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Abstract: It is known that the astigmatic transformation can be used to analyze the topological charge
of a vortex beam, which can be implemented by using various optical methods. In this case, in
order to form an astigmatic beam pattern suitable for the clear detection of a topological charge, an
optical adjustment is often required (changing the lens tilt and/or the detection distance). In this
article, we propose to use multi-channel diffractive optical elements (DOEs) for the simultaneous
implementation of the astigmatic transformations of various types and levels. Such multi-channel
DOEs make it possible to insert several types of astigmatic aberrations of different levels into the
analyzed vortex beam simultaneously, and to form a set of aberration-transformed beam patterns
in different diffraction orders in one detection plane. The proposed approach greatly simplifies the
analysis of the characteristics of a vortex beam based on measurements in the single plane without
additional adjustments. In this article, a detailed study of the effect of various types of astigmatic
aberrations based on a numerical simulation and experiments was carried out, which confirmed the
effectiveness of the proposed approach.

Keywords: multi-channel diffractive optical element; astigmatic transformation; vortex beam; topological
charge

1. Introduction

Vortex beams are special structured laser beams, the special properties of which have
been actively studied for several decades [1–6]. The most important among the special
properties is the presence of an orbital angular momentum [7–11], which is determined by
the order of the optical vortex, also called the topological charge (TC). A distinctive feature
of an optical vortex beam is the presence of vortex phase singular points, at which the
phase is not defined and the amplitude is zero. Vortex beams have been effectively used in
various applications, including optical information transmission [12–17], optical trapping
and manipulation [18,19], probing [20,21] and many others. Therefore, the development of
convenient and simple methods for determining the characteristics of vortex beams seems
to be extremely important.

There are various methods for determining the TC of a vortex beam based on matched
filtering [17–26], the use of special elements ensuring beam sorting [27–30] and also with
an astigmatic transformation [31–38]. The simplest way for an astigmatic transformation is
applying a cylindrical or tilted lens [39–41] as well as a tilted or astigmatic axicon [42–44].
Inclined/tilted optical elements also insert an astigmatic transformation into generated
vortex beams [45,46]. Astigmatic transformations can be implemented using anisotropic
crystals [47–50].
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There is also a method based on curvilinear and parabolic-line diffraction grat-
ing [51–54], which actually corresponds to the insertion of a certain astigmatic transfor-
mation in the diffraction orders of a one-dimensional grating. We propose a more general
approach providing several aberration transformations of various types and magnitudes
(levels) in a 2D set of diffraction orders.

The magnitude (level) of an astigmatic transformation of abeam depends on various
factors, including both the characteristics of optical elements and systems (focal length,
tilt angle and degree of anisotropy) [39,45,47] and the properties of the beam, including
the TC value [46,55]. Therefore, in order to form an astigmatic beam pattern suitable for
the clear detection of the TC, an optical tuning (changing the lens tilt and/or the detection
distance) is often required. In this paper, for the simultaneous implementation of astigmatic
transformations of various types and levels, we propose to use multi-channel diffractive
optical elements (DOEs) [56–58]. To design a multi-channel DOE matched with several
aberrations, we use the method of spatial carrier frequencies [59]. Thus, a single multi-
channel DOE can simultaneously generate several different beams at given points of the
focal plane in accordance with the spatial carrier frequencies. We emphasize that such a
DOE is not a simple two-dimensional grating. In particular, as shown numerically in [58],
a 25-channel DOE allows for the insertion of several types of astigmatic aberrations of
different levels into the analyzed vortex beam simultaneously, forming a set of aberration-
transformed beam patterns in different diffraction orders in one detection plane. The
proposed approach greatly simplifies the analysis of the characteristics of a vortex beam
based on measurements in the single plane without additional adjustments.

The article presents a detailed study of the effect of various types of astigmatic aberra-
tions based on a numerical simulation and experiments, which confirmed the effectiveness
of the proposed approach.

2. Methods
2.1. Theoretical Foundations

The astigmatic transformation in the classical form can be written as follows [60]:

ψast(x, y;β) =
(

x2 − y2
)

cos 2β− 2xy sin 2β (1)

where β is the rotation parameter.
On the basis of Expression (1), special cases can be considered, for example:

ψast(x, y; 0) =
(

x2 − y2),
ψast(x, y;π/4) = −2xy.

(2)

Astigmatic transformations using a cylindrical or inclined lens are also known [39–41].
In this case, the transformation can be described as follows:

ψtilt(x, y) = axx2 + ayy2 (3)

Since Transformations (1) and (3) do not reduce to each other, in this paper, we
considered a more general concept of an astigmatic transformation in the following form:

ψgen(x, y) =
(
axx + ayy

)2
= (axx)2 +

(
ayy
)2

+ 2axayxy (4)

Assuming the parameters ax, ay to be complex, we could obtain both options of
Equations (1) and (3).
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It should be noted that the astigmatic transformation also takes place in the case of
wavefront astigmatic aberrations. Such aberrations are usually described using the Zernike
polynomial basis [61,62]:

Znm(r,ϕ) =

√
n + 1
π

Rm
n (r)

{
cos(mϕ)
sin(mϕ)

}
(5)

where Rm
n (r) are radial Zernike polynomials normalized in the circle of radius r0:

Rm
n (r) =

(n−m)/2

∑
s=0

(−1)s(n− s)!
s!
( n+m

2 − s
)
!
( n−m

2 − s
)
!

(
r
r0

)n−2s
(6)

Note that the aberrations of the astigmatic type include the functions from Equation (5)
with index m = 2. Table 1 lists several Zernike functions of Equation (5), corresponding to
astigmatic aberrations.

Table 1. Zernike functions of Equation (5) corresponding to astigmatic aberrations.

n m Aberration
Type Mathematical Representation Phase

2 2 Astigmatism
√

6r2 cos(2ϕ) = c1,1(x2 − y2)
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4 2 Fourth order
astigmatism

√
10(4r4 − 3r2) cos(2ϕ) = c2,1(x4 − y4)− c2,2(x2 − y2)
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Table 1 shows that the Zernike functions corresponding to astigmatic aberrations

contained terms of the form (xn − yn), which is more general than the expression of
Equation (4). Table 1 also shows the phase distribution of the corresponding wavefront
with values in the range from 0 to 2π.

