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Abstract: Identifying an individual based on their physical/behavioral characteristics is known as
biometric recognition. Gait is one of the most reliable biometrics due to its advantages, such as
being perceivable at a long distance and difficult to replicate. The existing works mostly leverage
Convolutional Neural Networks for gait recognition. The Convolutional Neural Networks perform
well in image recognition tasks; however, they lack the attention mechanism to emphasize more on
the significant regions of the image. The attention mechanism encodes information in the image
patches, which facilitates the model to learn the substantial features in the specific regions. In light of
this, this work employs the Vision Transformer (ViT) with an attention mechanism for gait recognition,
referred to as Gait-ViT. In the proposed Gait-ViT, the gait energy image is first obtained by averaging
the series of images over the gait cycle. The images are then split into patches and transformed into
sequences by flattening and patch embedding. Position embedding, along with patch embedding, are
applied on the sequence of patches to restore the positional information of the patches. Subsequently,
the sequence of vectors is fed to the Transformer encoder to produce the final gait representation.
As for the classification, the first element of the sequence is sent to the multi-layer perceptron to
predict the class label. The proposed method obtained 99.93% on CASIA-B, 100% on OU-ISIR D
and 99.51% on OU-LP, which exhibit the ability of the Vision Transformer model to outperform the
state-of-the-art methods.
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1. Introduction

Gait is an emerging biometric that utilizes walking patterns to recognize an individual.
Gait is a behavioral pattern which is difficult to imitate and impossible to conceal [1]. Other
than that, the subjects’ cooperation is not needed to perform the identification using gait [2].
Due to these advantages, gait recognition is mostly used at banks, airports, and crime
scenes. Nonetheless, the performance of the gait recognition is affected by various factors
such as viewing angle, carrying condition, clothing, and walking speed.

During the initial stage, the gait recognition problem was tackled by using handcrafted
techniques. The handcrafted methods can be categorized as model-based methods and
appearance-based methods. Model-based methods [2-6] identify a gait by analyzing the mo-
tion information acquired from a human model, while the appearance-based methods [7-14]
capture the gait parameters directly from the silhouettes. The model-based methods entail
high computational costs as the model-based methods involve a human model to extract
the features. On the other hand, appearance-based methods demand low computational
costs and are easy to implement. Nevertheless, the handcrafted methods use manually
extracted features to perform the recognition, where the significant features are omitted.

Deep learning methods [15-22] have garnered a great deal of interest among re-
searchers. Deep learning algorithms can deliver high performance without the need
for feature engineering, which is time-saving. In recent times, the application of self-
attention mechanisms in deep neural networks has become popular due to the success of
self-attention mechanisms in natural language processing applications such as speech recog-
nition, language modeling, and machine translation. Self-attention is a mechanism where
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a single sequence is arranged in various positions to determine the representation of the
sequence. Self-attention-based architecture, particularly, Transformers are well-known due
to its adaptivity. However, the application of Transformers in computer vision, especially
in gait recognition, is limited where the existing works are mainly adopting Convolutional
Neural Network (CNN) architectures.

In view of this, this paper presents a gait recognition method with Vision Trans-
former (ViT), referred to as Gait-ViT. To begin with, gait energy image (GEI) is attained
by averaging the gait silhouettes over a gait cycle. The obtained images are then divided
into a fixed number of patches. Subsequently, the patches are converted to a sequence
where patch embedding and positional embedding are applied. The embedded sequence of
vectors is then sent to the Transformer encoder to encode the final representation. The first
token of the sequence patches is then fed to the multi-layer perceptron for class prediction.

The main contributions of this work are specified below:

*  The gait images are represented as GEIs to capture the significant limb movements in
gait while suppressing the effects of noise, shadow, and incomplete silhouettes.

¢  The Vision Transformer model encodes prominent gait features on the strength
of multi-head attention mechanism, receptive fields, layer normalization, global
operation, and residual connections, which elevates the performance of the pro-
posed method.

