
Citation: Shen, Q.; Tian, J.; Pei, C. A

Novel Reconstruction Algorithm

with High Performance for

Compressed Ultrafast Imaging.

Sensors 2022, 22, 7372. https://

doi.org/10.3390/s22197372

Academic Editor: Lixiang Li

Received: 14 August 2022

Accepted: 26 September 2022

Published: 28 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Novel Reconstruction Algorithm with High Performance for
Compressed Ultrafast Imaging
Qian Shen 1,2, Jinshou Tian 1 and Chengquan Pei 3,*

1 Key Laboratory of Ultra-Fast Photoelectric Diagnostics Technology, Xi’an Institute of Optics and Precision
Mechanics, Xi’an 710049, China

2 School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Artificial Intelligence, Xidian University, Xi’an 710071, China
* Correspondence: peichengquan@xidian.edu.cn

Abstract: Compressed ultrafast photography (CUP) is a type of two-dimensional (2D) imaging
technique to observe ultrafast processes. Intelligence reconstruction methods that influence the
imaging quality are an essential part of a CUP system. However, existing reconstruction algorithms
mostly rely on image priors and complex parameter spaces. Therefore, it usually takes a lot of time
to obtain acceptable reconstruction results, which limits the practical application of the CUP. In this
paper, we proposed a novel reconstruction algorithm named PnP-FFDNet, which can provide a high
quality and high efficiency compared to previous methods. First, we built a forward model of the
CUP and three sub-optimization problems were obtained using the alternating direction multiplier
method (ADMM), and the closed-form solution of the first sub-optimization problem was derived.
Secondly, inspired by the PnP-ADMM framework, we used an advanced denoising algorithm based
on a neural network named FFDNet to solve the second sub-optimization problem. On the real
CUP data, PSNR and SSIM are improved by an average of 3 dB and 0.06, respectively, compared
with traditional algorithms. Both on the benchmark dataset and on the real CUP data, the proposed
method reduces the running time by an average of about 96% over state-of-the-art algorithms, and
show comparable visual results, but in a much shorter running time.

Keywords: compressed ultrafast photography; computational imaging; intelligent reconstruction
algorithm

1. Introduction

Compressed ultrafast photography (CUP) is a new ultrafast computational imaging
method, and it can achieve an imaging speed of 1011 frames per second within a single
shot. This technology introduces the framework of compressed sensing [1] into the imaging
process of streak cameras, extending the imaging capability of streak cameras from one-
dimensional (1D) to two-dimensional (2D). This emerging 2D ultrafast imaging technique
is of great significance in revealing the fundamental mechanisms of physics, chemistry, and
biomolecules [2]. It has a wide range of applications in the fields of fluorescence lifetime
detection [3], real-time visualization of laser dynamics [4,5], and wide-field time-of-flight
volume imaging [6], et al.

CUP reconstruction refers to establishing an inverse problem model based on the
compressed sensing framework, and using an iterative algorithm to reconstruct 3D video
data from the compressed 2D image captured by CUP. The reconstruction algorithm used
in previous works in CUP is the two-step iterative threshold method (TwIST) [7]. Using
total variation (TV) regularization in the TwIST reconstruction algorithm can easily induce
artifacts [8], which limits the spatial-temporal resolution of CUP imaging and reconstruc-
tion efficiency. Ref. [9] introduced spatial and intensity constraints in the original TwIST
algorithm by using an additional charge-coupled device (CCD) camera in the experimental

Sensors 2022, 22, 7372. https://doi.org/10.3390/s22197372 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197372
https://doi.org/10.3390/s22197372
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22197372
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197372?type=check_update&version=2

Sensors 2022, 22, 7372 2 of 16

system to reduce low-intensity artifacts. Ref. [10] proposed applying the plug-and-play
alternating direction method of multipliers (PnP-ADMM) [11] to the CUP reconstruction
problem, and the block-matching 3D filtering denoising (BM3D) [12] algorithm is applied
to the solution of the sub-problem of this algorithm, which improves the quality of the
reconstruction and effectively suppresses the resolution anisotropy and artifacts. However,
the variable separation strategy adopted does not take full advantage of the fact that the
sensing matrix is a block-diagonal matrix, and the convergence of the PnP-ADMM algo-
rithm applied to the CUP reconstruction problem is not explained. When applying the
BM3D algorithm to video data, it is necessary to perform BM3D denoising for each frame,
which is very time-consuming, while denoising algorithms based on neural networks have
better denoising performance in computing speed.

The alternating direction multiplier method (ADMM) is a widely used algorithm
for constrained optimization problems in image restoration. Based on ADMM, the PnP-
ADMM algorithm implements a modular structure. The biggest advantage of PnP-ADMM
is that it allows the state-of-the-art denoising algorithms to be applied to the solution
process of sub-optimization problems without specifying specific priors, which greatly
improves the flexibility of the algorithm. Therefore, an excellent denoising algorithm
can be found and inserted into the algorithm framework of PnP-ADMM to improve
the reconstruction quality of the algorithm. Existing image denoising algorithms can be
divided into two categories: model-based methods and discriminative-learning-based
methods. Similar to total variation denoising (TVD) [13], BM3D, and weighted nuclear
norm minimization (WNNM) [14] for image denoising, these algorithms are flexible in
dealing with denoising problems with different noise levels, but they have some drawbacks.
For example, algorithms are generally time-consuming and have many parameters that
need to be manually tuned. Furthermore, these algorithms usually rely on manually
determined priors, such as sparsity [15,16] and non-local self-similarity [17–19], which
have limitations for describing complex image structures. Discriminant learning has been
widely studied in image denoising due to its advantages of fast inference speed and
good performance. Some examples include learning deep CNN denoiser prior for image
restoration (IRCnn) [20], deep CNN for image denoising (DnCnn) [21], and fast and flexible
solution for CNN-based image denoising (FFDNet) [22]. Their non-linear mapping layer is
a collection of “Convolution + Batch Normalization + Rectified Linear Units” layers with
filters of spatial size 3 × 3. Among them, FFDNet has several desirable properties that
make it very suitable as a denoiser to be applied to the framework of PnP-FFDNet. First, it
introduces a noise map as an input channel, so that a single model can handle a wide range
of noise levels, so that it exhibits apparent results on both synthetic noisy images corrupted
by additive white Gaussian noise (AWGN) and real-world noisy images [22,23]. Second,
FFDNet reduces the size of the input by down-sampling, which makes it faster for forward
inference. Therefore, compared with the model-based algorithm BM3D, with excellent
de-noising performance even on CPU, FFDNet is faster without sacrificing the denoising
performance. These properties make FFDNet very suitable as a denoiser in the framework
of PnP-ADMM. In this paper, we proposed a novel reconstruction algorithm based on PnP
and FFDNet to reconstruct the CUP system. FFDNet can learn the noise model in CUP
system well. The performance on both simulated datasets and real data shows that our
method performs well on both reconstructed visual effects and metric evaluation, and the
reconstruction time is greatly reduced.

2. Forward Model of CUP
2.1. Principle of Streak Camera

Streak camera is an ultrafast imaging device that can capture dynamic events that
occur on picosecond or even femtosecond timescales. As shown in Figure 1, a long slit
with width of several microns is usually inserted in front of streak camera. The optical
signal is converted into an electrical signal through the streak image tube and space-time
mapping is performed by an ultrafast scanning unit. Microchannel plate (MCP) realizes

Sensors 2022, 22, 7372 3 of 16

the multiplication of photoelectrons, and the phosphor screen converts the photoelectrons
into optical signals.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 17

mapping is performed by an ultrafast scanning unit. Microchannel plate (MCP) realizes

the multiplication of photoelectrons, and the phosphor screen converts the photoelectrons

into optical signals.

