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Abstract: RGB-D cameras have become common in many research fields since these inexpensive
devices provide dense 3D information from the observed scene. Over the past few years, the
RealSense™ range from Intel® has introduced new, cost-effective RGB-D sensors with different
technologies, more sophisticated in both hardware and software. Models D415, SR305, and L515
are examples of successful cameras launched by Intel® RealSense™ between 2018 and 2020. These
three cameras are different since they have distinct operating principles. Then, their behavior
concerning depth estimation while in the presence of many error sources will also be specific. For
instance, semi-transparent and scattering media are expected error sources for an RGB-D sensor. The
main new contribution of this paper is a full evaluation and comparison between the three Intel
RealSense cameras in scenarios with transparency and translucency. We propose an experimental
setup involving an aquarium and liquids. The evaluation, based on repeatability/precision and
statistical distribution of the acquired depth, allows us to compare the three cameras and conclude
that Intel RealSense D415 has overall the best behavior namely in what concerns the statistical
variability (also known as precision or repeatability) and also in what concerns valid measurements.

Keywords: RGB-D cameras; range sensors; Intel® Realsense™; LiDAR; structured-light; active
stereoscopy; depth estimation; error sources; transparency; translucency; scattering; refraction

1. Introduction

Since 2010, when Microsoft, in cooperation with PrimeSense, released the first Kinect,
consumer RGB-D cameras have been through a democratization process, becoming very
appealing to many areas of application, such as robotics [1,2], automotive [3], industrial [4],
augmented reality (AR) [5], object detection [6], 3D reconstruction [7], and biomedical
field [8]. All these applications thrived by receiving depth information in addition to color.
To this fusion, between a typical color camera (RGB) and a depth sensor (D) in one unique
device, we call an RGB-D camera—also known as range imaging camera or range sensing
device [9].

Human–machine interaction applications were considerable drivers of the generalized
application of RGB-D cameras, mainly of active technology which are the ones discussed in
this article. In consequence, most of these devices were designed for the purpose of detect-
ing and tracking bodies, or, more generally, to obtain the shape of opaque bodies/surfaces,
through the analysis of the diffuse reflection components [10]. At the same time, there is
vast interest in using these cost-effective cameras in other tasks related to robotics and 3D
reconstruction, where the 3D perception of the targets can experience the most varied optic
behaviors, from the basic, such as reflection and absorption, to the most complex, such as
refraction, scattering and diffraction. Moreover, not all objects have a diffuse nature and so
light does not come back to the sensor in an expected way. In the case of transparent or
translucent objects, light not only reflects at the surface but also transmits into the object,
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and it causes multiple reflections and transmissions inside the object [11]. Therefore, 3D
acquisition of transparent/translucent objects is a difficult problem to solve despite some
work having already been performed to address this issue [12–14].

In this paper, we analyze three state-of-the-art Intel® RealSense™ RGB-D cameras.
More precisely, the models SR305, D415, and L515, which operate with active depth sensing.
Although they all employ active technology, the operating principles and technology are
different and specific to each camera. The SR305 uses Structured Light (SL) technology,
D415 relies on Active Stereoscopy (AS), and L515 works with Time-of-Flight (ToF) principle.

To evaluate and compare the depth estimation performance of the three different
cameras in challenging scenarios comprising transparency, semi-transparency, and refrac-
tion/scattering, we performed a thorough experimental assessment.

For that purpose, an acquisition scene involving an aquarium and liquids was consid-
ered. Firstly, previous work related to the comparison and evaluation of RGB-D cameras is
covered. Secondly, we describe the three operating principles and the technology behind
the three RealSense™ models. Next, our (experimental) methodology is explained, as
well as all the experimental setup and the evaluation approach. The evaluation is based
on repeatability/precision, statistical distribution of the acquired depth and fitting point
clouds to planes. Results are shown and discussed in the last section.