Table 2 shows the correspondence with particular cases of astigmatic transformations
of Equation (4) and Zernike functions. Table 2 presents that special cases of the astigmatic
transformation in Equation (4) could be uniquely represented as a combination of astigmatic
aberration Z2,±2 and defocus Z2,0 (corresponding to a shift from the focus plane). Thus, the
use of cylindrical lenses and other types of astigmatic transformations could lead to the
need to select the best detection distance. However, this action can be replaced by changing
the aberration magnitude (level).

The study of this issue based on a numerical simulation is given in the next section.
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Table 2. Correspondence of some types of astigmatic transformations of Equation (4) and
Zernike functions.

Astigmatic
Transformation

Equation (4)

Mathematical Representation as
Zernike Functions of Equation (5) Phase

xy r cos(ϕ) · r sin(ϕ) = d1,1Z2,−2
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where ( )l
pL x  is the generalized Laguerre polynomial [63], σ is the parameter of the 

Gaussian beam and index l corresponds to the TC of the vortex beam. 
The Fresnel transform was used to simulate the effect of certain types of astigmatic 

aberrations on vortex beams: 
2

2 2

0 0

( , ) exp( ) ( , ) exp 2 cos( ) d d
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ik kF ikz f r i r r r r
z z

∞ π   ρ θ = − ϕ + ρ − ρ θ − ϕ ϕ  π     (8)

where 2 /k = π λ  is the wave number, λ is the radiation wavelength, ( , )f r ϕ  is the input 
function and z is the distance from the input plane. The following distribution was used 
as an input function in this section: 

2

0, ,2
0

( , ) ( , ) exp ( , ) exp
2l n
rf r r ik Z r ik
z

 
 ϕ = Ψ ϕ α ϕ −  

 
 (9)

The function ,2exp ( , )nik Z r α ϕ   in Equation (9) corresponds to the insertion of as-
tigmatic aberrations of various types (Table 1) with various magnitudes (levels) deter-
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x2 r2 cos2(ϕ) = d2,1Z2,0 + d2,2Z2,2
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2.2. Simulation of Astigmatic Transformations 
For the analyzed vortex beam, the Laguerre–Gaussian modes were considered 

[63–65]: 
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where ( )l
pL x  is the generalized Laguerre polynomial [63], σ is the parameter of the 

Gaussian beam and index l corresponds to the TC of the vortex beam. 
The Fresnel transform was used to simulate the effect of certain types of astigmatic 

aberrations on vortex beams: 
2
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( , ) exp( ) ( , ) exp 2 cos( ) d d
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z z

∞ π   ρ θ = − ϕ + ρ − ρ θ − ϕ ϕ  π     (8)

where 2 /k = π λ  is the wave number, λ is the radiation wavelength, ( , )f r ϕ  is the input 
function and z is the distance from the input plane. The following distribution was used 
as an input function in this section: 

2

0, ,2
0

( , ) ( , ) exp ( , ) exp
2l n
rf r r ik Z r ik
z

 
 ϕ = Ψ ϕ α ϕ −  

 
 (9)

The function ,2exp ( , )nik Z r α ϕ   in Equation (9) corresponds to the insertion of as-
tigmatic aberrations of various types (Table 1) with various magnitudes (levels) deter-
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where ( )l
pL x  is the generalized Laguerre polynomial [63], σ is the parameter of the 

Gaussian beam and index l corresponds to the TC of the vortex beam. 
The Fresnel transform was used to simulate the effect of certain types of astigmatic 
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where 2 /k = π λ  is the wave number, λ is the radiation wavelength, ( , )f r ϕ  is the input 
function and z is the distance from the input plane. The following distribution was used 
as an input function in this section: 

2

0, ,2
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( , ) ( , ) exp ( , ) exp
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rf r r ik Z r ik
z

 
 ϕ = Ψ ϕ α ϕ −  

 
 (9)

The function ,2exp ( , )nik Z r α ϕ   in Equation (9) corresponds to the insertion of as-
tigmatic aberrations of various types (Table 1) with various magnitudes (levels) deter-

y2 r2 sin2(ϕ) = d3,1Z2,0 − d3,2Z2,2

Sensors 2022, 22, x FOR PEER REVIEW 4 of 18 
 

 

Table 2. Correspondence of some types of astigmatic transformations of Equation (4) and Zernike 
functions. 

Astigmatic 
Transformation 

Equation (4) 

Mathematical Representation as  
Zernike Functions of Equation (5) 

Phase 

xy 1,1 2, 2cos( ) sin( ) Zr r d −ϕ ⋅ ϕ =  
 

2x  2 2
2,1 2,0 2,2 2,2cos ( )r d Z d Zϕ = +  

 

2y  2 2
3,1 2,0 3,2 2,2sin ( )r d Z d Zϕ = −  

 

2 2x y−  2 2 2 2
4,1 2,2cos ( ) sin ( )r r d Zϕ − ϕ =  

 

2( )x y−  
2 2 2 2 2

5,1 2,0 5,2 2, 2cos ( ) 2 cos( ) sin( ) sin ( )r r r d Z d Z −ϕ − ϕ ϕ + ϕ = −
  

2( )x y+  
2 2 2 2 2

6,1 2,0 6,2 2, 2cos ( ) 2 cos( ) sin( ) sin ( )r r r d Z d Z −ϕ + ϕ ϕ + ϕ = +
  

2.2. Simulation of Astigmatic Transformations 
For the analyzed vortex beam, the Laguerre–Gaussian modes were considered 

[63–65]: 

2 2

2 2

2 ! 2 2( , ) exp exp( )
( )!

l
l

pl p
p r r rr L il
p l

    
Ψ ϕ = − ⋅ ϕ     π + σσ σ    

 (7)

where ( )l
pL x  is the generalized Laguerre polynomial [63], σ is the parameter of the 

Gaussian beam and index l corresponds to the TC of the vortex beam. 
The Fresnel transform was used to simulate the effect of certain types of astigmatic 

aberrations on vortex beams: 
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where 2 /k = π λ  is the wave number, λ is the radiation wavelength, ( , )f r ϕ  is the input 
function and z is the distance from the input plane. The following distribution was used 
as an input function in this section: 
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0, ,2
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 ϕ = Ψ ϕ α ϕ −  