Figure 1. Schematic diagram of the imaging process of the streak camera in one-dimensional view.

2.2. Design of Compressed Ultrafast Photography

Figure 2a shows a schematic diagram of the CUP imaging system. The experimental

system is mainly composed of streak camera (integrated CCD), a random binary mask,

and a main camera lens. The random binary mask performs intensity modulation on the

image of the detection target passing through the main lens. The light intensity modula-

tion factor of the transparent area of the mask is 1, and the light intensity modulation

factor of the opaque area of the mask is 0. The difference between CUP and the traditional

streak camera is that the CUP requires the slit on the streak camera to be fully opened.

This is the key to CUP’s ability to perform 2D ultrafast imaging. Figure 2b shows how the

streak camera works in the CUP. Since there is no limitation of the slit, the one to four

frames of the encoded images entered into the streak camera and were scanned by an

ultrafast electric field. Then, the second frame was sheared by a pixel compared with the

first frame in the scanning axis, and this was also performed on the third, fourth frames,

etc. Finally, all the images were accumulated into a compressed image and recorded by a

CCD camera. Next, the intelligence methods were performed to reconstruct the dynamic

ultrafast video from a compressed image.

(a) (b)

Figure 2. Schematic diagram of the CUP system. (a) Schematic diagram of the optical path structure

of the CUP. (b) Schematic diagram of the time series of the encoded dynamic scene being shifted

after entering the streak camera.

Figure 3 describes the basic workflow of the CUP system. Four frames are selected

from the benchmark dataset runner to simulate the dynamic scene , with different

frames simulating the moment when the dynamic scene occurs. Each frame is of size 256

× 256, and then encoded by random matrix, which is a randomly distributed binary

Figure 1. Schematic diagram of the imaging process of the streak camera in one-dimensional view.

2.2. Design of Compressed Ultrafast Photography

Figure 2a shows a schematic diagram of the CUP imaging system. The experimental
system is mainly composed of streak camera (integrated CCD), a random binary mask,
and a main camera lens. The random binary mask performs intensity modulation on the
image of the detection target passing through the main lens. The light intensity modulation
factor of the transparent area of the mask is 1, and the light intensity modulation factor of
the opaque area of the mask is 0. The difference between CUP and the traditional streak
camera is that the CUP requires the slit on the streak camera to be fully opened. This is
the key to CUP’s ability to perform 2D ultrafast imaging. Figure 2b shows how the streak
camera works in the CUP. Since there is no limitation of the slit, the one to four frames
of the encoded images entered into the streak camera and were scanned by an ultrafast
electric field. Then, the second frame was sheared by a pixel compared with the first frame
in the scanning axis, and this was also performed on the third, fourth frames, etc. Finally,
all the images were accumulated into a compressed image and recorded by a CCD camera.
Next, the intelligence methods were performed to reconstruct the dynamic ultrafast video
from a compressed image.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 17

mapping is performed by an ultrafast scanning unit. Microchannel plate (MCP) realizes

the multiplication of photoelectrons, and the phosphor screen converts the photoelectrons

into optical signals.

Figure 1. Schematic diagram of the imaging process of the streak camera in one-dimensional view.

2.2. Design of Compressed Ultrafast Photography

Figure 2a shows a schematic diagram of the CUP imaging system. The experimental

system is mainly composed of streak camera (integrated CCD), a random binary mask,

and a main camera lens. The random binary mask performs intensity modulation on the

image of the detection target passing through the main lens. The light intensity modula-

tion factor of the transparent area of the mask is 1, and the light intensity modulation

factor of the opaque area of the mask is 0. The difference between CUP and the traditional

streak camera is that the CUP requires the slit on the streak camera to be fully opened.

This is the key to CUP’s ability to perform 2D ultrafast imaging. Figure 2b shows how the

streak camera works in the CUP. Since there is no limitation of the slit, the one to four

frames of the encoded images entered into the streak camera and were scanned by an

ultrafast electric field. Then, the second frame was sheared by a pixel compared with the

first frame in the scanning axis, and this was also performed on the third, fourth frames,

etc. Finally, all the images were accumulated into a compressed image and recorded by a

CCD camera. Next, the intelligence methods were performed to reconstruct the dynamic

ultrafast video from a compressed image.

(a) (b)

Figure 2. Schematic diagram of the CUP system. (a) Schematic diagram of the optical path structure

of the CUP. (b) Schematic diagram of the time series of the encoded dynamic scene being shifted

after entering the streak camera.

Figure 3 describes the basic workflow of the CUP system. Four frames are selected

from the benchmark dataset runner to simulate the dynamic scene , with different

frames simulating the moment when the dynamic scene occurs. Each frame is of size 256

× 256, and then encoded by random matrix, which is a randomly distributed binary

Figure 2. Schematic diagram of the CUP system. (a) Schematic diagram of the optical path structure
of the CUP. (b) Schematic diagram of the time series of the encoded dynamic scene being shifted after
entering the streak camera.

Figure 3 describes the basic workflow of the CUP system. Four frames are selected
from the benchmark dataset runner to simulate the dynamic scene I(x, y, t), with different
frames simulating the moment when the dynamic scene occurs. Each frame is of size
256 × 256, and then encoded by random matrix, which is a {0, 1} randomly distributed
binary code. The symbol � denotes the Hadamard (element-wise) product. The data
compression of CUP follows these three steps:

Step 1: Encoding. Each frame of the dynamic scene I(x, y, t) is � with the same mask,
and the encoding operation is denoted as C. The encoded dynamic scene is CI(x, y, t);

Sensors 2022, 22, 7372 4 of 16

Step 2: Shift. A deflection electrode inside the streak camera provides a deflection
voltage in the vertical direction, so the frames that arrived at different times were shifted
in the vertical direction at different positions. The direction of the offset of each frame is
marked in Figure 3. For the convenience of mathematical simplification later, it is assumed
that each frame is offset by s0 pixels, the shift operation is recorded as S, and the dynamic
coding scene after translation is SCI(x, y, t);

Step 3: Overlay. The receiver of the streak camera is an internal CCD. During the
exposure time of the CCD, photons arriving at the CCD at different times are accumulated.
The SCI(x, y, t) in step 2 is superimposed along the time axis, denoted as T, and the two-
dimensional observation result Y(m, n) = TSCI(x, y, t) is finally obtained.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 17

code. The symbol denotes the Hadamard (element-wise) product. The data compres-

sion of CUP follows these three steps:

Step 1: Encoding. Each frame of the dynamic scene is with the same

mask, and the encoding operation is denoted as . The encoded dynamic scene is

;

Step 2: Shift. A deflection electrode inside the streak camera provides a deflection

voltage in the vertical direction, so the frames that arrived at different times were shifted

in the vertical direction at different positions. The direction of the offset of each frame is

marked in Figure 3. For the convenience of mathematical simplification later, it is assumed

that each frame is offset by pixels, the shift operation is recorded as , and the dy-

namic coding scene after translation is ;

Step 3: Overlay. The receiver of the streak camera is an internal CCD. During the

exposure time of the CCD, photons arriving at the CCD at different times are accumu-

lated. The in step 2 is superimposed along the time axis, denoted as , and

the two-dimensional observation result is finally obtained.

Figure 3. Data compression flowchart for CUP.

The goal of CUP reconstruction is to reconstruct the original three-dimensional dy-

namic scene from the obtained two-dimensional observation . Without

loss of generality, the dynamic scene can be viewed as video data with N frames, and will

mathematically describe the CUP imaging process and build a classical inverse problem

model.

