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Abstract: In MOOC learning, learners’ emotions have an important impact on the learning effect. In
order to solve the problem that learners’ emotions are not obvious in the learning process, we propose
a method to identify learner emotion by combining eye movement features and scene features.
This method uses an adaptive window to partition samples and enhances sample features through
fine-grained feature extraction. Using an adaptive window to partition samples can make the eye
movement information in the sample more abundant, and fine-grained feature extraction from an
adaptive window can increase discrimination between samples. After adopting the method proposed
in this paper, the four-category emotion recognition accuracy of the single modality of eye movement
reached 65.1% in MOOC learning scenarios. Both the adaptive window partition method and the
fine-grained feature extraction method based on eye movement signals proposed in this paper can be
applied to other modalities.

Keywords: emotion recognition; eye movement signal; audio and visual features; adaptive window;
fine-grained feature

1. Introduction

The massive open online course (MOOC) has become a popular learning model.
MOOCs have grown rapidly since 2012 [1]. Compared to traditional classes, the core
advantage of MOOCs is that is they are not limited by space, and they can reduce the gap
in teaching resources between different regions and improve teaching levels. According to
China Education Daily, MOOCs have provided important support for 250 million students
during the pandemic.

However, in MOOCs, students and teachers cannot communicate face to face, and, as
a result, teachers are unable to provide timely feedback on students’ different emotions
during the learning process [2]. As a result, there is an urgent need to resolve the problem
of identifying students’ emotions in MOOC learning. Some studies have shown that the
challenge of recognizing students’ emotions is that the emotional fluctuation in the learning
process is low. Julia Moeller [3] found that most students have negative emotions in the
process of learning. Shan Li [4] found that the negative emotions in the learning process had
less emotional fluctuation. Tiina Törmänen [5] found that, due to the lack of teacher–student
interaction and collaborative learning between classmates in online learning, students’
learning enthusiasm and emotional fluctuation were low. Weak emotional fluctuation leads
to inconspicuous characteristics for students in different emotional states. To solve this
problem, we propose a method to identify learner emotion by combining eye movement
features and scene features. This method uses an adaptive window to partition samples
and enhances them through fine-grained feature extraction. The method is divided into two
steps. First, an adaptive window is used to segment the sample according to the fluctuation
cycle of emotion, and then fine-grained feature extraction is performed on the sample to
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extract the temporal relationship. The adaptive window in the first step makes the emotion
fluctuation in the sample more obvious and improves the sample quality. The fine-grained
feature extraction in the second step can increase the discrimination between samples.
MOOCs require students to watch videos for a long time, so eye movement signals can
be used as an important basis for student emotion recognition. In addition, unlike other
physiological signals, the acquisition of eye movement signals does not require students
to wear sensors, which means they will be unaffected by such sensors and not distracted.
Scenario features include audio features and video image features in MOOC videos. The
audio and video images of MOOC video, which are sources of stimulation of students’
emotions, are an important basis for identifying students’ emotions. If the audio is dull or
the video images are monotonous, students may feel bored; if the audio is interesting or
the video image content is rich, it is easy to generate positive emotions in students [6].

The important contributions of this paper are as follows: (1) a sample partition method
based on an adaptive window is proposed. The method extracts the fluctuation cycle
of emotion states from the changes in eye movement signals as the window of a sample
partition, which can make the emotion fluctuation in the sample more complete. Compared
with the conventional static window and the adaptive window applied in other tasks, the
method proposed in this paper has better performance and is more suitable for application
in MOOC video learning scenarios. (2) The second contribution addresses the problem that
the features of learners in different emotion states are not obvious, which leads to the high
similarity of samples. In this paper, a fine-grained feature extraction method is proposed.
In this method, each sample is finely divided into several sub-samples, the features of each
sub-sample are extracted, and sub-sample features of the same type can form a feature
curve. Compared with the original features, the feature curve contains more information
and changes, which can increase the distinction between samples. (3) TCN is proposed to
construct the model and, compared with the conventional timing model LSTM, the results
show that the TCN model is more suitable for MOOC scenarios.

2. Related Work
2.1. Research on Emotion Recognition in MOOC Scenarios

At present, emotion recognition tasks in MOOC scenarios can be divided into emo-
tion recognition based on after-class comments, emotion recognition based on learners’
physiological signals and emotion recognition based on facial expressions. Ye et al. [7]
proposed a MOOC learning emotion recognition method based on transfer learning. This
method used two hierarchical attention networks to complete the transfer of emotional
features, and the recognition precision of learners’ positive and negative emotions reached
85.9%. Atapattu et al. [8] proposed machine learning models based solely on language
and discourse features extracted from learners’ discussion posts. In the confused state
recognition task for learners, the F1 score reached 83%. Nandi et al. [9] proposed a real-time
emotion classification system (RECS)-based logistic regression (LR) model trained in an
online fashion using the stochastic gradient descent (SGD) algorithm. This method can
classify emotions in real time by training the model online using EEG signals, and the
average recognition accuracy of eight emotions reached 47.75%. Jason et al. [10] improved
the facial expression recognition network FaceLiveNet and added Dense, and the average
recognition accuracy of six emotions reached 69.99%. There is a serious delay in the text
recognition of after-class comments, and the status of students cannot be obtained in a
timely fashion. In the task of emotion recognition using EEG signals, wearing sensors on
the head distract students and makes the obtained data noisy. In an emotion recognition
task based on facial expressions, students’ facial expressions do not change significantly
during the learning process, which makes the classification effect not ideal. Therefore, the
emotion recognition method based on eye movement, audio and video images proposed in
this paper can effectively solve the problems existing in the research on emotion recognition
in MOOC learning scenarios.
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2.2. Research Based on Adaptive Window