 
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The function ,2exp ( , )nik Z r α ϕ   in Equation (9) corresponds to the insertion of as-
tigmatic aberrations of various types (Table 1) with various magnitudes (levels) deter-
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where ( )l
pL x  is the generalized Laguerre polynomial [63], σ is the parameter of the 

Gaussian beam and index l corresponds to the TC of the vortex beam. 
The Fresnel transform was used to simulate the effect of certain types of astigmatic 

aberrations on vortex beams: 
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where 2 /k = π λ  is the wave number, λ is the radiation wavelength, ( , )f r ϕ  is the input 
function and z is the distance from the input plane. The following distribution was used 
as an input function in this section: 
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0, ,2
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rf r r ik Z r ik
z

 
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 
 (9)

The function ,2exp ( , )nik Z r α ϕ   in Equation (9) corresponds to the insertion of as-
tigmatic aberrations of various types (Table 1) with various magnitudes (levels) deter-

x2 − y2 r2 cos2(ϕ)− r2 sin2(ϕ) = d4,1Z2,2
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where ( )l
pL x  is the generalized Laguerre polynomial [63], σ is the parameter of the 

Gaussian beam and index l corresponds to the TC of the vortex beam. 
The Fresnel transform was used to simulate the effect of certain types of astigmatic 
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The function ,2exp ( , )nik Z r α ϕ   in Equation (9) corresponds to the insertion of as-
tigmatic aberrations of various types (Table 1) with various magnitudes (levels) deter-
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where ( )l
pL x  is the generalized Laguerre polynomial [63], σ is the parameter of the 

Gaussian beam and index l corresponds to the TC of the vortex beam. 
The Fresnel transform was used to simulate the effect of certain types of astigmatic 

aberrations on vortex beams: 
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The function ,2exp ( , )nik Z r α ϕ   in Equation (9) corresponds to the insertion of as-
tigmatic aberrations of various types (Table 1) with various magnitudes (levels) deter-

(x− y)2 r2 cos2(ϕ)− 2r2 cos(ϕ) sin(ϕ) + r2 sin2(ϕ) = d5,1Z2,0 − d5,2Z2,−2
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where ( )l
pL x  is the generalized Laguerre polynomial [63], σ is the parameter of the 

Gaussian beam and index l corresponds to the TC of the vortex beam. 
The Fresnel transform was used to simulate the effect of certain types of astigmatic 

aberrations on vortex beams: 
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The function ,2exp ( , )nik Z r α ϕ   in Equation (9) corresponds to the insertion of as-
tigmatic aberrations of various types (Table 1) with various magnitudes (levels) deter-
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where ( )l
pL x  is the generalized Laguerre polynomial [63], σ is the parameter of the 

Gaussian beam and index l corresponds to the TC of the vortex beam. 
The Fresnel transform was used to simulate the effect of certain types of astigmatic 

aberrations on vortex beams: 
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where 2 /k = π λ  is the wave number, λ is the radiation wavelength, ( , )f r ϕ  is the input 
function and z is the distance from the input plane. The following distribution was used 
as an input function in this section: 
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The function ,2exp ( , )nik Z r α ϕ   in Equation (9) corresponds to the insertion of as-
tigmatic aberrations of various types (Table 1) with various magnitudes (levels) deter-

(x + y)2 r2 cos2(ϕ) + 2r2 cos(ϕ) sin(ϕ) + r2 sin2(ϕ) = d6,1Z2,0 + d6,2Z2,−2
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where ( )l
pL x  is the generalized Laguerre polynomial [63], σ is the parameter of the 

Gaussian beam and index l corresponds to the TC of the vortex beam. 
The Fresnel transform was used to simulate the effect of certain types of astigmatic 
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as an input function in this section: 
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tigmatic aberrations of various types (Table 1) with various magnitudes (levels) deter-
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where k = 2π/λ is the wave number, λ is the radiation wavelength, f (r,ϕ) is the input
function and z is the distance from the input plane. The following distribution was used as
an input function in this section:
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(9)

The function exp[ikαZn,2(r,ϕ)] in Equation (9) corresponds to the insertion of astig-
matic aberrations of various types (Table 1) with various magnitudes (levels) determined
by the parameter α into a vortex beam Ψ0,l(r,ϕ) with TC equal to l. The optical beam

focusing was implemented with the use of a lens exp
(
−ik r2

2z0

)
with focal length z0.
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Table 3 shows the results of modeling the astigmatic transformation of vortex beams
Ψ0,l(r,ϕ) for different values of TC when various astigmatic aberrations Zn,2(r,ϕ) were
used. The intensity distributions in the focal plane were shown. The following parameters
were used in the calculation: λ = 532 nm; σ = 0.15 mm; focal length z0 = 300 mm.

Table 3. Simulation results of astigmatic transformations of vortex beams Ψ0,l(r,ϕ) with aberrations
of the form exp[ikαZn,2(r,ϕ)] in the focal plane.

Astigmatic
Parameters

Topological Charge

l = −5 l = −3 l = −1 l = 1 l = 3 l = 5

n = 2, α = 3λ
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Table 4 shows similar simulation results, taking into account the displacement of the 
detection plane from the focal plane by a distance Δz. 

Interestingly, not only the sign of the topological charge, but also the type of aber-
ration affected the slope of the formed pattern. It should be noted that high-order astig-
matic aberrations (n ≥ 6) led to the formation of less clear and inconvenient visual analy-
sis patterns (Table 3). However, the third-order astigmatism (n = 6) demonstrated a re-
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Table 4 shows that the resistance of the formed astigmatic patterns to defocusing 
depended both on the value of the TC and on the type of astigmatic transformation. As a 
rule, as the TC value l increases, the resistance to defocusing decreases. This drawback 
can be compensated by increasing the level of astigmatic aberration due to parameter α. 