The video data that are the matrix representation of the dynamic

scene with N frames are compressed into one frame of two-dimensional obser-

vation data , which are the matrix representation of the observation

by the CUP system. Figure 4 shows the relationship between and . Therefore,

. The coding matrix used by the CUP system is random

binary code. The data compression observation model of CUP [10] can be expressed as:

 (1)

where represents the noise in the observation process, can

be expressed as , represents the encoding process, represents the

shift process, and represents the accumulating process. can be represented by the

summation notation:

 (2)

Figure 3. Data compression flowchart for CUP.

The goal of CUP reconstruction is to reconstruct the original three-dimensional dy-
namic scene I(x, y, t) from the obtained two-dimensional observation Y(m, n). Without loss
of generality, the dynamic scene can be viewed as video data with N frames, and will math-
ematically describe the CUP imaging process and build a classical inverse problem model.

The video data X
(
X ∈ Rnx×ny×N) that are the matrix representation of the dynamic

scene I(x, y, t) with N frames are compressed into one frame of two-dimensional ob-
servation data Y

(
Y ∈ RL×ny

)
, which are the matrix representation of the observation

Y(m, n) by the CUP system. Figure 4 shows the relationship between L and nx. Therefore,
L = (N − 1)s0 + nx. The coding matrix C

(
C ∈ Rnx×ny

)
used by the CUP system is random

binary code. The data compression observation model of CUP [10] can be expressed as:

Y = TSCX + Z (1)

where Z
(
Z ∈ RL×ny

)
represents the noise in the observation process, X

(
X ∈ Rnx×ny×N)

can be expressed as [X1, X2, · · · , XN]
T , C represents the encoding process, S represents

the shift process, and T represents the accumulating process. T can be represented by the
summation notation:

Y =
N

∑
i=1

Si(C�Xi) + Z (2)

where� denotes the Hadamard (element-wise) product. To convert the Hadamard product
to matrix multiplication, Y

(
Y ∈ RL×ny

)
, X
(
X ∈ Rnx×ny×N), and Z

(
Z ∈ RL×ny

)
are trans-

formed into 1D column vectors:

y =
N
∑

i=1
S′i
(

Cdiagxi

)
+ z

=
N
∑

i=1

(
S′iCdiag

)
xi + z

=
[
S′1Cdiag, S′2Cdiag, . . . , S′NCdiag

][
xT

1 , xT
2 , . . . , xT

N
]T

+ z

(3)

Sensors 2022, 22, 7372 5 of 16

where xi = Vec(Xi) ∈ Rnxny×1, y = Vec(Y) ∈ RLny×1 and z = Vec(Z) ∈ RLny×1,
Cdiag = diag(Vec(C)) ∈ Rnxny×nxny . Figure 5 shows a simple example when the mask is
3 × 3.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 17

where denotes the Hadamard (element-wise) product. To convert the Hadamard

product to matrix multiplication, , , and are

transformed into 1D column vectors:

 (3)

where , and ,

. Figure 5 shows a simple example when the mask is 3 × 3.

Figure 4. For a data cube of size . Its height is , width is , and the number of

frames is . Then, the compressed image size is .

Figure 5. Example when mask is a 3 × 3 matrix. Different colours represent different rows of .

Equation (3) can be mathematically described as a classic inverse problem model as

follows:

 (4)

where , and the sensing matrix is a block-diagonal ma-

trix, can be expressed as:

 (5)

where , indicates the number of

pixels per shift. represents the circular translation of pixels along the

vertical direction of the matrix . can be expressed as:

(6)

where represents the identity matrix. A simple case of in Equation (5)

when the number of frames is four is shown in Figure 6, and it can be written as:

Figure 4. For a data cube of size nx × ny × N. Its height is nx, width is ny, and the number of frames
is N. Then, the compressed image size is [(N − 1)s0 + nx]× ny.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 17

where denotes the Hadamard (element-wise) product. To convert the Hadamard

product to matrix multiplication, , , and are

transformed into 1D column vectors:

 (3)

where , and ,

. Figure 5 shows a simple example when the mask is 3 × 3.

Figure 4. For a data cube of size . Its height is , width is , and the number of

frames is . Then, the compressed image size is .

Figure 5. Example when mask is a 3 × 3 matrix. Different colours represent different rows of .

Equation (3) can be mathematically described as a classic inverse problem model as

follows:

 (4)

where , and the sensing matrix is a block-diagonal ma-

trix, can be expressed as:

 (5)

where , indicates the number of

pixels per shift. represents the circular translation of pixels along the

vertical direction of the matrix . can be expressed as:

(6)

where represents the identity matrix. A simple case of in Equation (5)

when the number of frames is four is shown in Figure 6, and it can be written as:

Figure 5. Example when mask is a 3 × 3 matrix. Different colours represent different rows of C.

Equation (3) can be mathematically described as a classic inverse problem model
as follows:

y = Hx + z (4)

where x =
[
xT

1 , xT
2 , · · · , xT

N
]T , and the sensing matrix H ∈ RLny×nxny N is a block-diagonal

matrix, H can be expressed as:

H = [H1, . . . , HN] =
[
S′1Cdiag, S′2Cdiag, . . . , S′NCdiag

]
(5)

where S′i = CircShi f t
(
I0, (i− 1)s0ny

)
∈ RLny×nxny , i = 1, 2, 3, . . . N, s0 indicates the number

of pixels per shift. CircShi f t(A, l) represents the circular translation of l pixels along the
vertical direction of the matrix A. I0 ∈ RLny×nxny can be expressed as:

I0 =

[
Inxny×nxny

O(N−1)s0ny×nxny

]
(6)

where I ∈ Rnxny×nxny represents the identity matrix. A simple case of Hi in Equation
(5) when the number of frames is four is shown in Figure 6, and it can be written as:
Hi = CircShi f t

(
C0, (i− 1)s0ny

)
∈ RLny×nxny , i = 1, 2, 3, . . . N and C0 ∈ RLny×nxny can be

expressed as:

C0 =

(Cdiag

)
nxny×nxny

O(N−1)s0ny×nxny

 (7)

Sensors 2022, 22, 7372 6 of 16

An important property of the sensing matrix is that HHT is a diagonal matrix, which is
used in Section 3.1 to obtain the closed-form solution of the suboptimization problem. HHT

can be written as HHT =
N
∑

i=1
HiHT

i and consider that when i = 1, the result of H1HT
1 is:

H1HT
1 =

[
Cdiag

O

][
Cdiag O

]
=

[
Cdiag O

O O

]
(8)

where Cdiag = diag(Vec(C))nxny×nxny
is a diagonal matrix and O represent the zero ma-

trix. In the case of i = 1, the result of H1HT
1 is a diagonal matrix. When generalized to

i = 2, · · · , N, the result of HiHT
i is still a diagonal matrix, so their sum is also naturally a

diagonal matrix and, thus, HHT is a diagonal matrix.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 17

 and can be expressed

as:

 (7)

An important property of the sensing matrix is that is a diagonal matrix,

which is used in Section 3.1 to obtain the closed-form solution of the suboptimization

problem. can be written as and consider that when , the re-

sult of is:

 (8)

where is a diagonal matrix and represent the zero matrix.

In the case of , the result of is a diagonal matrix. When generalized to

, the result of is still a diagonal matrix, so their sum is also naturally a

diagonal matrix and, thus, is a diagonal matrix.

Figure 6. Example of the matrix . Different colours represent different rows of .

3. Novel Reconstruction Method for CUP

3.1. Algorithm Framework of PnP-ADMM for CUP

According to the forward model of CUP data compression already established in

Section 2.2, the inverse problem model of Equation (4) can be described as an uncon-

strained optimization problem:

 (9)

In the formula, represents the CUP forward imaging model, and

 represents a certain image prior.