At present, fixed-length static windows are used to partition the samples in emotion
classification tasks. Zhang et al. [11] used a 10 s static window to partition an EEG signal
and eye movement signal; Han et al. [12] partitioned audio and visual features into 8 s static
samples; Zhou et al. [13] partitioned video and audio streams into 40 ms static samples. In
past research, several medical and assisted-driving studies, as well as other kinds of studies,
have used adaptive windows. Yamamoto et al. [14] proposed a heart rate estimation
method based on multi-classification signals, which used an adaptive window to reduce
errors in peak detection. Experimental results showed that this method was superior to
existing signal classification methods. Sun et al. [15] proposed an improved sliding window
method to detect the peaks and troughs of PPG signals, which improved the quality of PPG
signal samples. Yang et al. [16] proposed a feature extraction method based on adaptive
sliding windows to capture semantic features in sentences through adaptive windows, and
this method could accurately distinguish deception information from rule information.
Li et al. [17] proposed an adaptive correlation window energy detection algorithm, which
significantly reduced the signal-to-noise ratio. Gao et al. [18] proposed a driving assistance
model, DMPM, which could dynamically identify the optimal sliding window size of input
data and had significantly better performance than other models. The current research
results show that the accuracy of recognition can be effectively improved by using adaptive
windows in different tasks. However, few studies have applied adaptive windows to
emotion recognition tasks. Therefore, this paper proposes a method of partitioning samples
by using the cycle of emotion fluctuation as an adaptive window.

The subsequent sections are as follows. The third section introduces the dataset collec-
tion, the data preprocessing and the method used in this paper. In Section 4, experiments
carried out to verify the proposed method are described. In Section 5, the experiments
to verify the effectiveness of our method with the public HCI-Tagging Databases and a
comparison with other methods are described. Section 6 is the conclusion.

3. Materials and Methods
3.1. Dataset Collection

In the data collection stage, four learning videos related to ancient Chinese history,
physics, Tang poetry and the pyramids were gathered. Each video lasted about two and a
half minutes. Eye movement signals were collected with the eye movement instrument
Tobii-TX300. The sampling frequency was 60 Hz/s, and the 59 subjects were college
students aged between 20 and 23 years. The male to female ratio was close to 1:1, and all of
them had signed informed consent. The subjects watched the videos after pupil calibration
in a laboratory environment with constant brightness. When the subjects felt interested,
happy, confused or bored during watching the video, they pressed the corresponding
keys on the keyboard to mark the emotion they were feeling. After learning, the subjects
reviewed the study videos and videos of their facial expressions during the study and
expand the marked point into an emotional event. The emotional intensity was rated on a
scale from 5–1 from strong to weak. The original experimental dataset was obtained by
extracting synchronous eye movement signal, audio and video image data. Eye movement
signals included pupil diameter, gaze points (the pixel coordinates of the eye on the screen
were calculated with Pupil-CR technology [19]) and eye states, such as blinking, fixation
and saccade. Audio signals were extracted using the Mel Frequency Cepstrum Coefficient
(MFCC), and video images were image frames extracted from the aforementioned videos.
In Section 4.2, the features extracted from eye movement signals, audio signals and video
images are described.

3.2. Feature Extraction from Eye Movement, Audio and Video Images

To solve the problem of eye movement signal data loss, we used a linear fitting method
to complete the pupil diameter data. Eye movement signals are physiological signals, and
everyone has different pupil diameters in the calm state. Therefore, we calculated the pupil
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diameters for all subjects in the calm state as the baseline value. The pupil diameter in
each frame in the dataset was subtracted from the baseline value to eliminate differences in
pupil diameter between subjects in the calm state.

In the feature extraction process, the pupil diameter was the main data, and the
pupil diameter and its first-order-difference time-domain characteristics and waveform
characteristics, as well as saccade times and fixation time, were extracted from the samples.
The adopted eye movement features are listed in Table 1.

In the scenario feature extraction, there were two modalities: audio and video image.
In the audio modality, the MFCC coefficient of the audio signal was obtained by filtering,
and the time domain features of the MFCC coefficient and its first-order difference were
extracted. In the video image modality, the pixel change rate Z of the two adjacent frames
was calculated, as shown in Formula (1):

Z =
∑(i,j)∈At

At(i, j)
n

(1)

In Formula (1), At = Xt − Xt−1 is the matrix of difference between two adjacent
grayscale images. n is the total number of pixels in the gray image. We calculated the value
of Z for every two adjacent images in the window to get a sequence of pixel change rate
Zseq = [Z1, Z2, ······, Zu−1], where u is the number of image frames in the window. The time
domain features of sequence Z were obtained. The audio and video features utilized are
shown in Table 1. The features extracted from SWS and AWS in the subsequent experiments
are all listed in Table 1.

Table 1. The specific features of the three modalities.

Modality Specific Features

Eye movement
signal

Time domain
feature

Maximum, minimum, average, median, range, standard deviation, variance, energy, average
amplitude, saccade time, fixation time and coordinate difference of eye movement, root mean square

Wave feature Crest factor, waveform factor, skewness factor, impulse factor, clearance factor, kurtosis factor

Audio signal Maximum, minimum, average, median, range, standard deviation, variance
Video image Maximum, minimum, average, median, range, standard deviation, variance

3.3. Process of Methods

The overall process of our method is shown in Figure 1. The pupil diameter data were
partitioned into samples using our adaptive window partition method. The effectiveness of
our adaptive window partition method was verified. Fine-grained feature extraction was
carried out on the partitioned samples, and the fine-grained sub-samples were obtained.
The features in the sub-samples were extracted and classified by a time-series model.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 17 
 

 

······

······

Feature 
extraction

Baseline 
model

The sample of adaptive 
window partition

Verify the adaptive window 
partition method

Feature 
extraction

CLassification
TCN/LSTM

Fine-grained sub-sample

The pupil diameter

Adaptive 
window partition

 Fine-grained feature extraction CLassification

······

 
Figure 1. The overall process of our method. 