  

Sensors 2022, 22, x FOR PEER REVIEW 5 of 18 
 

 

mined by the parameter α into a vortex beam 0, ( , )l rΨ ϕ  with TC equal to l. The optical 

beam focusing was implemented with the use of a lens 
2

0

exp
2
rik
z

 
− 
 

 with focal length 

z0. 
Table 3 shows the results of modeling the astigmatic transformation of vortex beams 

0, ( , )l rΨ ϕ  for different values of TC when various astigmatic aberrations ,2 ( , )nZ r ϕ were 
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Interestingly, not only the sign of the topological charge, but also the type of aber-
ration affected the slope of the formed pattern. It should be noted that high-order astig-
matic aberrations (n ≥ 6) led to the formation of less clear and inconvenient visual analy-
sis patterns (Table 3). However, the third-order astigmatism (n = 6) demonstrated a re-
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Table 4 shows that the resistance of the formed astigmatic patterns to defocusing 
depended both on the value of the TC and on the type of astigmatic transformation. As a 
rule, as the TC value l increases, the resistance to defocusing decreases. This drawback 
can be compensated by increasing the level of astigmatic aberration due to parameter α. 
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Table 4 shows that the resistance of the formed astigmatic patterns to defocusing 
depended both on the value of the TC and on the type of astigmatic transformation. As a 
rule, as the TC value l increases, the resistance to defocusing decreases. This drawback 
can be compensated by increasing the level of astigmatic aberration due to parameter α. 
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Table 4 shows that the resistance of the formed astigmatic patterns to defocusing 
depended both on the value of the TC and on the type of astigmatic transformation. As a 
rule, as the TC value l increases, the resistance to defocusing decreases. This drawback 
can be compensated by increasing the level of astigmatic aberration due to parameter α. 
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Table 3 shows the results of modeling the astigmatic transformation of vortex beams 
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matic aberrations (n ≥ 6) led to the formation of less clear and inconvenient visual analy-
sis patterns (Table 3). However, the third-order astigmatism (n = 6) demonstrated a re-
sistance to defocusing and good results for low values of TC (Table 4). 
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Table 4 shows that the resistance of the formed astigmatic patterns to defocusing 
depended both on the value of the TC and on the type of astigmatic transformation. As a 
rule, as the TC value l increases, the resistance to defocusing decreases. This drawback 
can be compensated by increasing the level of astigmatic aberration due to parameter α. 
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Table 3 shows the results of modeling the astigmatic transformation of vortex beams 
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Table 4 shows that the resistance of the formed astigmatic patterns to defocusing 
depended both on the value of the TC and on the type of astigmatic transformation. As a 
rule, as the TC value l increases, the resistance to defocusing decreases. This drawback 
can be compensated by increasing the level of astigmatic aberration due to parameter α. 
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Table 3 shows the results of modeling the astigmatic transformation of vortex beams 
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Table 4 shows that the resistance of the formed astigmatic patterns to defocusing 
depended both on the value of the TC and on the type of astigmatic transformation. As a 
rule, as the TC value l increases, the resistance to defocusing decreases. This drawback 
can be compensated by increasing the level of astigmatic aberration due to parameter α. 
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Table 3 shows the results of modeling the astigmatic transformation of vortex beams 
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Table 4 shows that the resistance of the formed astigmatic patterns to defocusing 
depended both on the value of the TC and on the type of astigmatic transformation. As a 
rule, as the TC value l increases, the resistance to defocusing decreases. This drawback 
can be compensated by increasing the level of astigmatic aberration due to parameter α. 
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Table 3 shows the results of modeling the astigmatic transformation of vortex beams 
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sis patterns (Table 3). However, the third-order astigmatism (n = 6) demonstrated a re-
sistance to defocusing and good results for low values of TC (Table 4). 
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Table 4 shows that the resistance of the formed astigmatic patterns to defocusing 
depended both on the value of the TC and on the type of astigmatic transformation. As a 
rule, as the TC value l increases, the resistance to defocusing decreases. This drawback 
can be compensated by increasing the level of astigmatic aberration due to parameter α. 
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Table 3 shows the results of modeling the astigmatic transformation of vortex beams 
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Table 4 shows that the resistance of the formed astigmatic patterns to defocusing 
depended both on the value of the TC and on the type of astigmatic transformation. As a 
rule, as the TC value l increases, the resistance to defocusing decreases. This drawback 
can be compensated by increasing the level of astigmatic aberration due to parameter α. 
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Table 4 shows that the resistance of the formed astigmatic patterns to defocusing 
depended both on the value of the TC and on the type of astigmatic transformation. As a 
rule, as the TC value l increases, the resistance to defocusing decreases. This drawback 
can be compensated by increasing the level of astigmatic aberration due to parameter α. 
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Table 4. Simulation results of astigmatic transformation of vortex beams Ψ0,l(r,ϕ) with aberrations
of the form exp[ikαZn,2(r,ϕ)] at various distances ∆z from the focal plane.

Vortex Beam Ψ0,l(r,ϕ) Astigmatic
Parameters

Intensity Distributions at Various Distances ∆z from the Focal Plane

0 mm 100 mm 200 mm 300 mm

TC l = 1
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aberrations of different levels into the analyzed vortex beam simultaneously, forming a 
set of aberration-transformed beam patterns in different diffraction orders in one detec-
tion plane. Figure 1 shows the principle of the operation of the proposed approach. A 
schematic representation of the principle of operation for determining the vortex TC in a 
standard way using an astigmatic or tilted lens and detecting the intensity distribution in 
several planes (z1, z2, … and zj) is shown in the upper part of Figure 1. A thorough de-
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3. Proposed Approach Based on Multi-Channel DOEs
3.1. Principle of Operation

In order to not have to perform additional optical adjustments of the optical system, it
was proposed to carry out simultaneous astigmatic transformations of various types and
levels based on the use of multi-channel DOEs [56–58].

The multi-channel DOE allowed for the introduction of several types of astigmatic
aberrations of different levels into the analyzed vortex beam simultaneously, forming a set
of aberration-transformed beam patterns in different diffraction orders in one detection
plane. Figure 1 shows the principle of the operation of the proposed approach. A schematic
representation of the principle of operation for determining the vortex TC in a standard
way using an astigmatic or tilted lens and detecting the intensity distribution in several
planes (z1, z2, . . . and zj) is shown in the upper part of Figure 1. A thorough description
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of the classical methods can be found in the according works [34–41]. The proposed
approach based on a multi-channel DOE matched with astigmatic aberrations of different
levels (implemented using a spatial light modulator (SLM)) and the detection of intensity
distribution in a single focal plane (z0) is shown in the lower part of Figure 1. A detailed
description of our method (step by step along the optical beam’s propagation) is given in
Section 4.
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Figure 1. Principle of operation for determining the vortex TC (l = 3) in a standard way (upper part)
using a tilted lens and detecting the intensity distribution in several planes (z1, z2, . . . , zj) and the
proposed approach (lower part) based on multi-channel DOE matched with astigmatic aberrations
exp[ikαZn,2(r,ϕ)] of different levels α in a single focal plane z0.