The ADMM transforms the unconstrained optimization problem (9) into a con-

strained optimization problem by introducing an auxiliary variables :

 (10)

The minimum optimization problem (10) can be solved by iteratively solving the fol-

lowing three sub-optimization problems [24]:

 (11)

Figure 6. Example of the matrix H. Different colours represent different rows of C.

3. Novel Reconstruction Method for CUP
3.1. Algorithm Framework of PnP-ADMM for CUP

According to the forward model of CUP data compression already established in
Section 2.2, the inverse problem model of Equation (4) can be described as an unconstrained
optimization problem:

^
x = argmin

x
f (x) + λg(x) (9)

In the formula, f (x) = ‖y−Hx‖2
2 represents the CUP forward imaging model, and

g(x) represents a certain image prior.
The ADMM transforms the unconstrained optimization problem (9) into a constrained

optimization problem by introducing an auxiliary variables v:(
^
x,

^
v
)
= argmin

x,v
f (x) + λg(v), subjecttox = v (10)

The minimum optimization problem (10) can be solved by iteratively solving the
following three sub-optimization problems [24]:

x(k+1) = argmin
x

f (x) +
ρ

2
‖x−

(
v(k) − 1

ρ
u(k)

)
‖2

2 (11)

v(k+1) = argmin
v

λg(v) +
ρ

2
‖v−

(
x(k) +

1
ρ

u(k)
)
‖2

2 (12)

u(k+1) = u(k) + ρ
(

x(k+1) − v(k+1)
)

(13)

Sensors 2022, 22, 7372 7 of 16

where k represents the number of iterations.
In the CUP reconstruction problem, f (x) = 1

2‖y−Hx‖2
2 represents the forward model

of CUP imaging. For the convenience of representation, the sub-problem (11) is rewritten
in the form without the iteration variable k:

x = argmin
x

1
2
‖y−Hx‖2

2 +
ρ

2
‖x−

(
v− 1

ρ
u
)
‖2

2 (14)

For the determined v, u, H, y, sub-problem (14) has a closed-form solution:

x =
(

H>H + ρI
)−1

[
H>y + ρ

(
v− 1

ρ
u
)]

(15)

For a large matrix H, inverting
(
HTH + ρI

)
will consume a lot of computer memory

resources and time. For the original data X with size of 256 × 256 × 8, the size of H is
67,328 × 524,288, and the size of HTH is 524,288 × 524,288. At present, it is difficult for
computers to deal with such a large-scale matrix inversion problem. Inspired by [25],
when HHT is a diagonal matrix, Equation (14) has a closed-form solution. It was discussed
in Section 2.2 that the matrix H is a block-diagonal matrix, and it is verified that HHT

is a diagonal matrix. This feature of H can simplify the computation of the inversion of(
HTH + ρI

)
: (

H>H + ρI
)−1

= ρ−1I− ρ−1H>
(

I + ρ−1HH>
)−1

Hρ−1 (16)

Bringing Equation (16) into Equation (15), we can obtain [25]:

x = ρ−1
[
H>y + ρ

(
v− 1

ρ u
)]
− ρ−2H>

(
I + ρ−1HH>

)−1
HH>y

−ρ−1H>
(

I + ρ−1HH>
)−1

H
(

v− 1
ρ u
) (17)

where HHT is a diagonal matrix:

HH> = diag
([

ψ1, . . . , ψLny

])
(18)

then we can obtain:(
I + ρ−1HH>

)−1
= diag

([
ρ

ρ + ψ1
, . . . ,

ρ

ρ + ψLny

])
(19)

(
I + ρ−1HH>

)−1
HH> = diag

([
ρψ1

ρ + ψ1
, . . . ,

ρψLny

ρ + ψLny

])
(20)

If y =
[
y1, . . . , yLny

]>
,
[
H
(

v− 1
ρ u
)]

i
denote the i th element of vector

[
H
(

v− 1
ρ u
)]

,
Equation (17) becomes [25]:

x = ρ−1HTy +
(

v,−, 1
ρ , u
)

−ρ−1HT

 y1ψ1+ρ
[
H,
(

v− 1
ρ u
)]

1
ρ+ψ1

, , , . . . , , ,
yLny ψLny+ρ

[
H,
(

v− 1
ρ u
)]

Lny
ρ+ψLny

T

(
v− 1

ρ u
)
+ HT

 y1−
[
H,
(

v− 1
ρ u
)]

1
ρ+ψ1

, , , . . . , , ,
yLny−

[
H,
(

v− 1
ρ u
)]

Lny
ρ+ψLny

T
(21)

Sensors 2022, 22, 7372 8 of 16

Using matrix division of corresponding elements, Equation (21) can be simplified to:

x =

(
v− 1

ρ
u
)
+ H>

[
y−H

(
v− 1

ρ
u
)]

./(s + ρI) (22)

where s =
[
ψ1, . . . , ψLny

]>
, in Equation (22), the matrix division of the corresponding

element has priority.
By utilizing the property that HH> is a diagonal matrix, in each iteration process, the

solution of sub-optimization problem (11) can be completed with only one calculation,
so the computer memory load is reduced and the solution efficiency of the algorithm
is improved.

One of the most important features of ADMM iteration is its modular structure:
problem (11) can be seen as a reversal step, since it includes the forward imaging model
f (x), and problem (12) can be seen as a denoising step, because it includes the image a

priori g(v). If σ =
√

λ
ρ , problem (12) can be rewritten as [24]:

v(k+1) = argmin
v

λg(v) +
1

2σ2 ‖v−
(

x(k) +
1
ρ

u(k)
)
‖2

2 (23)

Considering
(

x(k) + 1
ρ u(k)

)
as a noisy image, problem (23) minimizes the two-norm

distance between the noise-free image v and the noisy image
(

x(k) + 1
ρ u(k)

)
, based on the

image prior g(v) as a regular term. If g(v) = ‖v‖TV , where ‖ · ‖TV represents the total
variation norm, it can be calculated by Equation (24) [24]:

‖v‖TV = ∑
i

√(
∆h

i , v
)2

+
(
∆v

i , v
)2 (24)

Then problem (23) becomes the standard total variation norm denoising problem,
namely the TV denoising problem. Formally based on this intuition, [11] proposed the
PnP-ADMM method, without specifying the image prior g(v), and just replaces step (12)
with a state-of-the-art image denoising algorithm [24]:

v(k+1) = Dσ

(
x(k) +

1
ρ

u(k)
)

(25)

where Dσ(·) represents some type of noise denoising algorithm. Although it is unclear
to which image prior the denoising algorithm Dσ(·) corresponds, the performance of the
PnP-ADMM method on the image reconstruction problem surpasses other popular image
reconstruction algorithms [26–29].

3.2. The Architecture of FFDNet

Proposed by Zhang et al. in [22], FFDNet is a single discriminative CNN model.
Figure 7 shows the architecture of FFDNet. FFDNet consists of “Downsampling layer +
Nonlinear mapping layer + Upsampling layer”. The down-sampling layer is a reversible
down-sampling operator that reshapes a noisy image into four down-sampled sub-images.
At the same time, FFDNet concatenates a tunable noise map with the down-sampled sub-
images to form a tensor as the inputs to the non-linear mapping layer. At the non-linear
mapping layer, each sub-layer is composed of a specific combination of three types of
operations: convolution (Conv) with filter size of 3 × 3, rectified linear units (ReLU), and
batch normalization (BN). For the grayscale model, the number of Conv layer is 15 and
the number of channels is 64. The noise map varies from 0 to 75 [23]. After the non-linear
mapping layer, an upscaling operation is applied in the up-sampling layer as the reverse
operator of the down-sampling operator applied in the input stage to produce the estimated
clean image with the same shape as the input noisy image.