¢ The performance of the proposed Gait-ViT method is evaluated on three datasets,
namely CASIA B, OU-ISIR D, and OU-LP datasets.

2. Related Works

The existing works in gait recognition can be broadly categorized into handcrafted
methods, deep learning methods, and attention methods. Handcrafted methods manually
design the features to represent the gait movements; subsequently, the features are passed
into machine learning classifiers. The deep learning methods learn the complex features by
hidden layers that serve different purposes, such as convolutional layers, pooling layers,
fully connected layers, etc. In recent years, attention models have achieved outstanding
performance in Natural Language Processing due to their ability to encode contextual
significance in the input. In view of this, researchers set out to explore the adoption of
attention models in computer vision applications.

2.1. Handcrafted Approach

Handcrafted methods can generally be divided into two groups, namely model-based
and appearance-based methods. The model-based methods build the human skeleton
model to extract the motion features. In earlier days, Wang et al. (2016) [23] built a human
skeleton model, which captured the 3D coordinates of 21 joints. Static features and dynamic
features were then extracted using the 3D coordinates. The experiments on their self-
collected dataset with 52 subjects recorded a correct classification rate of 92.3%. Zhen et al.
(2018) [24] utilized joint angles, joint elevation, and stride widths as dynamical information
and structural information. Radial Basis Function was employed to capture the variations
of gait sequences over deterministic learning. The proposed method achieved an accuracy
of 77.6-90.7% with different features on the multi-view Kinect-based Gait database. Choi
et al. (2019) [25] presented a frame-level matching, which reduces the effect of noisy
silhouettes. Other than that, a weighted majority voting was introduced, which allocates
different weights for every frame. The classification was performed by applying weighted
majority voting through frame-level scores. On their self-collected gait datasets, the method
obtained an average recognition rate of 89.26%. Lima et al. (2021) [26] used PoseDist and
PoseFrame for gait recognition problems. The coordinates of each subject were identified
using pose estimation. The obtained coordinates were then fed to PoseDist and PoseFrame.
The PoseDist captured the features from pose joints and then classified them using nearest
neighbors, while the PoseFrame extracted and normalized the coordinates of joints and fed



Sensors 2022, 22, 7362

3of 14

them into a multi-layer perceptron for classification. The highest average rank-1 score of
97.97% was yielded by the PoseFrame on the CASIA dataset A.

Unlike the model-based methods, appearance-based methods utilize the features
obtained from silhouettes after background subtraction. Rida et al. (2016) [27] used the
Statistical Dependency feature selection algorithm and Globality-Locality Preserving Projec-
tions algorithm to reduce the effect of different walking conditions. The 1-nearest neighbor
was employed to classify the subjects. The method achieved an average correct classifica-
tion rate of 86.06% on the CASIA dataset B. Mogan et al. (2017) [28] encoded the direction
of gait sequence and temporal patterns by integrating motion history image, binarized
statistical image features, and histograms of oriented gradients. The class label was deter-
mined by the minimum Euclidean distance between the gallery and probe sequences. A
recognition rate of 93.42% was obtained on the CASIA dataset B. Wang et al. (2018) [29] ex-
tracted various orientation and scale information from the Gabor wavelet to produce a gait
energy image. The feature dimension reduction was performed using a two-dimensional
principal component analysis technique where the inter-class distance was increased, and
the intra-class distance was reduced. The subjects were classified using Support Vector
Machine (SVM). The method recorded an average correct classification rate of 93.52% on
the CASIA dataset B. Arshad et al. (2019) [30] employed Quartile Deviation of Normal
Distribution to capture the motion patterns from the gait sequence. Shape and texture
features were extracted from the motion information. Both the features were then fused
using the Bayesian model, and the top features were chosen using Binomial Distributions.
The method yielded an 87.7% accuracy on the CASIA dataset B.