3.2. Simulation Results for Multi-Channel DOEs

The complex transmission function of a multi-channel DOE matched with a set of
astigmatic aberrations of various types and levels had the following form:

τ(x, y) =
N0

∑
N=1

K0

∑
j=1

exp
[
ikαjZN(x, y)

]
exp

[
i
(
ajN x + bjNy

)]
(10)

where N0 is the number of DOE channels corresponding to astigmatic types of aberrations
Zn,2(r,ϕ), K0 is the number of filter channels corresponding to different levels of aberrations
αj, and ajN , bjN are spatial carrier parameters along the X and Y axes.

Figure 2 shows the amplitude (Figure 2a) and phase (Figure 2b) of the complex
transmission function for a 25-channel DOE of Equation (10) matched to N0 = 5 different
astigmatic aberrations Zn,2(r,ϕ) (n = 2, 4, 6, 8, 10) with K0 = 5 different levels αj(α1 = 0.1λ,
α2 = 0.25λ, α3 = 0.5λ, α4 = 0.75λ, α5 = λ).
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DOE matched to different astigmatic aberrations Zn,2(r,ϕ) (n = 2, 4, 6, 8, 10) with various levels αj,
intensity distribution in the focal plane (d) at the Gaussian beam illumination (correspondence of
aberrated PSF to diffraction orders is shown).

For the optical implementation of a complex function of Equation (10) using a phase
spatial light modulator (SLM), we applied the phase-coding method [66]. This method was
applied to the normalized complex function |g(x, y)| ≤ 1:

g(x, y) = τ(x, y)(max|τ(x, y)|)−1 (11)

where τ(x, y) was derived from Equation (10). The normalized amplitude-phase function
g(x, y) was replaced with a phase function h(x, y) according to the rule:

h(x, y) =

{
exp[iarg[g(x, y)]], g(x, y) ≥ ∆,

exp[iarg[g(x, y)] + iµ], g(x, y) ≤ ∆,
(12)

µ =

{
π, sgn

(
Sij
)
> 0,

0, sgn
(
Sij
)
< 0,

(13)

where parameter Sij ∈ [−0.5; 0.5] is a pseudo-random value and S is the number of pseudo-
random numbers from the segment [−0.5; 0.5].In a number of numerical experiments,
it was found [66] that the best correspondence between the intensity distribution in the
focal plane for the amplitude-phase element of Equation (10) and for the phase element of
Equation (12) was achieved with the parameters of the partial coding method S = 5 and
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∆ = 0.1. Figure 2 shows the phase (Figure 2c) of the phase-coded multi-channel DOE of
Equation (12).

Figure 2c shows the phase-only coded multi-channel DOE. The operating result of
such a DOE in the focal plane at the Gaussian beam illumination is shown in Figure 2d; the
intensity in different diffraction orders corresponded to the point spread function (PSF) for
each aberration encoded in the DOE.

When the 25-channel DOE (shown in Figure 2) was illuminated with vortex beams,
different astigmatic patterns formed in the focal plane. Examples of the DOE operation for
vortex beams with TC l = 1, 3, 5 are shown in Table 5. In fact, the distributions in different
diffraction orders in one line corresponded to different detection distances (z1, z2, . . . and
zj) in the classical scheme with an astigmatic or tilted lens. Thus, to select a good level of
astigmatic transformation, it was not required to move the camera. It was only necessary
to select suitable diffraction orders (marked with a frame), which allowed one to clearly
determine the TC from the intensity pattern.

Table 5. The action of the 25-channel DOE illuminated with vortex beams with a TC l = 1, 3, 5.

l = 1 l = 3 l = 5
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As can be seen from the results shown in Table 5, for various values of TC, a set of
“good” PSFs (marked with a box) varied. In particular, when determining the topological
charge l = 1 (Table 5, first column), Astigmatic aberration of type (2, 2) with a level α in the
range from 0.1λ to λ did not show good results, compared with other astigmatic aberrations
of the type (n, 2). In turn, aberrations of the type (4, 2), (6, 2), (8, 2) with a level from 0.25λ to
λ demonstrated the formation of sufficiently clear pictures for a visual analysis. Moreover,
with an increase in the level of aberrations, the distance between the extrema became larger,
which could improve the quality of determining the TC and the possibility to use machine
learning methods. An aberration of type (10, 2) had a significant optical power in terms of
PSF distortion and showed sufficient results only for the level α = 0.5λ.

With an increase in the TC to l = 3 (Table 5, second column), the use of the classical
astigmatic aberration (2, 2) did not give a good result. Astigmatic distortions of the types
(4, 2), (6, 2), (8, 2) and (10, 2) with level α in the range from 0.75λ to λ showed significantly
better results. However, high-order aberrations, such as (8, 2) and (10, 2), with an increase
in the level of α, introduced unnecessary artifacts into the PSF patterns, which could make
it difficult to automatically determine the TC.

In the analysis of a vortex beam with a large topological charge l = 5 (Table 5, third
column), good results were obtained only when using aberrations (4, 2), (6, 2) and (8, 2)
with high level α = λ. Thus, with an increase in the detected TC, one could observe a
tendency towards the need to increase the level α of astigmatic aberrations (n, 2).

For a more detailed analysis of the influence of astigmatic aberrations of type (n, 2)
and level α, the action of multi-channel DOEs of Equation (10) was considered, consistent
with one type of aberration (N0 = 1) with a large range of α from 0.1λ to 5λ. The simulation
results are shown in Table 6. The diffraction orders with astigmatic PSFs, which allowed
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for it to be possible to clearly determine the TC, were marked with a frame. We could
confirm the following trend: with an increase in the TC of the vortex beam, an increase
in the level of astigmatism α was required for correct detection. In addition, it required
a higher level of α to form a well-defined astigmatism pattern when using the classical
type of astigmatism (2, 2) (first column of Table 6). The astigmatism of type (6, 2) (third
column of Table 6) was not suitable for vortex beams with a large TC due to the appearance
of redundant artifacts in the intensity pattern.