Sensors 2022, 22, 7372 9 of 16Sensors 2022, 22, x FOR PEER REVIEW 9 of 17

Figure 7. Architecture of FFDNet [22].

The training dataset is composed of pairs of input-output patches

, which are generated by adding AWGN of to clean patches and build the

corresponding noise map . FFDNet, without a residual learning estimate, can denoise

the image directly [23]:

 (26)

thus, the corresponding loss function is [23]:

 (27)

where is the collection of all learnable parameters. Therefore, the architecture and these

additional techniques render this algorithm faster, more efficient, and more versatile than

other denoising algorithms.

3.3. PnP-ADMM Fixed-Point Convergence for CUP Reconstruction

Ref. [24] demonstrates the fixed-point convergence of the PnP-ADMM algorithm

based on the definition of a bounded denoiser and the assumption of bounded gradients.

Definite 1. Bounded denoiser: A bounded denoiser with a parameter is a function

 such that for any input [24]:

 (28)

for some universal constant , independent of and .

Bounded denoisers are a weak condition that we expect most denoisers to have. Next,

we show that bounded gradients also hold in the CUP reconstruction problem. In the

problem of CUP reconstruction, the gradient of is:

 (29)

where is a block-diagonal matrix with element distribution , all elements of ob-

servation are non-negative, so the result of is non-negative. can be

viewed as a weighted sum of , so , since all elements in are

normalized to be between 0 and 1, the inequality can be simplified to:

. Therefore, the assumption of constant , , bounded gradient holds in the

problem of CUP reconstruction. According to the proof of [24], the CUP reconstruction

algorithm based on PnP-ADMM has fixed-point convergence, that is, there is ,

and when , we have:

 (30)

Figure 7. Architecture of FFDNet [22].

The training dataset is composed of pairs of input-output patches
{((~

I j, Mj

)
, Ij

)}m

j=0
,

which are generated by adding AWGN of σ ∈ [0, 75] to clean patches Ij and build the
corresponding noise map Mj. FFDNet, without a residual learning estimate, can denoise
the image directly [23]:

F
(~

I
)
=

^
I (26)

thus, the corresponding loss function is [23]:

L(θ) = 1
2m

m

∑
j=1
‖F
((~

I j, Mj

)
; θ
)
− Ij‖2 (27)

where θ is the collection of all learnable parameters. Therefore, the architecture and these
additional techniques render this algorithm faster, more efficient, and more versatile than
other denoising algorithms.

3.3. PnP-ADMM Fixed-Point Convergence for CUP Reconstruction

Ref. [24] demonstrates the fixed-point convergence of the PnP-ADMM algorithm based
on the definition of a bounded denoiser and the assumption of bounded gradients.

Definite 1. Bounded denoiser: A bounded denoiser with a parameter σ is a function Dσ : Rn → Rn

such that for any input x ∈ Rn [24]:

1
n
‖Dσ(x)− x‖2

2 ≤ σ2C (28)

for some universal constant C, independent of n and σ.

Bounded denoisers are a weak condition that we expect most denoisers to have. Next,
we show that bounded gradients also hold in the CUP reconstruction problem. In the
problem of CUP reconstruction, the gradient of f (x) is:

5 f (x) = H>Hx−H>y (29)

where H is a block-diagonal matrix with element distribution {0, 1}, all elements of obser-
vation y are non-negative, so the result of H>y is non-negative. H>Hx can be viewed as
a weighted sum of x, so ‖H>Hx‖2 ≤ nxnyN‖x‖2, since all elements in x are normalized
to be between 0 and 1, the inequality can be simplified to: ‖H>Hx‖2 ≤ nxnyN. Therefore,
the assumption of constant M, ‖ 5 f (x)‖2 ≤ M, bounded gradient holds in the problem
of CUP reconstruction. According to the proof of [24], the CUP reconstruction algorithm
based on PnP-ADMM has fixed-point convergence, that is, there is (x∗, v∗, u∗), and when
k→ ∞ , we have:

‖x(k) − x∗‖2 → 0 (30)

‖v(k) − v∗‖2 → 0 (31)

‖u(k) − u∗‖2 → 0 (32)

Sensors 2022, 22, 7372 10 of 16

4. Experiment Results
4.1. PSNR and SSIM on Simulation Datasets

In order to test the reconstruction ability of PnP-FFDNet, eight frames of data were se-
lected from the benchmark datasets runner, kobe, traffic, drop, and crash [25] to be compressed
and encoded in the way of CUP data compression, and then PnP-ADMM was used for
reconstruction. A comparison is made with the CUP reconstruction algorithm TwIST used
in [4] and other denoising algorithms used in the algorithmic framework of PnP-ADMM:
TVD/BM3D/IRCnn/DnCnn. The computing platform configuration parameters we used
are as follows: CPU is 12th Gen Intel(R) Core(TM) i7-12700H 2.70 GHz, GPU is NVIDIA
GeForce RTX 3060 laptop GPU.

The benchmark datasets used in the experiment are all 256 × 256 × 8, the size of
each frame is 256 × 256, and the total number of frames is eight frames. In all subsequent
experiments, the offset s0 of each frame is 1. The dimension of the simulated observation
data obtained through the data compression model of CUP is 263 × 256. The encoding
mask size is 256 × 256, its elements {0, 1} are randomly distributed, and the sampling rate
is 50%. The regular term of the TwIST algorithm selects the total variation (TV) norm of the
image, and the denoising algorithm selects the TVD. Based on the actual test experience,
when the parameters manually adjusted in the algorithm are set as follows, a better CUP
reconstruction effect can be achieved. For the TwIST algorithm, the regularization parameter
is set to 0.05 and the loop is excited when the error of the objective function of two adjacent
loops is less than 1e-5. The regularization parameter ρ in the PnP-ADMM algorithm is set
to 1, and the iteration is excited when ∆k+1 is less than or equal to 1e-3, where ∆k+1 is [24]:

∆k+1 =
1√
n

(
‖x(k+1) − x(k)‖2 + ‖v(k+1) − v(k)‖2 + ‖u(k+1) − u(k)‖2

)
(33)

The experiment uses PSNR and SSIM to evaluate the reconstruction performance.
PSNR is based on the error between the reconstructed image and the corresponding pixel
of the original image. SSIM measures the structural similarity between the reconstructed
image and the original image from three aspects: brightness, contrast, and structure.
Tables 1–3 summarize the PSNR, SSIM, and execution time, respectively of the reconstruc-
tion results of the six algorithms. As learning-based denoising algorithms are implemented
based on the open-source framework Pytorch, these denoisers can use GPUs to accelerate
forward inference. “use GPU” in Table 3 represents the result of the algorithm using
GPU-accelerated computing. Figure 8 shows the reconstruction performance of different
algorithms on the benchmark dataset.

Table 1. The average PSNR (dB) results.

Algorithm Runner Kobe Traffic Drop Crash Average

TwIST 24.52 25.42 19.16 29.39 24.54 24.70
PnP-TV 23.29 23.89 19.55 29.72 24.57 24.20

PnP-BM3D 30.59 29.15 23.77 36.40 26.01 29.18
PnP-IRCnn 25.86 24.83 21.13 29.90 24.56 25.24
PnP-DnCnn 28.12 27.54 22.27 32.60 24.94 27.09
PnP-FFDNet 29.68 28.86 23.19 34.89 25.21 28.37

Table 2. The average SSIM results.