The contributions of this paper include:

(1) We explain/review the operating principles of three different state-of-the-art Re-
alSense™ RGB-D cameras;

(2) We present an experimental framework specifically designed to acquire depth in a
scenario where a transparent aquarium fills the entire field of view and translucent
liquids are added to it;

(3) We assess the depth estimation performance based on the number of points per image
where the cameras failed to estimate depth;

(4) We evaluate the depth estimation precision in terms of point-to-plane orthogonal
distances and statistical dispersion of the plane normals;

(5) We qualitatively compare the distribution of the depth between the three cameras for
the seven different experiments.

Essentially, we evaluate and compare the depth estimation performance of three state-
of-the-art RGB-D cameras with different operating principles in scenarios with transparency
and translucency.

2. Related Work

Modern RGB-D cameras are very appreciated for applications in robotics and com-
puter vision due to their compactness and capability to gather streams of 3D data in
real-time with a frame rate of 15–30 fps and resolutions up to 1280 × 720. They could
serve as low-cost 3D scanners as long as their accuracy and precision meet the application
requirements. Therefore, it is fundamental to test, analyze, and compare new devices with
different state-of-the-art technologies to identify each sensors’ weakness, understand how a
given operating principle influences depth estimation and accuracy, and infer which device
is more suitable for a given task. The computer vision community has investigated many ap-
proaches to evaluate and compare devices’ performance. Thus, we present a brief overview
of related work that assesses and compares the depth’s precision of different RGB-D devices
and respective technologies, using metrological or other literature-based techniques.

Beginning with a study about one of the most influential RGB-D devices—the Mi-
crosoft Kinect I—Menna et al. [15] evaluate, in a geometric perspective, the accuracy in
modeling indoor environments by measuring a special rigid test-field with a calibrated
reference scale bar. According to the authors, this structured light-based device achieved
satisfactory metric performances for close-range applications.

A comparison between Structured Light and Time of Flight cameras—the Kinect I and
the SR4000 from MESA Imaging—was provided in Hansard’s book about ToF cameras [16].
In order to analyze systematic and non-systematic sources of error in ToF sensors, they



Sensors 2022, 22, 7378 3 of 40

propose a performance evaluation framework based on depth-maps acquisitions and
their ground truth images. This experimental framework aims to investigate not only
the accuracy of the depth but also the sensitivity of the two types of sensors to the object
materials (to their reflectivity). Therefore, they categorize the objects according to the
material type. According to the authors, the most challenging category is the one for
translucent objects, concluding that the RMSE drastically increases with the increment
of translucency.

Following the release of the second version of Kinect, whose operating principle is
Time of Flight, several studies evaluating and comparing both devices and, therefore, their
technologies were conducted. In [17], Kinect II and its predecessor are compared through
a metrological approach, more specifically, using previously calibrated standard artifacts
based on 5 spheres and 7 cubes. They also tested Kinects’ accuracy and precision, varying
ranges and inclination between each sensor and the artifact. Breuer et al. [18] provide a
detailed analysis of Kinect II regarding measurement noise, accuracy, and precision. Their
experiments show a significant distance dependent error that can be mitigated with further
calibration. Furthermore, they mention that Kinect II can better resolve fine structures
even though its resolution is lower than Kinect I. The two versions of Kinect are also
compared and analyzed by Zennaro et al. [19]. They first evaluate the accuracy of the
two sensors on near and far range test sets in an indoor environment, using different
scenes and light conditions. Then, in outdoor tests, they analyzed the sensitivity of each
sensor to the sunlight, concluding that, due to the different operating principles, Kinect II
can better tolerate sunlight. Comparing the effectiveness of both sensors in two different
applications (3D reconstruction and People Tracking) it was verified that the accuracy
in both applications is better for Kinect II. In order to understand the suitability and
accuracy of RGB-D cameras for close range 3D modeling, Lachat et al. [20] use Kinect II to
reconstruct small objects in three dimensions. They use a reference point cloud acquired by
the FARO ScanArm (ground truth) to qualitatively compare with the point cloud resulting
from the Kinect II. A detailed comparison between Structured Light Kinect and Time of
Flight Kinect is presented by Sarbolandi et al. [21]. The authors propose a framework to
evaluate the two types of range sensors based on seven experimental setups covering all
the main error sources for SL and/or ToF cameras. The effects of translucent material on
the sensor’s performance were also analyzed in one of their test scenarios inspired by the
experimental setup of [16]. Based on the results obtained, they outline a comparison of
device performances in different conditions regarding the main source of errors to provide
users hints for device selection. To explore the applicability of low-cost RGB-D cameras in
standard 3D capturing problems, Guidi et al. [22] analyze systematic and random errors for
five different devices featuring three different technologies. A systematic comparison of the
Kinect I and Kinect II is given by [23]. The authors investigate the accuracy and precision of
the devices for their usage in the context of 3D reconstruction, SLAM, or visual odometry.
They take into account, for each device, factors such as temperature, camera distance,
and color. Errors such as flying pixels or multipath are also investigated. They based the
analysis of the accuracy and precision of the devices using as ground truth measurements
of a planar wall, detected through the pose estimation of a checkerboard on the wall.