Table 6. Simulation results for multi-channel DOEs matched with one type of aberration Zn,2(r,ϕ)
(n = 2, 4, 6) with α ranging from 0.2λ to 5λ when illuminated with a vortex beam with a TC l = 3, 5, 7.

Vortex TC l = 3

n = 2 n = 4 n = 6
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The best results were obtained for the astigmatic aberration of type (4, 2) (second
column of Table 6). Figure 3 shows, in more detail, the simulation results for this type of
aberration at a level of α from 2.2λ to 3λ, obtained by analyzing a vortex beam with TC
l = 7. For clarity, dark intensity lines between light intensity extrema were indicated with
yellow lines (the number of seven lines corresponded to l = 7). Figure 3 clearly shows that
with an increase in the aberration level α, the distance between adjacent extrema increased,
which allowed for it to be possible to more confidently detect the TC.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18 
 

 

   

 
Figure 3. Detailed simulation results for multi-channel DOEs matched with one type of aberration 

4,2 ( , )Z r ϕ with α ranging from 2.2λ to 3λ when illuminated by a vortex beam with TС l = 7. 

3.3. Optimization for high-order TC 
It was noted in [46] that the use of a tilted lens for determining the TC was ineffi-

cient, especially for high orders of TC, and it was proposed to use a cylindrical lens, the 
efficiency of which was shown up to l = 100. Note that a cylindrical lens actually corre-
sponds to the presence of two aberrations (Table 2, lines two and three): astigmatic ab-
erration Z2,±2 and defocus Z2,0. In our approach, we proposed to replace defocusing with 
different levels of astigmatic aberration α. We carried out numerical studies at high TCs 
with various types of aberrations to determine the most appropriate transformation. The 
simulation results for the TC value l = 14 are shown in Table 7 and in Figure 4. 

As can be seen from the results, the classic type of astigmatism (2, 2) (first column of 
Table 7) provided better pictures compared with other types of aberrations. More de-
tailed simulation results for level α from 4.2λ to 5λ are shown in Figure 4. 

Table 7. Simulation results for multi-channel DOE matched with one type of aberration ,2 ( , )nZ r ϕ
(n = 2, 4, 6) with α ranging from 0.2λ to 5λ when illuminated with a vortex beam with TС l = 14. 

n = 2 n = 4 n = 6 

   
 

Figure 3. Detailed simulation results for multi-channel DOEs matched with one type of aberration
Z4,2(r,ϕ) with α ranging from 2.2λ to 3λwhen illuminated by a vortex beam with TC l = 7.

3.3. Optimization for High-Order TC
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astigmatic aberration α. We carried out numerical studies at high TCs with various types
of aberrations to determine the most appropriate transformation. The simulation results
for the TC value l = 14 are shown in Table 7 and in Figure 4.

As can be seen from the results, the classic type of astigmatism (2, 2) (first column of
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Table 7. Simulation results for multi-channel DOE matched with one type of aberration Zn,2(r,ϕ)
(n = 2, 4, 6) with α ranging from 0.2λ to 5λwhen illuminated with a vortex beam with TC l = 14.

n = 2 n = 4 n = 6

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18 
 

 

   

 
Figure 3. Detailed simulation results for multi-channel DOEs matched with one type of aberration 

4,2 ( , )Z r ϕ with α ranging from 2.2λ to 3λ when illuminated by a vortex beam with TС l = 7. 

3.3. Optimization for high-order TC 
It was noted in [46] that the use of a tilted lens for determining the TC was ineffi-

cient, especially for high orders of TC, and it was proposed to use a cylindrical lens, the 
efficiency of which was shown up to l = 100. Note that a cylindrical lens actually corre-
sponds to the presence of two aberrations (Table 2, lines two and three): astigmatic ab-
erration Z2,±2 and defocus Z2,0. In our approach, we proposed to replace defocusing with 
different levels of astigmatic aberration α. We carried out numerical studies at high TCs 
with various types of aberrations to determine the most appropriate transformation. The 
simulation results for the TC value l = 14 are shown in Table 7 and in Figure 4. 

As can be seen from the results, the classic type of astigmatism (2, 2) (first column of 
Table 7) provided better pictures compared with other types of aberrations. More de-
tailed simulation results for level α from 4.2λ to 5λ are shown in Figure 4. 

Table 7. Simulation results for multi-channel DOE matched with one type of aberration ,2 ( , )nZ r ϕ
(n = 2, 4, 6) with α ranging from 0.2λ to 5λ when illuminated with a vortex beam with TС l = 14. 

n = 2 n = 4 n = 6 

   
 

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18 
 

 

   

 
Figure 3. Detailed simulation results for multi-channel DOEs matched with one type of aberration 

4,2 ( , )Z r ϕ with α ranging from 2.2λ to 3λ when illuminated by a vortex beam with TС l = 7. 

3.3. Optimization for high-order TC 
It was noted in [46] that the use of a tilted lens for determining the TC was ineffi-

cient, especially for high orders of TC, and it was proposed to use a cylindrical lens, the 
efficiency of which was shown up to l = 100. Note that a cylindrical lens actually corre-
sponds to the presence of two aberrations (Table 2, lines two and three): astigmatic ab-
erration Z2,±2 and defocus Z2,0. In our approach, we proposed to replace defocusing with 
different levels of astigmatic aberration α. We carried out numerical studies at high TCs 
with various types of aberrations to determine the most appropriate transformation. The 
simulation results for the TC value l = 14 are shown in Table 7 and in Figure 4. 

As can be seen from the results, the classic type of astigmatism (2, 2) (first column of 
Table 7) provided better pictures compared with other types of aberrations. More de-
tailed simulation results for level α from 4.2λ to 5λ are shown in Figure 4. 

Table 7. Simulation results for multi-channel DOE matched with one type of aberration ,2 ( , )nZ r ϕ
(n = 2, 4, 6) with α ranging from 0.2λ to 5λ when illuminated with a vortex beam with TС l = 14. 

n = 2 n = 4 n = 6 

   
 

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18 
 

 

   

 
Figure 3. Detailed simulation results for multi-channel DOEs matched with one type of aberration 

4,2 ( , )Z r ϕ with α ranging from 2.2λ to 3λ when illuminated by a vortex beam with TС l = 7. 