Algorithm Runner Kobe Traffic Drop Crash Average

TwIST 0.82 0.82 0.58 0.92 0.82 0.79
PnP-TV 0.82 0.84 0.68 0.95 0.87 0.83

PnP-BM3D 0.95 0.92 0.84 0.98 0.90 0.92
PnP-IRCnn 0.87 0.82 0.73 0.94 0.85 0.84
PnP-DnCnn 0.91 0.85 0.80 0.96 0.87 0.88
PnP-FFDNet 0.93 0.92 0.82 0.98 0.88 0.91

Sensors 2022, 22, 7372 11 of 16

Table 3. The execution time (second).

Algorithm Runner Kobe Traffic Drop Crash Average

TwIST 41 67 47 177 104 87
PnP-TV 10 7 9 6 8 8

PnP-BM3D 378 402 387 436 379 396
PnP-IRCnn 33 35 36 34 35 35
PnP-IRCnn
(use GPU) 10 11 12 10 11 11

PnP-DnCnn 75 79 80 78 82 79
PnP-DnCnn
(use GPU) 14 14 15 14 14 14

PnP-FFDNet 27 27 27 26 27 27
PnP-FFDNet

(use GPU) 12 13 12 12 10 12
Sensors 2022, 22, x FOR PEER REVIEW 12 of 17

Figure 8. Reconstruction performance of different reconstruction algorithms.

4.2. The Performance of PnP-FFDNet on Data with Different Compression Ratios

In order to test the reconstruction performance of the algorithm with different com-

pression ratios, different frame numbers were intercepted from the drop dataset for CUP

data compression encoding, and the PnP-FFDNet algorithm and the PnP-BM3D algorithm

were selected for comparison. The data compression ratio is defined as:

 (34)

Since the size of each frame in the drop dataset is 256 × 256 and is 1, the CUP data

compression ratio can be simplified as:

 (35)

The larger the number of frames selected for compression coding, the larger the data

compression ratio.

As shown in Figures 9–11, when the data compression rate increases, our exper-

imental results show that the reconstructed metrics PSNR and SSIM both decrease. When

the compression ratio is small, the reconstruction effect of PnP-BM3D is slightly better

than that of PnP-FFDNet, but as the compression ratio increases, the performance of

the two algorithms in PSNR and SSIM is close, and even when the compression ratio

is at a certain value, PnP-FFDNet performs better than PnP-BM3D on PSNR and SSIM.

However, when the compression ratio increases, the time consumption of the PnP-

Figure 8. Reconstruction performance of different reconstruction algorithms.

From the statistical results in Tables 1–3, it can be intuitively seen that PnP-FFDNet and
PnP-BM3D have the best reconstruction performance. PnP-FFDNet greatly reduces the time
required for reconstruction without losing the reconstruction performance. Although other
algorithms (such as PnP-TV/PnP-IRCnn/PnP-DnCnn) have advantages in reconstruction
time, they sacrifice reconstruction efficiency. Compared with PnP-BM3D, the execution
time of PnP-FFDNet is reduced by an average of 93% on the CPU and 96% on the GPU, but
the PSNR and SSIM metrics are very similar.

Figure 8 shows the reconstruction performance with different reconstruction algo-
rithms, and selected one frame from eight frames of data for comparison. Among them,

Sensors 2022, 22, 7372 12 of 16

the drop data has fewer details than the other four data images, so the six algorithms
have good reconstruction performance. For traffic data with more image texture, although
the performance of the six reconstruction algorithms is relatively poor, the reconstruction
results of the PnP-FFDNet and PnP-BM3D algorithms have clearer contours and less noise.

4.2. The Performance of PnP-FFDNet on Data with Different Compression Ratios

In order to test the reconstruction performance of the algorithm with different com-
pression ratios, different frame numbers were intercepted from the drop dataset for CUP
data compression encoding, and the PnP-FFDNet algorithm and the PnP-BM3D algorithm
were selected for comparison. The data compression ratio R is defined as:

R =
size(x)
size(y)

=
nxnyN

Lny
=

nx N
L

=
nx N

nx + s0(N − 1)
(34)

Since the size of each frame in the drop dataset is 256 × 256 and s0 is 1, the CUP data
compression ratio R can be simplified as:

R =
256N

N + 255
(35)

The larger the number of frames selected for compression coding, the larger the data
compression ratio.

As shown in Figures 9–11, when the data compression rate R increases, our experi-
mental results show that the reconstructed metrics PSNR and SSIM both decrease. When
the compression ratio is small, the reconstruction effect of PnP-BM3D is slightly better
than that of PnP-FFDNet, but as the compression ratio R increases, the performance of the
two algorithms in PSNR and SSIM is close, and even when the compression ratio R is at a
certain value, PnP-FFDNet performs better than PnP-BM3D on PSNR and SSIM. However,
when the compression ratio R increases, the time consumption of the PnP-BM3D algorithm
increases linearly. When the number of compressed frames is 39, the algorithm takes half
an hour to complete the reconstruction, while PnP-FFDNet completes the reconstruction
in one minute, due to the high efficiency of the algorithm itself and the parallel accelera-
tion of the GPU. The inference speed of FFDNet is greatly accelerated due to the use of
down-sampling techniques to reduce the computational load. Therefore, even in CPU,
PnP-FFDNet is significantly faster than PnP-BM3D. Furthermore, accelerating the inference
phase of the network with the help of GPU parallel computing is also one of the reasons
why the PnP-FFDNet algorithm executes faster.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 17

BM3D algorithm increases linearly. When the number of compressed frames is 39, the

algorithm takes half an hour to complete the reconstruction, while PnP-FFDNet completes

the reconstruction in one minute, due to the high efficiency of the algorithm itself and the

parallel acceleration of the GPU. The inference speed of FFDNet is greatly accelerated due

to the use of down-sampling techniques to reduce the computational load. Therefore, even

in CPU, PnP-FFDNet is significantly faster than PnP-BM3D. Furthermore, accelerating the

inference phase of the network with the help of GPU parallel computing is also one of the

reasons why the PnP-FFDNet algorithm executes faster.

Figure 9. Line chart of PSNR of the reconstruction results of PnP-FFDNet and PnP-BM3D when the

number of CUP compressed frames increases.

Figure 10. Line chart of SSIM of the reconstruction results of PnP-FFDNet and PnP-BM3D when the

number of CUP compressed frames increases.

Figure 9. Line chart of PSNR of the reconstruction results of PnP-FFDNet and PnP-BM3D when the
number of CUP compressed frames increases.

Sensors 2022, 22, 7372 13 of 16

Sensors 2022, 22, x FOR PEER REVIEW 13 of 17

BM3D algorithm increases linearly. When the number of compressed frames is 39, the

algorithm takes half an hour to complete the reconstruction, while PnP-FFDNet completes

the reconstruction in one minute, due to the high efficiency of the algorithm itself and the

parallel acceleration of the GPU. The inference speed of FFDNet is greatly accelerated due

to the use of down-sampling techniques to reduce the computational load. Therefore, even

in CPU, PnP-FFDNet is significantly faster than PnP-BM3D. Furthermore, accelerating the

inference phase of the network with the help of GPU parallel computing is also one of the

reasons why the PnP-FFDNet algorithm executes faster.

Figure 9. Line chart of PSNR of the reconstruction results of PnP-FFDNet and PnP-BM3D when the

number of CUP compressed frames increases.

Figure 10. Line chart of SSIM of the reconstruction results of PnP-FFDNet and PnP-BM3D when the

number of CUP compressed frames increases.

Figure 10. Line chart of SSIM of the reconstruction results of PnP-FFDNet and PnP-BM3D when the
number of CUP compressed frames increases.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 17

Figure 11. Histogram of execution time of PnP-BM3D, PnP-FFDNet, and PnP-FFDNet (use GPU)

when the number of compressed frame increases. The subplot in Figure 7 is an enlarged histogram

of the red dashed area.