2.2. Deep Learning

Deep learning, also referred to as deep neural networks, consists of numerous hidden
layers that exhibit the network’s depth. The deep learning methods learn salient features
directly from the input without the need to identify the features manually. CNN is one of
the popular architectures among deep learning methods where the features and patterns
within an image are detected.

Wolf et al. (2016) [31] developed a 3D convolutional neural network with seven
convolution layers, six max-pooling layers, two fully connected layers, and a classification
layer along with a unique input format, which consists of grayscale and optical flow to
reduce the effects of color invariance. On the CASIA dataset B, the model obtained accuracy
in the range of 94.3-99.9% at different viewing angles. Subsequently, Wang et al. (2020) [32]
proposed a new gait representation called trituple gait silhouettes (TTGS) by combining
three consecutive gait silhouettes. Along with that, a multichannel convolutional network
was developed, which accepts the TTGS members simultaneously. The method achieved
a rank-1 score of about 65% on the CASIA dataset B and 68% on the OU-LP dataset.
Subsequently, Su et al. (2020) [33] presented center-ranked loss to incorporate the positive
and negative samples. The center-ranked loss was assessed using a network, which
comprises seven convolution layers, three max-pooling layers, and a fully connected layer.
The method recorded an average recognition accuracy of 74.8% and 57.8% on the CASIA
dataset B and OU-MVLP dataset, respectively. Song et al. (2019) [34] built a network that
contains two CNNs, where the first CNN segments the gait silhouettes and the other CNN
performs gait classification. Other than that, joint learning techniques were applied to
ensure the network could handle noisy silhouettes and complex conditions. On the CASIA
dataset B, the method yielded a rank-1 mean accuracy of 89.9%.

Ding et al. (2021) [35] explored the standard CNN to encode the motion information.
A behavioral information extractor (BIE) was employed to determine the association among
the frames in the time axis based on motion templates, while a multi-frame aggregator
(MFA) was utilized to integrate and condense the features for classification. The experi-
ments on the CASIA dataset B (normal subset) and OU-MVLP dataset demonstrated the
method achieved 95.2% and 83.8% mean accuracy, respectively. Recently, Mogan et al.
(2022) [36] incorporated a pre-trained DenseNet-201 model and multilayer perceptron for
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gait recognition problems. The pre-trained DenseNet-201 model was utilized to extract the
gait features, while the multilayer perceptron was used to encode the association among
the obtained features and the class labels. The model obtained a recognition rate of 99.17%
on the OU-LP dataset. Mogan et al. (2022) [37] fine-tuned a pre-trained VGG-16 model to
learn low-level and intricate gait features. The relationship between the acquired features
and the subjects was determined using a multilayer perceptron. On the OU-LP dataset, the
model recorded an accuracy of 99.10%.

2.3. Attention Models

In recent times, the incorporation of transformers in convolutional networks has been
applied for gait recognition. Transformers utilize an attention mechanism that targets
specific parts of an input to improve performance. Li et al. (2019) [38] presented a CNN-
based joint intensity transformer network to reduce the effect of clothing and carrying
conditions on gait recognition. The network was made up of a joint intensity metric
estimation net, a joint intensity transformer, and a discrimination network. The model
obtained a rank-1 score of 74.03% on the OU-LP-Bag dataset. Similarly, Xu et al. (2020) [39]
proposed CNN-based architecture, which comprised a pairwise spatial transformer (PST)
followed by a recognition network. A pair of inputs from various views were fed into
the network. The PST estimated and transformed the features of the input pair into an
intermediate view between the input pair views. The recognition network was used to
determine the dissimilarity score of the matching pair. The proposed model achieved
a mean rank-1 identification rate of 59.9% on the OU-MVLP dataset. Wang and Yan
(2021) [40] incorporated non-local features and regionalized features to capture the intrinsic
gait features. A network with two channels that accepts two inputs were developed. The
classification was performed using a self-attention mechanism. The network recorded a
mean recognition rate of 91.7% on the CASIA dataset B with 36°.