3.3.1. Sample Segmentation Based on Adaptive Window 
Studies have shown a relationship between pupil diameter and different emotional 

states. Ai Li found that pupil diameter decreased when people were suffering and in-
creased during negative and positive emotional states [20]. Laxmipriya Moharana found 
that the pupil diameter increased in states of surprise, sadness and happiness [21]. Pupil 
diameter changes with the ups and downs of emotion. In the process of emotional de-
velopment from production to enhancement to attenuation, the pupil diameter also 
produces a cycle of fluctuation [22]. 

The whole cycle of fluctuation moves from peak to peak or from trough to trough. 
Students have many emotional fluctuations in the process of watching videos, but using 
a static window to partition samples will destroy the complete fluctuation cycle. Figure 2 
shows the fluctuation of pupil diameter in the process of watching the learning video, in 
which the horizontal axis is time, the vertical axis is the pupil diameter, the sampling 
frequency is 60 Hz/s and the green dotted line represents the 3 s static window, and each 
window was partitioned to obtain a sample. As shown in Figure 2, some of the data 
samples segmented by the 3 s static window contained a complete cycle and some adja-
cent cycle bands, some contained only one cycle part of the band and a few samples were 
complete cycles. Such samples cannot effectively reflect the changes in learners’ emo-
tions. Therefore, a sample partition method based on an adaptive window is proposed in 
this paper. In the following sections, the adaptive window partition sample is abbrevi-
ated AWS, and static window partition sample is abbreviated SWS. 

 
Figure 2. Schematic diagram of pupil diameter partitioning samples according to 3 s static window. 

The sample partition method based on an adaptive window partitioned a complete 
fluctuation cycle as a window. The range of a window was from the beginning position 
of the fluctuation cycle to the end position. In emotion fluctuations, emotional arousal 
usually increases at first and then decreases, so it is assumed that the pupil diameter in-

Figure 1. The overall process of our method.



Sensors 2022, 22, 7321 5 of 16

3.3.1. Sample Segmentation Based on Adaptive Window

Studies have shown a relationship between pupil diameter and different emotional
states. Ai Li found that pupil diameter decreased when people were suffering and increased
during negative and positive emotional states [20]. Laxmipriya Moharana found that the
pupil diameter increased in states of surprise, sadness and happiness [21]. Pupil diameter
changes with the ups and downs of emotion. In the process of emotional development
from production to enhancement to attenuation, the pupil diameter also produces a cycle
of fluctuation [22].

The whole cycle of fluctuation moves from peak to peak or from trough to trough.
Students have many emotional fluctuations in the process of watching videos, but using a
static window to partition samples will destroy the complete fluctuation cycle. Figure 2
shows the fluctuation of pupil diameter in the process of watching the learning video,
in which the horizontal axis is time, the vertical axis is the pupil diameter, the sampling
frequency is 60 Hz/s and the green dotted line represents the 3 s static window, and each
window was partitioned to obtain a sample. As shown in Figure 2, some of the data samples
segmented by the 3 s static window contained a complete cycle and some adjacent cycle
bands, some contained only one cycle part of the band and a few samples were complete
cycles. Such samples cannot effectively reflect the changes in learners’ emotions. Therefore,
a sample partition method based on an adaptive window is proposed in this paper. In the
following sections, the adaptive window partition sample is abbreviated AWS, and static
window partition sample is abbreviated SWS.
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Figure 2. Schematic diagram of pupil diameter partitioning samples according to 3 s static window.

The sample partition method based on an adaptive window partitioned a complete
fluctuation cycle as a window. The range of a window was from the beginning position of
the fluctuation cycle to the end position. In emotion fluctuations, emotional arousal usually
increases at first and then decreases, so it is assumed that the pupil diameter increases with
the increase in emotional arousal and decreases with the decrease in emotional arousal,
indicating that the cycle curve is an upper convex line, as shown in Figure 3a. Alternatively,
the pupil diameter decreases with the increase in emotion, indicating that the cycle curve
is a lower convex line, as shown in Figure 3b. The start point and end point of the upper
convex line are the local minimums across the whole band, and the start point and end
point of the lower convex line are the local maximums across the whole band.