4.3. Performance of PnP-FFDNet on Real Data

In order to test the performance of the PnP-FFDNet algorithm on real CUP experi-

mental data, key frames were extracted from the video file of the laser pulse reflection

process in the Supplementary Material of [4], and the RGB image was converted into a

grayscale image to form a 320 × 320 × 16 original image data, and 335 × 320 observation

data were obtained through the CUP data compression model. Using TwIST and PnP-

TV/BM3D/IRCnn/DnCnn/FFDNet, we performed algorithm reconstruction experiments.

Figure 12 shows the reconstruction results with six algorithms on the real experi-

mental data of CUP. The algorithm reconstructs a total of 16 frames, and selects 12 con-

secutive frames with clear pulsed laser graphics for comparison. Due to the process of

compression sampling, only part of the information is sampled, the spatial resolution of

the image reconstructed by the algorithm is low, and so the text in the image has more

details and, therefore, cannot be reconstructed well. From the image comparison of the

reconstruction results, it can be seen that the laser reflection process of the PnP-FFDNet

reconstruction results is the closest to the ground truth, and the reconstructed visual ef-

fects, evaluation indicators (PSNR, SSIM), and operating efficiency all exceed the other

algorithms.

Figure 11. Histogram of execution time of PnP-BM3D, PnP-FFDNet, and PnP-FFDNet (use GPU)
when the number of compressed frame increases. The subplot in Figure 7 is an enlarged histogram of
the red dashed area.

4.3. Performance of PnP-FFDNet on Real Data

In order to test the performance of the PnP-FFDNet algorithm on real CUP experi-
mental data, key frames were extracted from the video file of the laser pulse reflection
process in the Supplementary Material of [4], and the RGB image was converted into a
grayscale image to form a 320 × 320 × 16 original image data, and 335 × 320 observation
data were obtained through the CUP data compression model. Using TwIST and PnP-
TV/BM3D/IRCnn/DnCnn/FFDNet, we performed algorithm reconstruction experiments.

Figure 12 shows the reconstruction results with six algorithms on the real experimental
data of CUP. The algorithm reconstructs a total of 16 frames, and selects 12 consecutive
frames with clear pulsed laser graphics for comparison. Due to the process of compression
sampling, only part of the information is sampled, the spatial resolution of the image
reconstructed by the algorithm is low, and so the text in the image has more details and,
therefore, cannot be reconstructed well. From the image comparison of the reconstruction
results, it can be seen that the laser reflection process of the PnP-FFDNet reconstruction
results is the closest to the ground truth, and the reconstructed visual effects, evaluation
indicators (PSNR, SSIM), and operating efficiency all exceed the other algorithms.

Sensors 2022, 22, 7372 14 of 16Sensors 2022, 22, x FOR PEER REVIEW 15 of 17

Figure 12. Reconstruction performance of different reconstruction algorithms on real data.

Table 4 shows the reconstruction indicators. Compared with TwIST, PnP-TV and

PnP-BM3D, PSNR is improved by 3.95 dB, 4.61 dB, and 1.85 dB, respectively, and SSIM is

improved by 0.07, 0.1, and 0.02, respectively. Under the premise of obtaining a better re-

construction effect, PnP-IRCnn/PnP-DnCnn/PnP-FFDNet require relatively less recon-

struction time. The reconstruction effects of the algorithms using the learning-based de-

noiser are similar on the metric PSNR, and PnP-FFDNet is the best for the metric SSIM.

Although the running time of the PnP-TV algorithm is the shortest, its reconstruction ef-

fect is similar to that of TwIST. The performance on real datasets shows that PnP-FFDNet

has excellent performance in reconstruction effect and running efficiency.

Table 4. Results of PSNR (dB), SSIM, execution time (s) and execution time (s) (use GPU) for differ-

ent algorithms on real data.

Algorithm PSNR SSIM Execution Time (s)
Execution Time (s)

(Use GPU)

TwIST 21.17 0.88 270 -

PnP-TV 21.04 0.85 33 -

PnP-BM3D 23.80 0.93 1124 -

PnP-IRCnn 25.67 0.91 103 26

PnP-DnCnn 25.27 0.87 230 40

PnP-FFDNet 25.65 0.95 85 43

5. Conclusions

This paper proposes a CUP reconstruction algorithm based on the combination of the

PnP-ADMM framework and the convolutional neural network denoising algorithm

FFDNet. The reconstruction methods were performed on the benchmark dataset and the

real data of the CUP experiment. The results show that the proposed algorithm performs

better on the PSNR and SSIM. Since the inference of the convolutional neural network can

be performed in parallel using the GPU, the execution time of PnP-FFDNet is greatly re-

duced compared to PnP-BM3D, without losing the re-estimation effect. In the popular

Figure 12. Reconstruction performance of different reconstruction algorithms on real data.

Table 4 shows the reconstruction indicators. Compared with TwIST, PnP-TV and
PnP-BM3D, PSNR is improved by 3.95 dB, 4.61 dB, and 1.85 dB, respectively, and SSIM
is improved by 0.07, 0.1, and 0.02, respectively. Under the premise of obtaining a bet-
ter reconstruction effect, PnP-IRCnn/PnP-DnCnn/PnP-FFDNet require relatively less
reconstruction time. The reconstruction effects of the algorithms using the learning-based
denoiser are similar on the metric PSNR, and PnP-FFDNet is the best for the metric SSIM.
Although the running time of the PnP-TV algorithm is the shortest, its reconstruction effect
is similar to that of TwIST. The performance on real datasets shows that PnP-FFDNet has
excellent performance in reconstruction effect and running efficiency.

Table 4. Results of PSNR (dB), SSIM, execution time (s) and execution time (s) (use GPU) for different
algorithms on real data.

Algorithm PSNR SSIM Execution Time
(s)

Execution Time (s)
(Use GPU)

TwIST 21.17 0.88 270 -
PnP-TV 21.04 0.85 33 -

PnP-BM3D 23.80 0.93 1124 -
PnP-IRCnn 25.67 0.91 103 26
PnP-DnCnn 25.27 0.87 230 40
PnP-FFDNet 25.65 0.95 85 43

5. Conclusions

This paper proposes a CUP reconstruction algorithm based on the combination of
the PnP-ADMM framework and the convolutional neural network denoising algorithm
FFDNet. The reconstruction methods were performed on the benchmark dataset and the
real data of the CUP experiment. The results show that the proposed algorithm performs
better on the PSNR and SSIM. Since the inference of the convolutional neural network
can be performed in parallel using the GPU, the execution time of PnP-FFDNet is greatly
reduced compared to PnP-BM3D, without losing the re-estimation effect. In the popular
CUP experimental configuration, the data depth is often between 150–1500. The proposed

Sensors 2022, 22, 7372 15 of 16

method can greatly speed up the reconstruction process. and is a practical and efficient
CUP reconstruction algorithm.

Author Contributions: Formal analysis, Q.S.; methodology, Q.S.; supervision, J.T.; writing—original
draft, Q.S.; writing—review and editing, J.T. and C.P. All authors have read and agreed to the
published version of the manuscript.

Funding: The work was supported by the Scientific Instrument Developing Project of the Chinese
Academy of Sciences, Grant No. GJJSTD20220006.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Eldar, Y.C.; Kutyniok, G. Compressed Sensing: Theory and Applications; Cambridge University Press: Cambridge, UK, 2012.
2. Liang, J.; Wang, L.V. Single-shot ultrafast optical imaging. Optica 2018, 5, 1113–1127. [CrossRef] [PubMed]
3. Tsia, K.K.; Goda, K.; Thompson, J.V.; Mason, J.D.; Beier, H.T.; Bixler, J.N. High speed fluorescence imaging with compressed

ultrafast photography. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), San Francisco, CA, USA,
28 January–2 February 2017; p. 1007613.