Most of the existing works are based on CNNs due to their high performance. How-
ever, CNNs have less access to global information at the lower layer, which results in the
loss of information. To this end, this work leverages the ViT model due to its ability to
propagate the information clearly from a lower level to a higher level. Moreover, ViT model
accumulates the global information early with the help of the self-attention mechanism.

3. Gait Recognition with Vision Transformer

This study presents a Vision Transformer model for gait recognition, known as Gait-ViT.
Firstly, GEIs are acquired by averaging the gait images over a gait cycle. The attained GEIs
are then converted into sequences of flattened 2D patches. Subsequently, the sequences
of 2D patches are passed into the Vision Transformer model. In the Vision Transformer
model, there are embedding layers, a Transformer encoder, and a multi-layer perceptron.
The embedding layer converts the sequence of patches into an embedded patches vector
by applying patch embedding. Thereafter, the positional embedding is added to the patch
embedding to preserve the structure of the image patches. The embedded vectors are then
fed into the Transformer encoder, where the final representation is determined. Lastly, the
multi-layer perceptron performs classification based on the first token of the sequence.
Figure 1 shows the architecture of the proposed Gait-ViT, which consists of an embedding
layer, a Transformer encoder, and a multi-layer perceptron.
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Figure 1. Architecture of the proposed Gait-ViT method.

3.1. Gait Energy Image

Gait Energy Image (GEI) [41] conserves the shape and appearance of the human body
and stride phase, which plays a significant role in the gait recognition procedure. The GEI
is obtained by averaging the gait images over the gait cycle. The silhouette width of every
frame in the gait video is collected into a time series signal. The local maximum in the time
series signal corresponds to the frame when the two legs are furthest apart from each other.
Alternatively, the width of the silhouettes reaches a local minimum when two legs wholly
overlap. Each gait cycle is determined by alternate keyframes. In doing so, the effects of
the noise and incomplete silhouettes are suppressed, which enhances the performance.
Other than that, GEIs are grayscale images, which involve fewer parameters and require
lower computational costs than the color images. As gait recognition is performed by
focusing on the body movements, the information on the grayscale images is considered
adequate. GEl is acquired using the weighted average method as below:

X =

=

F
Y. I 1)
f=1

where F is the total number of frames in a gait cycle and I is the gait silhouette at frame f.
Samples of GElIs are depicted in Figure 2.

IEEENEEN]
ARARAAALR
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Figure 2. Instances of acquired GEIs, first row: CASIA-B, second row: OU-ISIR D, and last row: OU-LP.
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3.2. Vision Transformer for Gait Recognition (Gait-ViT)

In the self-attention mechanism, every pixel attends to every other pixel. In other
words, the pixels of a sequence interact with each other and identify which pixel they
should pay more ‘attention’ to. The self-attention mechanism is mostly preferred because
it disregards the vanishing gradient problem, as there is a direct connection between the
encoder and decoder.

Due to the interaction among every pixel, the mechanism is costly to be applied to the
images because of the huge number of pixels. This work leverages the Vision Transformer
(ViT) model [42], where the image is split into a number of patches and converted into a
sequence of image patches. The ViT model has several variants with different models and
patch sizes. The ViT model was trained on ImageNet and Imagenet-21k datasets. The ViT
adopted the Transformer model, which was presented by Vaswani et al. (2017) [43].

At first, the GEI is divided into fixed-size patches to reshape the GEI x € RF*WxC

into a sequence of flattened 2D patches x;, € RN*(P*C) where H is the height, W is the
width of the input image, C is the number of channels and (P, P) is image patch resolution.
The number of patches N is calculated as below:

HxW
N="0 @)
N also denotes the sequence length to be fed into the Transformer. By dividing the image
into patches, the quadratic cost in the number of pixels is significantly reduced.

