.; Parnetti, L. The Mental Deterioration Battery: Normative Data, Diagnostic Reliability and Qualitative Analyses of Cognitive Impairment. ENE 1996, 36, 378–384. [Google Scholar] [CrossRef]
- Rey, A. L’examen Clinique En Psychologie [The Clinical Examination in Psychology]; Presses Universitaries De France: Oxford, UK, 1958; p. 222. [Google Scholar]
- Conover, M.B. Understanding Electrocardiography; Elsevier Health Sciences: Amsterdam, The Netherlands, 2002; ISBN 978-0-323-01905-7. [Google Scholar]
- Baltrušaitis, T.; Robinson, P.; Morency, L.-P. OpenFace: An Open Source Facial Behavior Analysis Toolkit. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–10. [Google Scholar]
- Cardone, D.; Spadolini, E.; Perpetuini, D.; Filippini, C.; Chiarelli, A.M.; Merla, A. Automated Warping Procedure for Facial Thermal Imaging Based on Features Identification in the Visible Domain. Infrared Phys. Technol. 2021, 112, 103595. [Google Scholar] [CrossRef]
- Liu, H.; Shah, S.; Jiang, W. On-Line Outlier Detection and Data Cleaning. Comput. Chem. Eng. 2004, 28, 1635–1647. [Google Scholar] [CrossRef]
- Osisanwo, F.Y.; Akinsola, J.E.T.; Awodele, O.; Hinmikaiye, J.O.; Olakanmi, O.; Akinjobi, J. Supervised Machine Learning Algorithms: Classification and Comparison. Int. J. Comput. Trends Technol. 2017, 48, 128–138. [Google Scholar]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: Cambridge, UK, 2014; ISBN 1-139-95274-9. [Google Scholar]
- Tharwat, A. Linear vs. Quadratic Discriminant Analysis Classifier: A Tutorial. Int. J. Appl. Pattern Recognit. 2016, 3, 145–180. [Google Scholar] [CrossRef]
- Dreiseitl, S.; Ohno-Machado, L. Logistic Regression and Artificial Neural Network Classification Models: A Methodology Review. J. Biomed. Inform. 2002, 35, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A Comprehensive Survey on Support Vector Machine Classification: Applications, Challenges and Trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Cheng, D. Learning k for KNN Classification. ACM Trans. Intell. Syst. Technol. 2017, 8, 1–19. [Google Scholar] [CrossRef]
- Rokach, L. Ensemble-Based Classifiers. Artif. Intell. Rev. 2010, 33, 1–39. [Google Scholar] [CrossRef]
- Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A Survey on Ensemble Learning. Front. Comput. Sci. 2020, 14, 241–258. [Google Scholar] [CrossRef]
- Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-Validation. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer: New York, NY, USA, 2016; pp. 1–7. ISBN 978-1-4899-7993-3. [Google Scholar]
- Peck, G. Data Science with Matlab. Classification Techniques; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2017; ISBN 978-1-979472-28-9. [Google Scholar]
- Di Credico, A.; Perpetuini, D.; Izzicupo, P.; Gaggi, G.; Cardone, D.; Filippini, C.; Merla, A.; Ghinassi, B.; Di Baldassarre, A. Estimation of Heart Rate Variability Parameters by Machine Learning Approaches Applied to Facial Infrared Thermal Imaging. Front. Cardiovasc. Med. 2022, 9, 893374. [Google Scholar] [CrossRef]
- Jović, A.; Brkić, K.; Bogunović, N. A Review of Feature Selection Methods with Applications. In Proceedings of the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015; pp. 1200–1205. [Google Scholar]
- Fard, E.K.; Keelor, J.L.; Bagheban, A.A.; Keith, W.R. Comparison of the Rey Auditory Verbal Learning Test (RAVLT) and Digit Test among Typically Achieving and Gifted Students. Iran. J. Child Neurol. 2016, 10, 26–37. [Google Scholar]