3.3. Optimization for high-order TC 
It was noted in [46] that the use of a tilted lens for determining the TC was ineffi-

cient, especially for high orders of TC, and it was proposed to use a cylindrical lens, the 
efficiency of which was shown up to l = 100. Note that a cylindrical lens actually corre-
sponds to the presence of two aberrations (Table 2, lines two and three): astigmatic ab-
erration Z2,±2 and defocus Z2,0. In our approach, we proposed to replace defocusing with 
different levels of astigmatic aberration α. We carried out numerical studies at high TCs 
with various types of aberrations to determine the most appropriate transformation. The 
simulation results for the TC value l = 14 are shown in Table 7 and in Figure 4. 

As can be seen from the results, the classic type of astigmatism (2, 2) (first column of 
Table 7) provided better pictures compared with other types of aberrations. More de-
tailed simulation results for level α from 4.2λ to 5λ are shown in Figure 4. 

Table 7. Simulation results for multi-channel DOE matched with one type of aberration ,2 ( , )nZ r ϕ
(n = 2, 4, 6) with α ranging from 0.2λ to 5λ when illuminated with a vortex beam with TС l = 14. 

n = 2 n = 4 n = 6 

   
 



Sensors 2022, 22, 7365 12 of 18
Sensors 2022, 22, x FOR PEER REVIEW 12 of 18 
 

 

 

 
Figure 4. Detailed simulation results for multi-channel DOE matched with one type of aberration 

2,2 ( , )Z r ϕ  and 4,2 ( , )Z r ϕ with α ranging from 4.2λ to 5λ when illuminated with a vortex beam 
with TС l = 14. 

Thus, as shown by the simulation results, it made sense to use high-order astigmatic 
aberrations n = 4, 6 for small values of the vortex beam’s TC. In this case, small levels of α 
from 1.2λ to 2λ were sufficient. However, an aberration of the type (6, 2) formed a PSF 
that was difficult to analyze at high values of TC. Pictures that were clearer for the anal-
ysis were provided by aberrations of the type (2, 2) and (4, 2), but at a high level (α > 4λ). 

Thus, the problem in determining the TC of a vortex beam was simplified by the use 
of a multi-channel DOE of Equation (10), which provides a much larger amount of in-
formation in a single plane compared to the standard way based on an astigmatic or 
tilted lens. The proposed approach provided a more confident and correct detection of 
TCs without the need to make adjustments to the optical system or register the intensity 
in several planes. 

4. Laboratory Experiments 
To confirm the effectiveness of the proposed approach and the numerical results for 

multi-channel DOEs matched with various types of astigmatic aberrations, we carried 
out experiments using one (transparent) SLM to generate vortex beams and another (re-
flective) SLM to implement multi-channel DOEs. The optical scheme used in the exper-
iment is shown in Figure 5. 

 
Figure 5. The experimental setup for detecting the TC of a vortex beam using a multi-channel DOE. 
Laser is a solid-state laser (λ = 532 nm); PH is a pinhole (hole size of 40 μm); L1, L2, L3 and L4 are 
spherical lenses (f1 = 350 mm, f2 = 300 mm, f3 = 200 mm and f4 = 250 mm); SLM1 is a transparent 
spatial light modulator (HOLOEYE LC 2012); SLM2 is a reflective spatial light modulator (HOL-

Figure 4. Detailed simulation results for multi-channel DOE matched with one type of aberration
Z2,2(r,ϕ) and Z4,2(r,ϕ) with α ranging from 4.2λ to 5λwhen illuminated with a vortex beam with
TC l = 14.

Thus, as shown by the simulation results, it made sense to use high-order astigmatic
aberrations n = 4, 6 for small values of the vortex beam’s TC. In this case, small levels of
α from 1.2λ to 2λwere sufficient. However, an aberration of the type (6, 2) formed a PSF
that was difficult to analyze at high values of TC. Pictures that were clearer for the analysis
were provided by aberrations of the type (2, 2) and (4, 2), but at a high level (α > 4λ).

Thus, the problem in determining the TC of a vortex beam was simplified by the
use of a multi-channel DOE of Equation (10), which provides a much larger amount of
information in a single plane compared to the standard way based on an astigmatic or
tilted lens. The proposed approach provided a more confident and correct detection of
TCs without the need to make adjustments to the optical system or register the intensity in
several planes.

4. Laboratory Experiments

To confirm the effectiveness of the proposed approach and the numerical results for
multi-channel DOEs matched with various types of astigmatic aberrations, we carried out
experiments using one (transparent) SLM to generate vortex beams and another (reflective)
SLM to implement multi-channel DOEs. The optical scheme used in the experiment is
shown in Figure 5.
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Figure 5. The experimental setup for detecting the TC of a vortex beam using a multi-channel
DOE. Laser is a solid-state laser (λ = 532 nm); PH is a pinhole (hole size of 40 µm); L1, L2, L3 and
L4 are spherical lenses (f 1 = 350 mm, f 2 = 300 mm, f 3 = 200 mm and f 4 = 250 mm); SLM1 is a
transparent spatial light modulator (HOLOEYE LC 2012); SLM2 is a reflective spatial light modulator
(HOLOEYE PLUTO VIS); D1 and D2 are circular apertures; M1 and M2 are mirrors; CAM is a
ToupCam UCMOS08000KPB video camera.
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The scheme of the experimental setup for detecting the TC of a vortex beam using
a multi-channel DOE of Equation (10) consisted of the following elements: the laser was
a solid-state laser (λ = 532 nm); the PH was a pinhole (hole size 40 microns); L1, L2, L3
and L4 were spherical lenses (f 1 = 350 mm, f 2 = 300 mm, f 3 = 200 mm and f 4 = 250 mm);
SLM1 was a transparent spatial light modulator (HOLOEYE LC 2012) for a vortex beam
generation; SLM2 was a reflective spatial light modulator (HOLOEYE PLUTO VIS) for a
multi-channel DOE implementation; D1 and D2 were circular apertures; M1 and M2 were
mirrors; CAM was a video camera (ToupCam UCMOS08000KPB).