In order to determine whether to use the upper convex line or the lower convex line for
adaptive window division, we calculated the difference between the pupil diameter in each
frame and the baseline value of the pupil diameter in the quiet state, as shown in Figure 4,
where blue, red, green and cyan represent the numbers of difference frames in four intervals
((−∞, 0], (0, 0.5), [0.5, 1) and [1, +∞)). As can be seen from the graph, the pupil diameter
difference in the interested state was mainly distributed in (0.5, +∞), the pupil diameter
difference in the happy state was mainly distributed in (0, 1), the pupil diameter difference
in the confused state was mainly distributed in (0.5, +∞) and the pupil diameter difference
in the bored state was mainly distributed in (0, 0.5). Values for the pupil diameter difference
that were greater than zero in the four emotional states of interest, happiness, confusion
and boredom, were 98.2%, 98%, 99.5% and 90.7%, respectively. The pupil diameters in the
four emotional states were larger than in the calm state, indicating that the pupil diameter
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increased with the enhancement of the four emotional states. Therefore, the upper convex
line was used for adaptive window division, and the beginning and end positions of the
cycle were the local minimum values across the whole process of pupil diameter change.
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Although the proportion of pupil diameter difference values greater than zero in the
four emotional states was more than 90%, the proportion of pupil diameter difference
values in the bored state was significantly lower than that of the other three emotional
states. The distribution for the proportion of pupil diameter difference values less than
zero in the three emotions of interest, happiness, and confusion was within 2%, while
the distribution for the proportion of pupil diameter difference values less than zero in
the state of boredom was 9.3%, and the pupil diameter difference distribution in the state
of boredom was mostly in the range of 0 to 0.5 (extremely close to zero). Since errors
existed for all four emotions, we excluded the influence of error on the distribution of the
differences in pupil diameter in the bored state. It was judged that the change in pupil
diameter in the bored state did not fluctuate much and was obviously different from the
other three emotions. When using an adaptive window to partition samples, it is necessary
to obtain the position of the partition point, which is the end point of the current window
and the beginning point of the next window. The process of calculating the location of
the partition point is shown in Algorithm 1, where n is the minimum length of adaptive
sample, and the length of adaptive window can be controlled by controlling the value of n.
We set the first frame collected as the start point of the first window and started traversing
after the nth frame of the start point. If the pupil diameter value of the current frame was
the smallest in the first n frames and the last n frames, the current position was considered
as a local minimum across the whole band and as the end point of the current window and
the beginning point of the next window.
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Algorithm 1 Calculating the partition points of the adaptive window

Input: List of pupil diameter during viewing video: Pd
Output: Split point list: Sp
Initialize: Sp=None

for i = n to the length of Pd do
i is the index of Pd
if Pd[i] < the Minimum of Pd[i-n:i] and Pd[i] < the Minimum of Pd[i+1:i+n] then

i is the local minimum from i-n to i+n
Deposit i into Sp
i =i+n

else
i=i+1

end if
end for

n was only the theoretical minimum of the length of adaptive windows, and most
of the lengths of the adaptive windows were distributed around 2n. Taking an adaptive
window as an example, the constraint conditions of the starting point position i are shown in
Formula (2), where Vi represents the pupil diameter value of starting point i, Min(Vi−n, Vi−1)
represents the minimum value within the interval [Vi−n, Vi−1], and Min(Vi+1, Vi+n) rep-
resents the minimum value within the interval [Vi+1, Vi+n]. If the length of the adaptive
window is n, the end point is at the position i + n, indicating that Vi+n+1 is the minimum
value within the interval [Vi+1, Vi+n]. However, Vi is also the minimum value within the
interval [Vi+1, Vi+n], which does not conform to the rule of change for the pupil diameter.
The cycle curve for the pupil diameter was an upper convex line, and the rule of change
from the start point to the end point was that the pupil diameter rises first and then falls. It
was difficult for the pupil diameter to fall to the local minimum in n frames. Therefore, the
length of the adaptive window was calculated with Formula (3), where Alen represents the
true length of the adaptive window, Tn represents the length of the pupil diameter from
position i + n to the end point and Tn was obtained by recording the number of traversals
in Algorithm 1. Figure 5 shows the adaptive window under the condition of n = 30. When
the pupil diameter increased for a short time, the local minimum could be obtained within
2n frames and Tn was smaller than n, as shown in Figure 5a. When the pupil diameter
increased for a long time, the local minimum could not be obtained within 2n frames and
traversals continued until it dropped to the local minimum. In this case, Tn was bigger than
n, as shown in Figure 5b. Thus, the lengths of most adaptive windows were distributed
around 2n. {

Vi < Min(Vi−n, Vi)
Vi < Min(Vi+1, Vi+n)

(2)

Alen = n + Tn (3)
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Therefore, the AWSs with n = 30/90/150 were respectively extracted to correspond
to SWSs with static window lengths of 1 s/3 s/5 s (60 frames/180 frames/300 frames), as
shown in Figure 6.
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3.3.2. Fine-Grained Feature Extraction

As the emotional state of learners in the MOOC video learning scenarios did not
change significantly, the similarity between samples was too high. In order to enhance
the differences between samples, finer-grained feature extraction was carried out on sam-
ples. A sample was divided into eight fine-grained sub-samples on average, as shown in
Figure 7. The eight fine-grained sub-samples formed a sub-sample sequence according
to the segmentation order. The same features of the original sample were extracted from
the eight fine-grained sub-samples. The same features in the fine-grained sub-samples
could form a feature curve in order, and each feature value in the original sample could be
replaced by a corresponding feature curve. The specific process is as follows.
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Figure 7. Fine-grained partition of adaptive samples.

As can be seen from Figure 7, the samples were evenly divided into eight parts, and
each part was treated as a small, fine-grained sub-sample, as shown in Formula (4):

A = (FG1 → FG2 → · · · · · · → FG8) (4)

where A is the original sample, FG is the fine-grained sub-sample and→ indicates that the
two samples are connected according to the temporal relationship.

These eight fine-grained subsamples constituted a full sample based on the temporal
relationship. In each fine-grained sub-sample, the same features as the original sample were
extracted. The same features in the eight fine-grained sub-samples could form a feature
curve to replace the corresponding feature in the original sample, as shown in Formula (5):{

FGFm = [ f1, f2 · · · · · · , fn]
FCt = [FGF1[t], · · · · · · , FGF8[t]]

(5)

where FGF represents the feature set extracted from the fine-grained sub-sample, fn rep-
resents a single feature in the fine-grained sub-sample, m represents the index of the
fine-grained sub-sample (the value of m is 1–8) and n represents the total number of fea-
tures extracted from the sample. FC represents the feature curve and t represents the index
of the feature in the fine-grained sub-sample and the index of the corresponding feature
curve (the value of t is 1–n).