- Louie, J.F.; Mouloua, M. Predicting Distracted Driving: The Role of Individual Differences in Working Memory. Appl. Ergon. 2019, 74, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, Y.; Velloso, E.; Dingler, T.; Schmidt, A.; Vetere, F. Cognitive Heat: Exploring the Usage of Thermal Imaging to Unobtrusively Estimate Cognitive Load. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 1–20. [Google Scholar] [CrossRef]
- Gaoua, N.; Racinais, S.; Grantham, J.; El Massioui, F. Alterations in Cognitive Performance during Passive Hyperthermia Are Task Dependent. Int. J. Hyperth. 2011, 27, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Perpetuini, D.; Cardone, D.; Bucco, R.; Zito, M.; Merla, A. Assessment of the Autonomic Response in Alzheimer’s Patients During the Execution of Memory Tasks: A Functional Thermal Imaging Study. Curr. Alzheimer Res. 2018, 15, 951–958. [Google Scholar] [CrossRef]
- Itoh, M. Individual Differences in Effects of Secondary Cognitive Activity during Driving on Temperature at the Nose Tip. In Proceedings of the 2009 International Conference on Mechatronics and Automation, Changchun, China, 9–12 August 2009; pp. 7–11. [Google Scholar]
- Wang, L.; Duffy, V.G.; Du, Y. A Composite Measure for the Evaluation of Mental Workload. In Proceedings of the Digital Human Modeling; Duffy, V.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 460–466. [Google Scholar]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Forte, G.; Favieri, F.; Casagrande, M. Heart Rate Variability and Cognitive Function: A Systematic Review. Front. Neurosci. 2019, 13, 1–11. [Google Scholar] [CrossRef]
- Guarino, A.; Lettieri, N.; Malandrino, D.; Zaccagnino, R.; Capo, C. Adam or Eve? Automatic Users’ Gender Classification via Gestures Analysis on Touch Devices. Neural Comput. Appl. 2022, 1–23. [Google Scholar] [CrossRef]
- Daanen, H.A.; Van De Vliert, E.; Huang, X. Driving Performance in Cold, Warm, and Thermoneutral Environments. Appl. Ergon. 2003, 34, 597–602. [Google Scholar] [CrossRef]
- Mehler, B.; Reimer, B.; Coughlin, J.F. Physiological Reactivity to Graded Levels of Cognitive Workload across Three Age Groups: An on-Road Evaluation. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, San Francisco, California, USA, 27 September–1 October 2010; SAGE Publications: Los Angeles, CA, USA, 2010; Volume 54, pp. 2062–2066. [Google Scholar]
- Son, J.; Lee, Y.; Kim, M.-H. Impact of Traffic Environment and Cognitive Workload on Older Drivers’ Behavior in Simulated Driving. Int. J. Precis. Eng. Manuf. 2011, 12, 135–141. [Google Scholar] [CrossRef]
- Son, J.; Reimer, B.; Mehler, B.; Pohlmeyer, A.E.; Godfrey, K.M.; Orszulak, J.; Long, J.; Kim, M.H.; Lee, Y.T.; Coughlin, J.F. Age and Cross-Cultural Comparison of Drivers’ Cognitive Workload and Performance in Simulated Urban Driving. Int. J. Automot. Technol. 2010, 11, 533–539. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Authors | Research Field | Measured Variables | Methodological Approach | Performance |
---|---|---|---|---|
Kang et al. [23] | Military training monitoring |
|
|
|
Stemberger et al. [24] | Aviator training monitoring |
|
|
|
Wang et al. [33] | Thermal comfort and workload indoor |
|
|
|
Or and Duffy [34] | Car driver monitoring |
|
|
|
Pavlidis et al. [32] | Car driver monitoring |
| paired t-tests | Mean sympathetic arousal and mean steering performance during cognitive workload had significant deterioration with respect to no-stressor driving (p << 0.01) |