4. Gao, L.; Liang, J.; Li, C.; Wang, L.V. Single-shot compressed ultrafast photography at one hundred billion frames per second.
Nature 2014, 516, 74–77. [CrossRef] [PubMed]

5. Liang, J.; Ma, C.; Zhu, L.; Chen, Y.; Gao, L.; Wang, L.V. Single-shot real-time video recording of a photonic Mach cone induced by
a scattered light pulse. Sci. Adv. 2017, 3, e1601814. [CrossRef] [PubMed]

6. Liang, J.; Gao, L.; Hai, P.; Li, C.; Wang, L. Encrypted three-dimensional dynamic imaging using snapshot time-of-flight compressed
ultrafast photography. Sci. Rep. 2015, 5, 15504. [CrossRef] [PubMed]

7. Bioucas-Dias, J.M.; Figueiredo, M.A.T. A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration.
IEEE Trans. Image Process. 2007, 16, 2992–3004. [CrossRef] [PubMed]

8. Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60,
259–268. [CrossRef]

9. Zhu, L.; Chen, Y.; Liang, J.; Xu, Q.; Gao, L.; Ma, C.; Wang, L.V. Space- and intensity-constrained reconstruction for compressed
ultrafast photography. Optica 2016, 3, 694–697. [CrossRef] [PubMed]

10. Lai, Y.; Xue, Y.; Cté, C.; Liu, X.; Laramée, A.; Jaouen, N.; Légaré, F.; Tian, L.; Liang, J. Compressed ultrafast photography:
Single-shot ultraviolet compressed ultrafast photography (laser photonics rev. 14(10)/2020). Laser Photonics Rev. 2020, 14, 2070055.
[CrossRef]

11. Venkatakrishnan, S.V.; Bouman, C.A.; Wohlberg, B. Plug-and-play priors for model based reconstruction. In Proceedings of the
2013 IEEE Global Conference on Signal and Information Processing, Austin, TX, USA, 3–5 December 2013.

12. Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE
Trans. Image Process. 2007, 16, 2080–2095. [CrossRef] [PubMed]

13. Jia, R.; Zhao, H. A fast algorithm for the total variation model of image denoising. Adv. Comput. Math. 2010, 33, 231–241.
[CrossRef]

14. Gu, S.; Lei, Z.; Zuo, W.; Feng, X. Weighted nuclear norm minimization with application to image denoising. In Proceedings of the
2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014.

15. Mairal, J.; Elad, M.; Sapiro, G. Sparse representation for color image restoration. IEEE Trans. Image Process. 2007, 17, 53–69.
[CrossRef] [PubMed]

16. Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image
Process. 2006, 15, 3736–3745. [CrossRef] [PubMed]

17. Dong, W.; Lei, Z.; Shi, G. Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 2013, 22,
1620–1630. [CrossRef] [PubMed]

18. Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G.; Zisserman, A. Non-local sparse models for image restoration. In Proceedings of the 2009
IEEE 12th International Conference on Computer Vision (ICCV), Kyoto, Japan, 29 September–2 October 2010.

19. Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE computer society
conference on computer vision and pattern recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005.

20. Kai, Z.; Zuo, W.; Gu, S.; Lei, Z. Learning deep CNN denoiser prior for image restoration. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

21. Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep CNN for image
denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [CrossRef] [PubMed]

http://doi.org/10.1364/OPTICA.5.001113
http://www.ncbi.nlm.nih.gov/pubmed/30820445
http://doi.org/10.1038/nature14005
http://www.ncbi.nlm.nih.gov/pubmed/25471883
http://doi.org/10.1126/sciadv.1601814
http://www.ncbi.nlm.nih.gov/pubmed/28116357
http://doi.org/10.1038/srep15504
http://www.ncbi.nlm.nih.gov/pubmed/26503834
http://doi.org/10.1109/TIP.2007.909319
http://www.ncbi.nlm.nih.gov/pubmed/18092598
http://doi.org/10.1016/0167-2789(92)90242-F
http://doi.org/10.1364/OPTICA.3.000694
http://www.ncbi.nlm.nih.gov/pubmed/28775997
http://doi.org/10.1002/lpor.202070055
http://doi.org/10.1109/TIP.2007.901238
http://www.ncbi.nlm.nih.gov/pubmed/17688213
http://doi.org/10.1007/s10444-009-9128-5
http://doi.org/10.1109/TIP.2007.911828
http://www.ncbi.nlm.nih.gov/pubmed/18229804
http://doi.org/10.1109/TIP.2006.881969
http://www.ncbi.nlm.nih.gov/pubmed/17153947
http://doi.org/10.1109/TIP.2012.2235847
http://www.ncbi.nlm.nih.gov/pubmed/23269751
http://doi.org/10.1109/TIP.2017.2662206
http://www.ncbi.nlm.nih.gov/pubmed/28166495

Sensors 2022, 22, 7372 16 of 16

22. Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image
Process. 2018, 27, 4608–4622. [CrossRef] [PubMed]

23. Tassano, M.; Delon, J.; Veit, T. An Analysis and Implementation of the FFDNet Image Denoising Method. Image Processing On Line
2019, 9, 1–25. [CrossRef]

24. Chan, S.H.; Wang, X.; Elgendy, O.A. Plug-and-play ADMM for image restoration: Fixed-point convergence and applications.
IEEE Trans. Comput. Imaging 2016, 3, 84–98. [CrossRef]

25. Yuan, X.; Liu, Y.; Suo, J.; Dai, Q. Plug-and-play algorithms for large-scale snapshot compressive imaging. In Proceedings of the
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020.

26. Sreehari, S.; Venkatakrishnan, S.V.; Wohlberg, B.; Buzzard, G.T.; Drummy, L.F.; Simmons, J.P.; Bouman, C.A. Plug-and-play priors
for bright field electron tomography and sparse interpolation. IEEE Trans. Comput. Imaging 2016, 2, 408–423. [CrossRef]

27. Rond, A.; Giryes, R.; Elad, M. Poisson inverse problems by the plug-and-play scheme. J. Vis. Commun. Image Represent. 2016, 41,
96–108. [CrossRef]

28. Dar, Y.; Bruckstein, A.M.; Elad, M.; Giryes, R. Postprocessing of compressed images via sequential denoising. IEEE Trans. Image
Process. 2016, 25, 3044–3058. [CrossRef] [PubMed]

29. Brifman, A.; Romano, Y.; Elad, M. Turning a denoiser into a super-resolver using plug and play priors. In Proceedings of the 2016
IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 1404–1408. [CrossRef]

http://doi.org/10.1109/TIP.2018.2839891
http://www.ncbi.nlm.nih.gov/pubmed/29993717
http://doi.org/10.5201/ipol.2019.231
http://doi.org/10.1109/TCI.2016.2629286
http://doi.org/10.1109/TCI.2016.2599778
http://doi.org/10.1016/j.jvcir.2016.09.009
http://doi.org/10.1109/TIP.2016.2558825
http://www.ncbi.nlm.nih.gov/pubmed/27214878
http://doi.org/10.1109/icip.2016.7532589

	Introduction
	Forward Model of CUP
	Principle of Streak Camera
	Design of Compressed Ultrafast Photography

	Novel Reconstruction Method for CUP
	Algorithm Framework of PnP-ADMM for CUP
	The Architecture of FFDNet
	PnP-ADMM Fixed-Point Convergence for CUP Reconstruction

	Experiment Results
	PSNR and SSIM on Simulation Datasets
	The Performance of PnP-FFDNet on Data with Different Compression Ratios
	Performance of PnP-FFDNet on Real Data

	Conclusions
	References