3.2.1. Linear Projection of Flattened Patches

Before feeding the sequence of patches into the Transformer, the patches undergo a
linear projection. During the linear projection, the patches are mapped into a vector of D
dimension, where the vectors are multiplied by the embedding matrix E. The output of
the linear projection is referred to as patch embeddings. To allow the model to encode the
structure of the image, positional information E,s is appended to the patch embedding.
Subsequently, the embedded image patches are concatenated along with a learnable class
token xj,5s, Which is essential for the classification process. The initial patch embedding zg
that consists of an embedded sequence of image patches with the class token is computed
as stated below:

zy = [xdass ;x%,E; X%E,‘ e ;x;\]E} +Eps, E€ R(PZ‘C)XD,EPOS e RIN+1)xD 3)

where xj is the n-th image patch and n € {1,2,...,N}. The obtained embedded image
patches are then passed to the Transformer encoder. Figure 3 illustrates the generation
process of the patch embeddings.

Class token
Xclass

(1,D) |

Broadcast

Image Flattened Embedding & prepend
x patches matrix, E
lJI 2 :_3 Patches
-4 =L spiit Flatten
S0 e i R 1 Y Y R SR R PR
71819 (N,P,P,C) tat'.;l.'.
(Hw,C)
(N, (P2=C)) Zy

GD—» (N+1,D)

Broadcast

(N+1,D)

Positional embedding

Epos

Figure 3. The process flow of patch embedding.
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3.2.2. Transformer Encoder

The Transformer encoder comprises L identical encoder blocks. There are two sub-
layers in every encoder block: a multi-head self-attention (MSA) and a fully connected
feed-forward multi-layer perceptron (MLP), as depicted in Figure 4.

Zp--—

Zp---

Multi-Head

Attention

Figure 4. The architecture of the Transformer encoder.

The /-th encoder layer receives input sequence from the previous layer z;_;. The
input z,_1 first goes through layer normalization. The layer normalization normalizes the
input values for all the neurons across the feature dimension, which reduces the training
time and enhances the performance. Subsequently, the output of the layer normalization is
fed into the MSA layer.

The output of the MSA layer then goes through layer normalization again. Finally, the
output from the layer normalization is sent to the MLP layer. In the encoder layer, the
residual connections (also known as skip connections) are used to pass the information
between disconnected layers. The residual connections allow the gradients to flow through
the network without passing non-linear activation functions. By avoiding the non-linear
activation functions, the vanishing gradient problem is prevented. The gradient flow in the
{-th encoder layer is defined as:

z) = MSA(LN(z¢_1)) +2z—1, £=1...L )

z) =MLP(LN(z))) +z;, (¢=1...L (5)
where LN denotes the layer normalization.
®  Processes in Multi-head Self-Attention (MSA)

The MSA is made up of a linear layer, a self-attention layer, a concatenation layer, and
a final linear layer, as depicted in Figure 5.

Linear

Scaled Dot-Product
Attention

Lt 1

Linear [Linear] Linear |

ot 1

q k v

Figure 5. The architecture of the multi-head self-attention layer.
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In MSA, multiple self-attention operations are conducted in parallel based on the
number of heads k. In every head, the D-dimensional patch embedding z is multiplied
with three weight matrices U, Uy, U, to produce three matrices: query (q), key (k), and
value (v). The multiplication operation in every head is defined as below:

qk,v] = [qu,zUk, zUU], U, U, U, € RD XDy ©)

The obtained matrices q, k, v are then mapped into k subspaces, where the weighted
sum over all values V is calculated. The attention weights are then computed in every head
based on the relationship among two elements (i, j), where the dot product is calculated
based on q' and k/. The output of the dot product shows the significance of the patches
in the sequence. The dot product of the q and k is computed and the softmax function is
applied to attain the weights on the values as below:

_ qkT ) NxN
A = softmax ( /D)’ AeR 7)
where D, = D/k.