Perpetuini et al. [12] | Car driver monitoring |
| SVM classifier | Sensitivity of 77% and specificity of 69% |
DST | RAVLT | ||||
---|---|---|---|---|---|
Forward DST | Backward DST | ImmR | DelR | Rec | |
Mean | 7.19 | 6.15 | 41.69 | 8.92 | 43.08 |
Standard Deviation | 2.00 | 2.13 | 9.71 | 3.03 | 3.74 |
Unimodal IR Features | Unimodal HRV Features | Multimodal IR + HRV Features | |
---|---|---|---|
DST | Nosetip: STD; S; SampEn Glabella: K; S; LF; HF | RRmean SDNN HF | Nosetip: STD; S; SampEn Glabella: K; S; LF; HF HRV: RRmean; SDNN; HF |
RAVLT | Nosetip: STD; K; S; 90thP; SampEn; LF/HF; LF; HF; Glabella: MeanTemp; K; S; SampEn; LF/HF; LF; HF; | RRmean; RMSSD; LF/HF | Nosetip: STD; K; S; 90thP; SampEn; LF/HF; LF; HF; Glabella: MeanTemp; K; S; SampEn; LF/HF; LF; HF; HRV: RRmean; RMSSD; LF/HF |
Unimodal IR Features | Unimodal HRV Features | Multimodal IR + HRV Features | ||||
---|---|---|---|---|---|---|
DST | RAVLT | DST | RAVLT | DST | RAVLT | |
Decision Tree | ||||||
Simple | 46.2 | 59.2 | 46.2 | 44.7 | 48.1 | 56.6 |
Medium | 50.0 | 59.2 | 50.0 | 39.5 | 48.1 | 53.9 |
Complex | 50.0 | 59.2 | 50. | 39.5 | 48.1 | 53.9 |
Discriminant Analysis | ||||||
Linear | 69.2 | 56.6 | 59.6 | 32.9 | 63.5 | 55.3 |
Quadratic | 63.5 | 53.9 | 44.2 | 28.9 | 59.6 | 57.9 |
Logistic Regression | 69.2 | - | 50.0 | - | 73.1 | - |
Support Vector Machine | ||||||
Linear | 73.1 | 65.8 | 50.0 | 28.9 | 73.1 | 63.2 |
Quadratic | 65.4 | 53.9 | 42.3 | 26.3 | 61.5 | 51.3 |
Cubic | 51.9 | 56.6 | 51.9 | 35.5 | 61.5 | 51.3 |
K Nearest Neighbor | ||||||
Coarse | 48.1 | 34.2 | 48.1 | 34.2 | 41.8 | 34.2 |
Medium | 55.8 | 47.4 | 50.0 | 31.6 | 57.7 | 44.7 |
Fine | 59.6 | 55.3 | 50.0 | 44.7 | 55.8 | 50.0 |
Ensemble | ||||||
Bagged trees | 53.8 | 71.1 | 53.8 | 44.7 | 59.6 | 75.0 |
Subspace discriminant | 63.5 | 56.6 | 50 | 32.9 | 59.6 | 56.6 |
Subspace kNN | 55.8 | 56.6 | 48.1 | 44.7 | 57.7 | 56.6 |
RUSboosted trees | 55.8 | 47.4 | 48.1 | 47.4 | 46.2 | 35.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardone, D.; Perpetuini, D.; Filippini, C.; Mancini, L.; Nocco, S.; Tritto, M.; Rinella, S.; Giacobbe, A.; Fallica, G.; Ricci, F.; et al. Classification of Drivers’ Mental Workload Levels: Comparison of Machine Learning Methods Based on ECG and Infrared Thermal Signals. Sensors 2022, 22, 7300. https://doi.org/10.3390/s22197300
Cardone D, Perpetuini D, Filippini C, Mancini L, Nocco S, Tritto M, Rinella S, Giacobbe A, Fallica G, Ricci F, et al. Classification of Drivers’ Mental Workload Levels: Comparison of Machine Learning Methods Based on ECG and Infrared Thermal Signals. Sensors. 2022; 22(19):7300. https://doi.org/10.3390/s22197300
Chicago/Turabian StyleCardone, Daniela, David Perpetuini, Chiara Filippini, Lorenza Mancini, Sergio Nocco, Michele Tritto, Sergio Rinella, Alberto Giacobbe, Giorgio Fallica, Fabrizio Ricci, and et al. 2022. "Classification of Drivers’ Mental Workload Levels: Comparison of Machine Learning Methods Based on ECG and Infrared Thermal Signals" Sensors 22, no. 19: 7300. https://doi.org/10.3390/s22197300
APA StyleCardone, D., Perpetuini, D., Filippini, C., Mancini, L., Nocco, S., Tritto, M., Rinella, S., Giacobbe, A., Fallica, G., Ricci, F., Gallina, S., & Merla, A. (2022). Classification of Drivers’ Mental Workload Levels: Comparison of Machine Learning Methods Based on ECG and Infrared Thermal Signals. Sensors, 22(19), 7300. https://doi.org/10.3390/s22197300