Therefore, conventional feature extraction methods can extract n features from samples,
while fine-grained feature extraction of samples can extract n feature curves, as shown in
Formula (6), where F represents the feature set in the sample, FC represents the feature
curve extracted from the fine-grained sample and fn represents the feature value extracted
from AWS:

F =

{
[FC1, · · · · · · , FCn], Fine grained sample

[ f1, f2 · · · · · · , fn], AWS
(6)

Several features in the eye movement signal were selected for visual analysis, as shown in
Figure 8, where the red line represents the value of the features in the AWS, and the blue broken
line is the feature curve, which is composed of features from eight fine-grained subsamples.
The x-axis is the ID of the subsample sequence, and the y-axis is the feature value.
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Figure 8. A comparison of the feature values in the AWS with the feature curves in the fine-grained
samples. (a) Maximum, (b) standard deviation, (c) range, (d) average, (e) average fluctuation in pupil
fixation in the vertical direction, (f) median, (g) root mean square, (h) skewness factor, (i) kurtosis factor.

It can be seen from the figure that the feature curves could contain more changes
than the discrete feature values. The fine-grained feature method could extract more
feature information and increase the distinction between samples, and the feature curve
contained time series features, which were well-suited for the input of the time series model.
Conventional methods of extracting features cannot keep time series information in the
original data. However, the fine-grained feature extraction method can extract features and
time series information between features.

4. Experiment
4.1. Comparison of AWS with SWS

The correlation between sample features and sample labels is an important measure
of sample quality. Taking a 1 s SWS and AWS (n = 30) as examples, the correlation between
all features and emotion labels can be calculated. Figure 7 shows the correlation between
the features extracted from the AWS and sentiment labels, and the correlation between the
features extracted from the SWS and sentiment labels. Features 0 to 18 are time-domain
features of the pupil diameter, features 19 to 32 are time-domain features of the first-order
differences in the pupil diameter, features 33 to 54 are waveform features of the pupil
diameter and features 55 to 70 are waveform features of the first-order differences in the
pupil diameter. Features 71 to 91 are the time-domain features of the audio signal, 92 to 112
are the time-domain features of the first-order differences in the audio signal and 113 to
123 are the time-domain features extracted from the video image. As can be seen from the
figure, in the AWS (n = 30), the correlations between most features and emotion labels was
higher than those between features and emotion labels in the 1 s SWS.

The average values for the correlation coefficients between different types of features
and emotion labels in the AWS and SWS are shown in Table 2. The table shows that the
correlations between the various feature types and emotion labels in the AWS were higher
than in the SWS. It can be seen from Table 2 and Figure 9 that using the adaptive window
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to segment the sample could make the emotion fluctuation in the sample more obvious, so
the quality of the AWS was higher than that of the SWS.
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Table 2. Average correlation coefficients.

Modalities Pupil Diameter Audio Signal Video Image All the
Features

Time-domain features Waveform features Time-domain features
Time-domain

featuresFirst-order
difference

First-order
difference

First-order
difference

Adaptive
window 0.25 0.05 0.2 0.05 0.27 0.2 0.21 0.1824

Static
window 0.22 0.03 0.18 0.04 0.26 0.19 0.19 0.1656

The sample recognition effect directly measures the quality of the samples. The data
for 10 subjects were selected from among the 59 subjects as the test set, and the remaining
49 subjects were used as the training set. The features extracted from the training set and
the test set were normalized, and then the normalized data were reduced by PCA to retain
the principal components, the contribution rate of which was greater than 1%. The eye
movement signal was reduced to 16 principal components, the audio signal was reduced
to 8 principal components, and the video image was reduced to 3 principal components.

KNN, random forest and 1D-Resnet18 were selected as classifiers. The 1 s static win-
dow corresponded to an adaptive window with n = 30, the 3 s static window corresponded
to an adaptive window with n = 90 and the 5 s static window corresponded to an adaptive
window with n = 150. The recognition accuracies for the AWSs and SWSs are shown in
Figure 10.
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According to Figure 10, compared to the static window partition method, the adaptive
window partition method proposed in this paper can improve the recognition accuracy for
different sizes of windows, different classification models and different modalities. In the
1 s SWS, the recognition accuracy for the eye movement signal was high, but the effects
for the audio signal and video image were poor; as the window was too small and the
length was fixed, it was difficult to extract effective information from it. In the AWS with
n = 30, the variable length window made the audio features and video image features
more obvious, so the recognition effect was greatly improved. According to Table 2 and
Figure 10, the quality of the AWS was better than that of the SWS.

Table 3 shows the results of the comparison between the adaptive window partition
method proposed in this paper and the adaptive window partition method proposed in [14]
and [15]. The evaluations in the Table 3 are for accuracy (Acc), macro-F1 (m-F1) and area
under ROC curve (AUC). The classification models all used 1D-Resnet18. As can be seen
from Table 3, compared with the adaptive window partitioning methods proposed in other
papers, our method is more suitable for emotion recognition tasks. The results show that
taking the period of emotional fluctuation as the window to partition the sample can make
the emotional changes in the sample more obvious.

Table 3. Comparison with the other adaptive window methods.