The difference between the standard dot-product operation and the self-attention (SA)
dot-product operation is the usage of the dimension of the key \/% as a scaling factor,
hence known as the scaled dot-product. Lastly, the output of the softmax is multiplied
by the value v of each patch embedding vector to determine the patch with the highest

attention score as below:
SA(z) = Av (8)

The self-attention matrices are then concatenated and mapped through a single linear
layer with learnable weight U5, as shown:

MSA (z) = [SA;(2);SA2(2); - - - ;SAK(2)]Unisa, U,ysq € REPixD ©9)

Every head of MSA captures information from different aspects at different positions,
which allows the model to encode more intricate features in parallel. Furthermore, the com-
putational cost of MSA is similar to a single head attention due to the parallel mechanism.

*  Processes in Multi-layer Perceptron (MLP)

The MLP comprises two fully connected layers with Gaussian Error Linear Unit
(GeLU) activation function, as shown in Figure 6.

Fully connected

\, <
{ N\
\ 7
4 N

Fully connected

GeLU

Figure 6. The architecture of the multi-layer perceptron.

The GeLU function weighs inputs by their value rather than their sign. Contrary
to the ReLU function, the GeLU function can be positive or negative, which has greater
curvature. Therefore, the GeLU function can estimate complicated functions better than
the ReLU function.

The last layer of the encoder picks the first token of the sequence z0 and generates the
image representation r by performing layer normalization. The r is then sent to a small MLP
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head which is a single hidden layer with a sigmoid function to perform the classification.
The image representation of the sequence is obtained by:

r=LN(2}) (10)

During the training process, the Adam optimizer is applied to speed up the network
convergence. The early stopping technique is used in the model to avoid over-training the
network. The early stopping technique stops the network training process when there are
no improvements in the validation set accuracy. Consequently, the categorical cross-entropy
loss function is adopted in the proposed method due to the involvement of multi-class
classification. The cross-entropy loss function is computed by:

loss = —
t

T
yt - log G (11)

=1

where 7; is the corresponding target value, y; is the prediction, and T is the number of

test samples.

4. Experiments and Discussion

The datasets employed to assess the performance, hyperparameter settings, and
performance of the proposed and existing methods are discussed in this section. The size
of the obtained GElIs is set to H = 64 and W = 64. As the GEIs are grayscale images, the
number of channels C = 1. For the ViT model, the ‘Base’ variant (ViT-B/32) with patch
size P = 32 is adopted. The patch size 32 x 32 is chosen as patch size 16 x 16 requires
a higher computational cost due to the longer sequence. With these settings, there are
N = 6‘;%64 = 4 patches. The MSA consists of L = 12 encoder layers and k = 12 heads in
each layer. As for the early stopping, the observation metric is the validation accuracy, and
the patience is set to 15. Hence, when the validation accuracy of the model stops improving
after 15 epochs, the model training is halted, and the best weights are restored. All the
experiments are conducted on the Anaconda platform with NVIDIA GeForce RTX 2080 Ti.

4.1. Datasets

The performance evaluation of the proposed Gait-ViT is conducted on three gait
datasets, namely the CASIA-B dataset, OU-ISIR dataset D, and OU-LP dataset.

The CASIA-B dataset [44] was built with 124 subjects where the gait sequences were
recorded from 11 views. The sequences were captured based on the viewing angle, clothing,
and carrying condition. The gait sequences were also recorded under normal walking, with
coats and bags on.

The OU-ISIR dataset D [45] contains 185 subjects with 370 sequences. The gait se-
quences were captured with various gait fluctuation, which was grouped as DBy, and
DBjjq- Both sets comprise 100 subjects, each with stable walking (DBy;¢p,) and fluctuated
walking (DBy,y).

The OU-LP dataset [46] consists of 4016 subjects with an age range of 1 to 94 years old.
The dataset contains sequence A and sequence B, where every subject has two sequences
in sequence A, while one sequence is in sequence B. The gait sequences were recorded
according to 55°, 65°, 75°, and 85° viewing angles. Sequence A with 3916 subjects is used in
this work. A summary of the datasets is presented in Table 1.