The laser radiation of a solid-state laser (λ = 532 nm) was collimated using a system
consisting of a pinhole (PH) with an aperture diameter of 40 µm and a spherical lens (L1).
A circular aperture D1 was used to separate the central light spot from the surrounding
light and dark rings that occurred during the pinhole diffraction.

Then, the laser beam expanded and reflected from mirror M1 passed through a
transparent SLM1 (HOLOEYE LC 2012 with a resolution of 1024 × 768 pixels and a pixel
size of 36 µm), which was used to generate a vortex beam. Lenses L2 and L3 and aperture
D2 were used to spatially separate the laser beam formed with the first modulator and the
unmodulated transmitted zero-order laser beam.

Mirror M2 was used to direct the shaped laser beam to the display of the second mod-
ulator. A reflective SLM2 (HOLOEYE PLUTO VIS with a resolution of 1920 × 1080 pixels
and a pixel size of 8 µm) was used to implement the phase-coded multi-channel DOE
of Equation (12). The used encoding procedure was described in detail in Section 3.2. It
served to determine the TC of the vortex beam. The laser beam reflected from SLM2 was
directed into the lens L4 (f 4 = 250 mm), which focused it onto the video camera (Toup-
Cam UCMOS08000KPB CAM camera with a resolution of 3264 × 2448 and a pixel size of
1.67 µm).

The experimentally registered intensity distribution for the Gaussian beam illumi-
nation of the multi-channel DOE matched with different astigmatic aberrations of type
(n, 2) of different levels of α from 0.1λ to λ is shown in Figure 6. The results corresponded
to the numerical results shown in Figure 2d. The action of this DOE under vortex beam
illumination with different TC values (l = 1, 2, 3, 5) is shown in Table 8. Diffractive orders
with astigmatic intensity pictures convenient for TC recognition were marked with frames.
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Table 8. The experimental results for the 25-channel DOE when illuminated with a vortex beam with
TC l = 1, 2, 3, 5 (diffractive orders with astigmatic intensity pictures convenient for TC recognition
were marked with frames).

TC 25-Channel DOE Action TC 25-Channel DOE Action

l = 1
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As a result of the conducted optical experiment, it was found that the classical astig-
matic aberration of the type (2, 2) with a level in the range from 0.1λ to λ allowed forit to be
possible to detect only small TC values (|l| = 1) of the vortex beam. In addition, astigmatic
aberrations of type (n, 2) for 2 ≤ n ≤ 10 allowed for it to be possible to visualize TC l = 1
with a weak aberration level (α = 0.1λ). There was a trend towards the successful use of
higher-order astigmatic aberrations (n = 4, 6, 8) with an increase in the analyzed TC orders.
The best results were shown with the (4, 2) astigmatic aberration for all considered TC
orders, as it was predicted in the numerical results.

5. Discussion

By analyzing the numerical and experimental results, we could conclude that the
astigmatic aberration of the type (4, 2) with a level of λ (and higher) provided the successful
TC detection of a vortex beam at least up to l = 5 (confirmed with the experimental results)
and potentially up to l = 14 (according to the numerical results). Therefore, it was a good
alternative to the classical astigmatism (2, 2).

The proposed approach greatly facilitated the analysis of the characteristics of a vortex
beam based on measurements in a single plane without additional adjustments. Thus, the
proposed multi-channel DOEs provided a simple method for a vortex TC analysis using
variable astigmatic transformations. Confident detection could be achieved using wave
aberrations of the Zn,±2 type and their combination.

It can be seen from the intensity distribution in the focal plane after the astigmatic
transformation of the vortex Laguerre–Gaussian modes with a TC value l into the Hermite–
Gaussian modes with orders (p, l) = (0, l) [67–69] that the TC of the vortex beam was
visualized in the intensity of the astigmatically transformed beam.
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It is worth noting that there was a difference between the experimental and numerical
results. One of the main reasons for this was related to the SLM shortcomings. It was
possible to design a single DOE matched with a rather large number of transmission
functions. However, in this case, we had to conduct amplitude encoding to obtain a pure
phase element [70]. When a SLM was used for a multichannel DOE implementation, there
were a number of limitations, primarily due to the resolution (in particular, HOLOEYE
PLUTO VIS had a 1920 × 1080 pixel resolution with an 8 µm pixel size). However, a phase
multichannel DOE implemented with the etching method could be fabricated with a 1 µm
pixel size. The successful application of these 32- and 64-channel DOEs was shown in the
analysis of the LP modes of a step-index fiber [71].

The discrepancy seen between the experimental and modeling results could also be ex-
plained through the distortions of the initial vortex beams caused by astigmatism resulting
from imperfections in the optical elements. It is well known that even weak astigmatism
can distort the annular-shaped vortex beam [46]. However, even these distortions allow
one to use the designed multi-channel DOEs for the determination of present aberrations.

The authors planned their further research in terms of determining the topological
charge with super-imposed optical vortices or the super-position of several vortices. In this
case, the astigmatism pattern would be more complex, so further processing, including
data mining, would likely be required for the analysis.

6. Conclusions

A detailed numerical and experimental study for the possibility of detecting and
analyzing the topological charge of a vortex beam by introducing aberrations of various
types and levels into analyzed vortex beams was realized. The numerical results of the
successful detection of the topological charge of a vortex beam (up to l = 14) using multi-
channel DOEs matched with astigmatic aberrations were shown.

The possibility of determining the topological charge by introducing wave aberrations
of the astigmatic type with different weight coefficients was shown. Moreover, reliable
detection could be achieved by using wave aberrations of the Zn,±2 type and their combina-
tion with defocusing aberrations, which was confirmed with the analytical representation
of these aberrations as a super-position of Zernike functions.

The proposed method based on multi-channel DOEs matched with different types and
levels of astigmatic aberrations provided different beam transformations simultaneously
and formed a set of aberration-transformed patterns in different diffraction orders in one
detection plane. This simplified the experimental detection of vortex TCs in comparing to
the classical method with a tilted lens, because there was no need for optical system tuning
(change in the tilt angle or distance of the detecting plane).

Moreover, this method allows for one to obtain much more information at a single
detection, which can be useful in the analysis of intensity patterns by means of data mining
and convolutional neural networks [72–76].
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