Modalities Eye Movement Audio Video Image

Research

Evaluation
Acc (%) m-F1 AUC Acc (%) m-F1 AUC Acc (%) m-F1 AUC

[14] 51.3 0.46 0.7 65.2 0.6 0.76 61.8 0.56 0.77
[15] 50.2 0.46 0.69 64.9 0.59 0.75 58.1 0.53 0.75

Our method 53.7 0.48 0.71 68.4 0.63 0.82 62.4 0.58 0.77

4.2. Comparison of Fine-Grained Feature Methods

Feature curves extracted from fine-grained samples contain temporal relations. In or-
der to verify the effects of the feature curves, the temporal convolutional network (TCN) [23]
and LSTM were selected as classification models. LSTM is a popular time-series model,
TCN is a newer and less widely used time-series model, but TCN can mine the deep
information from the features. In this task, eight fine-grained sub-samples represented
eight moments from which features were extracted, such as Max1–Max8 (feature curve in
Figure 8a). If n features are extracted from a sub-sample, the number of input channels is n,
and the input format is [batch_size, n, 8].

The features extracted from the fine-grained sub-samples were normalized, and then
the normalized data were reduced by PCA to retain the principal components with con-
tribution rates greater than 1%. The eye movement signal was reduced to 10 principal
components, the audio signal was reduced to 11 principal components and the video image
was reduced to 3 principal components.

As combinations of temporal networks and convolutional networks are adopted in
many studies, four models (TCN, TCN + CNN, LSTM and LSTM + CNN) were used to
verify the accuracy of the three modalities. In addition, feature layer fusion was used to
verify the effect of combining eye movement features with scenario features, and the results
are shown in Table 4. Since the features in the AWS did not contain a temporal relationship,
the classifier in the AWS only used a machine learning model and convolution model.

It can be seen from Table 4 that the recognition accuracy of the AWS was significantly
improved after fine-grained feature extraction. The three modalities of eye movement,
audio and video image were significantly improved, which preliminarily proved the
effectiveness of fine-grained feature extraction. This was further verified through analysis
of the confusion matrix and the ROC curve and comparison with public datasets. The
recognition accuracy of the TCN model was significantly better than that of LSTM. The
recognition accuracy of the TCN + CNN model was significantly better than that of LSTM
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+ CNN. This was because TCN is better for capturing sequential dependencies, and it
uses convolution to capture local information, so the recognition effect of TCN is better
than LSTM. Using feature layer fusion, the method involving eye movement features and
scenario features fusion can improve the accuracy of learners’ emotion recognition.

Table 4. Recognition accuracy for different models with adaptive samples (n = 30) and fine-
grained samples.

Sample Type Classification
Model

Modalities

Eye Movement (%) Audio (%) Video Image (%) Feature Layer Fusion (%)

Adaptive sample
KNN 43 40 24 48

RF 41 42 20 29
1D-Resnet18 53.7 68.4 62.4 68.7

Adaptive
fine-grained sample

LSTM 59.6 69.3 64.9 69.2
TCN 62.9 71.1 68 71.2

LSTM + CNN 62.3 71.9 65.7 72.2
TCN + CNN 65.1 75.6 70.4 76.2

The confusion matrix and ROC curve of the model after feature level fusion are shown
in Figure 11. As shown in Figure 11a, the model had the best recognition effect for boredom
and the worst recognition effect for interest, as was also indicated by the ROC curve in
Figure 11b. Interest was easily identified as happiness and confusion. In terms of eye
movement signals, students in interested, happy and confused states were all watching
the learning video carefully, and the pupil diameter showed similar behavior. In the bored
state, students’ attention diverged, and the pupil diameter was significantly different from
the other three states. In terms of scene features, the videos that made students interested
usually made students happy and confused, but the videos that made students confused
did not necessarily make students interested. Thus, interest is easier identified as happiness
than confusion.
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5. Discussion

The public dataset HCI was used to further validate our method. The public HCI-
Tagging Databases [24] were developed with 30 volunteers from different cultures and
educational backgrounds, including 17 women and 13 men. Nine emotions—neutral, anger,
disgust, fear, happiness, sadness, surprise, delight and anxiety—were induced by watching
20 movie clips. Six subjects were selected and their experimental data were used as the test
set, and the remaining 24 subjects were used as the training set. The data from the training
and test sets were normalized and then reduced in dimensions.
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Taking the AWS with n = 90 as an example, the fine-grained features were extracted.
LSTM, TCN, LSTM + CNN and TCN + CNN were then used to verify the fine-grained
feature extraction method, as shown in Table 5.

Table 5. Recognition effects of different models with 3 s SWS, AWS (n = 90) and fine-grained samples.

Sample Type Classification Model Eye Movement Audio Video Image

SWS
KNN 23 60 34

RF 25 65 34
1D-Resnet18 27.5 65.3 35.8

AWS
KNN 26 64 49

RF 26 65 47
1D-Resnet18 29.5 66.9 47.7

Adaptive fine-grained sample

LSTM 40.2 65.9 47.1
TCN 41.8 66 50.2

LSTM + CNN 40.5 66.2 45.5
TCN + CNN 42.5 67.1 52.3

As can be seen from Table 5, after fine-grained feature extraction with the AWS,
the recognition accuracy for the three modalities was improved, and the eye movement
modality showed the best improvement effect. The recognition accuracy for the eye
movement modalities was improved by 12.7%. The recognition accuracy for the video
image modalities was improved by 4.6%. The recognition accuracy for the audio modalities
was improved by 0.2%. In general, the results for the public dataset were consistent with
those for our own dataset, which further validates our approach. After extracting the
fine-grained features of the samples, the distinction between samples could be enhanced,
making them more conducive to classification. From the perspective of the model, the
recognition accuracy of TCN was better than that of LSTM, and the recognition accuracy
of TCN + CNN was better than that of LSTM + CNN, which indicates that TCN is more
suitable for emotion recognition tasks.