Table 1. Summary of datasets.

Datasets Number of Subjects Sequences Angle Views Variations
CASIA-B 124 10 11 Normal walking, Carrying condition, Clothing
OU-ISIR DBy, 100 370 1 Steady walking
OU-ISIR DByjgp 100 370 1 Fluctuated walking
OU-LP (Sequence A) 3916 2 4 4 viewing angles
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4.2. Hyperparameter Tuning

There are four hyperparameters entail in the proposed method, namely, batch size B,
learning rate R, input size I, and optimizer 6. A grid search technique is applied manually
on the CASIA-B dataset to tune the aforementioned hyperparameters. To perform the
grid search, the value of a specific hyperparameter is modified, while the values of the
remaining hyperparameters are kept unchanged.

The accuracy of the proposed method at various batch sizes B are shown in Table 2.
The highest accuracy is acquired at batch size 32. The larger batch sizes not only require
high computational costs but also lead to poor generalization. Other than that, the larger
batch sizes induce lower asymptotic accuracy.

Table 2. Accuracy at different batch sizes B [I = 64 x 64, R = 0.0001, 6 = Adam)].

Batch Size Accuracy (%) Training Time (s)
32 99.93 2555.7536
64 99.41 739.3975
128 99.34 621.2719

Table 3 displays the accuracy of the proposed method at different learning rates
R. The learning rate at 0.0001 achieved the highest accuracy. The lower learning rate
causes overfitting issues and also slows down the training, thus wasting the computational
resources with no progress in the accuracy. On the contrary, the larger learning rate
converges too fast, thus, disregarding the optimal solution.

Table 3. Accuracy at different learning rates R [B =32, [ = 64 x 64, 6 = Adam)].

Learning Rate Accuracy (%) Training Time (s)
0.00001 99.34 2259.2996
0.0001 99.93 2555.7536
0.001 99.41 3025.1851
0.01 43.86 1881.2865

The accuracy of the proposed methods at various input sizes I are illustrated in Table 4.
The highest accuracy is obtained at input size 64 x 64. Although the smaller input size
involves low computational cost, it might lose some of the crucial information. On the
other hand, the larger input size could have more irrelevant information and requires high
computational cost.

Table 4. Accuracy at different input sizes I [B = 32, R = 0.0001, 6 = Adam].

Input Size Accuracy (%) Training Time (s)
32 x 32 99.34 600.9491
64 x 64 99.93 2555.7536
128 x 128 98.60 2838.1245

Table 5 presents the accuracy of the proposed method using different optimizers 6.
As the CASIA-B dataset contains incomplete and noisy silhouettes, Adam optimizer per-
forms promisingly compared to SGD and Nadam. This is due to the capability of the Adam
optimizer to handle noisy and sparse gradients. Furthermore, both the SGD and Nadam
utilize higher computational time than the Adam optimizer.

Table 5. Accuracy at different optimizers 6 [B = 32, I = 64 x 64, R = 0.0001].

Optimizer Accuracy (%) Training Time (s)
SGD 76.89 9449.4783
Adam 99.93 2555.7536

Nadam 99.63 3781.5499
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The optimal values for the hyperparameters are chosen considering the accuracy and
time consumption. Table 6 displays the tested values and optimal values of hyperparame-
ters for the proposed Gait-ViT method.

Table 6. Summary of optimal hyperparameters for the proposed Gait-ViT method.