Because the modalities were different, we only used the eye movement modality
for the comparison with the methods in other papers. The evaluations in Table 6 are for
accuracy (Acc), macro-F1 (m-F1), area under ROC curve (AUC), floating-point operations
(FLOPs), and the number of parameters (NPs). The FLOPs are the numbers of floating-
point operations in one training turn, which were used to measure the time complexity
of the model. One MFLOP equals one million FLOPs. NPs represent the total numbers
of parameters inside the model, which were used to measure the size of the model. The
classification model used in [25] was SVM without NPs.

Table 6. Comparison with the other methods.

Research

Evaluation
Acc (%) m-F1 AUC MFLOPs NPs (M)

[25] 36.2 0.31 0.49 36.78 -
[26] 33.5 0.3 0.44 0.83 20.36
[27] 40.8 0.37 0.51 2.94 159.67

Our method 42.5 0.39 0.58 3.53 171.33

Table 6 shows a comparison with other methods. Our method achieved the best
results for the three measures of evaluating model identification performance (Acc, F1 score
and AUC). However, in the two evaluation indexes for complexity analysis, FLOPs only
outperformed SVM, while the NPs were the highest among all methods. As the TCN model
has many parameters, the complexity of the model is high.
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6. Conclusions

In this paper, a new adaptive window partition method is proposed to partition
samples instead of the conventional static window partition method, and the two aspects
of feature correlation and classification results were compared. For feature correlation, the
average correlation coefficient between adaptive sample features and emotional state and
the average correlation coefficient between static sample features and emotional state were
compared. The results showed that the features extracted from the AWS had a stronger
correlation with the emotional state. In terms of classification results, the AWS had better
classification accuracy than static samples in a variety of machine learning methods.

In order to expand the difference between samples, we developed a fine-grained
feature extraction method. Through visual analysis and verification, it was found that, after
fine-grained feature extraction of samples, the extracted feature curves contained more
changes and time-series information, which increased the distinction between samples
and was more conducive to classification. The temporal convolutional network (TCN)
and LSTM were used to mine time-series features. After fine-grained feature extraction,
learners’ emotion recognition accuracy was significantly improved. We found that TCN
was more suitable for emotion recognition than LSTM.

Finally, the effectiveness of the adaptive window partition method and the fine-
grained feature extraction method proposed in this paper were verified again on the public
dataset HCI.

In future work, the accuracy of learners’ emotion recognition could be improved
by combining the semantics of videos or from the perspective of cognition. Other multi-
modality fusion methods could also be used to combine eye movement features with
scenario features. In addition, the waveforms of physiological signals, such as the EDA
signal and PPG signal, should also be related to the fluctuation of emotion. Therefore, the
adaptive window partition method and fine-grained feature extraction method could also
be used to classify emotion using other physiological signals, and their effectiveness could
be further verified.

Author Contributions: Conceptualization, X.S.; Validation, Z.L.; Writing—original draft, J.B.; Writing—
review & editing, X.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Foundation of China, grant number 61906051,
62267001; the Guangxi Natural Science Foundation Program, grant number 2018GXNSFBA050029; and
the Foundation for Doctoral Research of Guilin University of Technology, grant number GUTQDJ2005015.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by Ethics Committee of Guangxi Normal University.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Beijing Jinfa Company for providing the data acquisition
platform. The authors thank all the subjects who participated in the data collection experiment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Riel, J.; Lawless, K.A. Developments in MOOC Technologies and Participation Since 2012: Changes Since “The Year of the

MOOC”. In Encyclopedia of Information Science and Technology, 4th ed.; IGI Global: Harrisburg, PA, USA, 2017.
2. Sidhu, P.K.; Kapoor, A.; Solanki, Y.; Singh, P.; Sehgal, D. Deep Learning Based Emotion Detection in an Online Class.

In Proceedings of the 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 11–13 February 2022; pp. 1–6.
3. Moeller, J.; Brackett, M.A.; Ivcevic, Z.; White, A.E. High school students’ feelings: Discoveries from a large national survey and an

experience sampling study. Learn. Instr. 2020, 66, 101301. [CrossRef]
4. Li, S.; Zheng, J.; Lajoie, S.P.; Wiseman, J. Examining the relationship between emotion variability, self-regulated learning, and task

performance in an intelligent tutoring system. Educ. Tech Res. Dev. 2021, 69, 673–692. [CrossRef]
5. Tormanen, T.; Jarvenoja, H.; Saqr, M.; Malmberg, J.; Jarvela, S. Affective states and regulation of learning during socio-emotional

interactions in secondary school collaborative groups. Br. J. Educ. Psychol. 2022, 14, e12525.

http://doi.org/10.1016/j.learninstruc.2019.101301
http://doi.org/10.1007/s11423-021-09980-9


Sensors 2022, 22, 7321 16 of 16

6. Zhao, S.; Huang, X.; Lu, X. A study on the Prediction of emotional Index to the Achievement of MOOC students. China Univ.
Teach. 2019, 5, 66–71.

7. Ye, J.M.; Liao, Z.X. Research on Learner Emotion Recognition Method in Online Learning Community. J. Chin. Mini-Micro Comput.
Syst. 2021, 42, 912–918.

8. Atapattu, T.; Falkner, K.; Thilakaratne, M.; Sivaneasharajah, L.; Jayashanka, R. What Do Linguistic Expressions Tell Us about
Learners’ Confusion? A Domain-Independent Analysis in MOOCs. IEEE Trans. Learn. Technol. 2020, 13, 878–888. [CrossRef]

9. Nandi, A.; Xhafa, F.; Subirats, L.; Fort, S. Real-Time Emotion Classification Using EEG Data Stream in E-Learning Contexts.
Sensors 2021, 21, 1589. [CrossRef]

10. Hung, J.C.; Lin, K.-C.L.; Lai, N.-X. Recognizing learning emotion based on convolutional neural networks and transfer learning.
Appl. Soft Comput. 2019, 84, 2454–2466. [CrossRef]

11. Zhang, Y.; Cheng, C.; Zhang, Y.D. Multimodal emotion recognition based on manifold learning and convolution neural network.
Multimed. Tools Appl. 2022, 12, 1002–1018. [CrossRef]

12. Han, J.; Zhang, Z.; Ren, Z.; Schuller, B. EmoBed: Strengthening Monomodal Emotion Recognition via Training with Crossmodal
Emotion Embeddings. IEEE Trans. Affect. Comput. 2021, 12, 553–564. [CrossRef]

13. Zhou, H.; Du, J.; Zhang, Y.; Wang, Q.; Liu, Q.-F.; Lee, C.-H. Information Fusion in Attention Networks Using Adaptive and
Multi-Level Factorized Bilinear Pooling for Audio-Visual Emotion Recognition. IEEE/ACM Trans. Audio Speech Lang. Processing
2021, 29, 2617–2629. [CrossRef]

14. Yamamoto, K.; Toyoda, K.; Ohtsuki, T. MUSIC-based Non-contact Heart Rate Estimation with Adaptive Window Size Setting. In
Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Berlin, Germany, 23–27 July 2019; pp. 6073–6076.

15. Sun, B.; Wang, C.; Chen, X.; Zhang, Y.; Shao, H. PPG signal motion artifacts correction algorithm based on feature estimation.
OPTIK 2019, 176, 337–349. [CrossRef]

16. Yang, H.; Xu, Z.; Liu, L.; Tian, J.; Zhang, Y. Adaptive Slide Window-Based Feature Cognition for Deceptive Information
Identification. IEEE Access 2020, 8, 134311–134323. [CrossRef]

17. Li, P.; Hou, D.; Zhao, J.; Xiao, Z.; Qian, T. Research on Adaptive Energy Detection Technology Based on Correlation Window.
In Proceedings of the 2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference
(ITNEC), Xi’an, China, 15–17 October 2021; pp. 836–840.

18. Gao, J.; Zhu, H.; Murphey, Y.L. Adaptive Window Size Based Deep Neural Network for Driving Maneuver Prediction.
In Proceedings of the 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 87–92.

19. Zhang, C.; Chi, J.; Zhang, Z.; Wang, Z. The Research on Eye Tracking for Gaze Tracking System. Acta Autom. Sin. 2010, 8,
1051–1061. [CrossRef]

20. LI Ai, L.I.; Liu, T.-G.; Ling, X.; Lu, Z.-H. Correlation between emotional status and pupils size in normal people. Rec. Adv.
Ophthalmol. 2013, 33, 1075–1077.

21. Moharana, L.; Das, N. Analysis of Pupil Dilation on Different Emotional States by Using Computer Vision Algorithms.
In Proceedings of the 2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing
Technology(ODICON), Bhubaneswar, India, 8–9 January 2021; pp. 1–6.

22. Henderson, R.R.; Bradley, M.M.; Lang, P.J. Emotional imagery and pupil diameter. Psychophysiology 2018, 55, e13050. [CrossRef]
23. Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Moeling.

arXiv 2018, arXiv:1803.01271.
24. Soleymani, M.; Lichtenauer, J.; Pun, T.; Pantic, M. A Multimodal Database for Affect Recognition and Implicit Tagging.

IEEE Trans. Affect. Comput. 2012, 3, 42–55. [CrossRef]
25. Tarnowski, P.; Kołodziej, M.; Majkowski, A.; Rak, R.J. Eye-Tracking Analysis for Emotion Recognition. Comput. Intell. Neurosci.

2020, 2020, 2909267. [CrossRef]
26. Li, M.; Cao, L.; Zhai, Q.; Li, P.; Liu, S.; Li, R.; Feng, L.; Wang, G.; Hu, B.; Lu, S. Method of Depression Classification Based on

Behavioral and Physiological Signals of Eye Movement. Complexity 2020, 2020, 4174857. [CrossRef]
27. Liu, W.; Qiu, J.-L.; Zheng, W.-L.; Lu, B.-L. Comparing Recognition Performance and Robustness of Multimodal Deep Learning

Models for Multimodal Emotion Recognition. IEEE Trans. Cogn. Dev. Syst. 2022, 14, 715–729. [CrossRef]

http://doi.org/10.1109/TLT.2020.3027661
http://doi.org/10.3390/s21051589
http://doi.org/10.1016/j.asoc.2019.105724
http://doi.org/10.1007/s11042-022-13149-8
http://doi.org/10.1109/TAFFC.2019.2928297
http://doi.org/10.1109/TASLP.2021.3096037
http://doi.org/10.1016/j.ijleo.2018.09.085
http://doi.org/10.1109/ACCESS.2020.3011072
http://doi.org/10.3724/SP.J.1004.2010.01051
http://doi.org/10.1111/psyp.13050
http://doi.org/10.1109/T-AFFC.2011.25
http://doi.org/10.1155/2020/2909267
http://doi.org/10.1155/2020/4174857
http://doi.org/10.1109/TCDS.2021.3071170

	Introduction 
	Related Work 
	Research on Emotion Recognition in MOOC Scenarios 
	Research Based on Adaptive Window 

	Materials and Methods 
	Dataset Collection 
	Feature Extraction from Eye Movement, Audio and Video Images 
	Process of Methods 
	Sample Segmentation Based on Adaptive Window 
	Fine-Grained Feature Extraction 


	Experiment 
	Comparison of AWS with SWS 
	Comparison of Fine-Grained Feature Methods 

	Discussion 
	Conclusions 
	References