Hyperparameters Tested Values Optimal Value
Batch Size 32,64,128 32
Learning Rate 0.00001, 0.0001, 0.001, 0.01 0.0001
Input Size 32 x 32,64 x 64,128 x 128 64 x 64
Optimizer SGD, Adam, Nadam Adam

4.3. Comparison with the Existing Methods

To compare the performance of the proposed Gait-ViT method, five state-of-the-art
methods are included in this work, namely GEINet [47], Deep CNN [48], CNN with Leaky
ReLU [49], CNN [50], and deep CNN [51]. The datasets are segregated into three sets as
80% training, 10% validation, and 10% testing. The input size is set to 64 x 64 for all the
existing methods to have an unbiased assessment. The accuracy of the proposed Gait-ViT
method and the existing methods on different datasets are shown in Table 7.

Table 7. Comparison results on different datasets.

Accuracy (%)
Method:
ethods CASIA-B OU-ISIR DB;g OU-ISIR DB,,,, OU-LP

GEINet [47] 97.65 99.93 99.65 90.74
Deep CNN [48] 25.68 87.70 83.81 5.60
CNN [49] 98.09 99.65 99.37 89.17
CNN [50] 94.63 89.99 96.73 48.32
Deep CNN [51] 86.17 96.18 95.21 4552
Gait-ViT 99.93 100.00 100.00 99.51

The accuracy of the majority of the existing methods, particularly the deep CNN
method [48] decreased in the CASIA-B dataset due to the incomplete and noisy silhouettes.
However, the proposed Gait-ViT method surpasses the existing methods by obtaining an
accuracy of 99.93%. This is due to the multi-head attention mechanism that focuses and
incorporates the information through the whole image, where each of the attention heads
attends to different regions of the image. The concatenation of the various information
from every attention head, along with the dynamic, receptive field and strong residual
connection, improves the ability to handle incomplete and noisy silhouettes.

Using the OU-ISIR dataset D, all the methods yield higher accuracy as the dataset
comprises a small number of subjects. The proposed Gait-ViT method obtained 100% in
both DBy, and DB y,. The Transformer has the ability to adjust the receptive field based
on the nuisances in the input image, which results in a flexible and dynamic receptive field.
This characteristic makes the Transformer robust to occlusion and slight variation in shapes.
Hence, the proposed method achieved high accuracy, regardless of the slight variation in
the walking shapes.

As for the OU-LP dataset, the accuracy of the [48,50,51] methods are quite low due to a
large number of subjects. Nonetheless, the proposed method performed promisingly with
an accuracy of 99.51%, which shows the improvement in the generalization of the proposed
method. The Transformer is a global operation where the global interactions among other
patch embeddings take place. By doing so, local information of the image is encoded, as
well as modeling the global relationship between distant image parts. Furthermore, the
global operation contributes to conserving the structural information of the patch sequence.
Hence, the incorporation of the Transformer enhances the generalization ability of the
proposed Gait-ViT method.
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5. Conclusions

This paper presents a work with a vision transformer for gait recognition. The gait
energy image is first computed by averaging the series of gait silhouettes over a gait cycle.
The obtained gait energy image is then split into fixed-size patches. Subsequently, patch em-
bedding and positional embedding are applied to the patches during the linear projection,
where the patches are flattened into a long vector with information about the position of
every vector. The flattened and embedded vector is then fed to the Transformer to generate
the final gait representation. Lastly, the classification is performed by transforming the first
token of the sequence into a class prediction. The experimental results exhibit the scalability
of the ViT in handling both small and large datasets. Moreover, the proposed method
shows robustness toward noisy and incomplete silhouettes with the application of the
self-attention mechanism. The multi-head attention mechanism, which works in parallel,
contributes to the improvement of the parallelization ability. Other than that, the residual
connection, layer normalization, and early stopping enhance the performance as well as
reduce the computational cost. As the datasets used in the experiment consist of various
covariates, which resemble real-world scenarios, the ViT model is adept at identifying
the subject regardless of the covariates. The limitation of the ViT model is that the model
consists of only one convolutional layer, where it cannot extract features from a larger input
size, which contains more information than the smaller input sizes. Future work will be
focused on enhancing the ViT architecture by adding more convolutional layers for better
feature extraction.
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