Driven by some academic prototypes building low-cost depth cameras based on coded
light technology [24–26], Intel® RealSense™ launched the world smallest consumer depth
camera, the F200. Later, Intel® proposed an improved version, the SR300 model [27]. Its
technology, hardware, and algorithms were described in detail in [28]. This device, designed
for short range, is composed of an IR pattern projector and an IR camera that operate in
tandem using coded light patterns to produce a 2D array of monochromatic pixel values.
The embedded imaging Application-Specific Integrated Circuit (ASIC) processes all these
values to generate depth or infrared video frames. Being interested in the potentiality of this
sensor as 3D scanner, Carfagni et al. [29] evaluated its performance using metrological and
non-metrological techniques. VDI/VDE norms are applied to a set of raw captured depths
and to a set of depths acquired with an optimized camera setting. In addition, the “real life”
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conditions for the use as a 3D scanner are reproduced using an optimized sensor setting.
The performance of the device is critically compared against the performance of other short-
range sensors. The survey of Giancola et al. [30] gives us a comprehensive metrological
comparison of Time-of-Flight, Structured Light, and Active Stereoscopy Technologies. The
cameras chosen to be characterized were: Kinect II (ToF), Orbbec Astra S (SL), and D415
from Intel® D400 family. Their evaluation was focused on pixel-wise characterization and
sensor-wise characterization. In order to obtain the ground truth distances for the pixel-wise
characterization, two sophisticated setups with anthropomorphic robots were used: the first
one, used with ToF and SL sensors, comprises the camera positioned on a tripod and aligned
with the planar white target mounted on the anthropomorphic robot end-effector; the
second, used with D415 camera, requires two robots that coordinate their motions between
each other. One of the robots fixates the camera on the end-effector and the other moving the
target. In addition to these experiments, they analyze the performance of the depth sensors
in what concerns the measurement of objects with simple geometric shapes (plane, cylinder,
sphere), the quality of the edge reconstruction and the influence of the incidence angle on
the target. For the case of the ToF camera, the impact of the target color and material was
also tested in what concerns the depth measurements and on the multiple path problem.
Inspired by [29], the same work group [31] investigated the potential of the newly released
Intel® RealSense™ D415 as a 3D scanner. They carried tests that integrate VDI/VDE
norms with literature-based strategies and provide a characterization and metrological
evaluation for D415 camera. These results are also compared with the performances of other
close-range sensors in the market. In the book RGB-D Image Analysis and Processing [32],
Rodríguez and Guidi [33] dedicate one chapter to data quality assessment and improvement
for RGB-D cameras, analyzing how random and systematic 3D measurement errors affect
the global 3D data quality in the various operating principles. An experimental evaluation
of three state-of-the-art Intel® RealSense™ cameras was performed by Lourenço and
Araujo [34]. The cameras SR305, D415, and L515 were tested using depth images of
3D planes at several distances. Their measure of accuracy is based on point-to-plane
distance and the precision based on the repeatability of 3D model reconstruction. Recently,
Breitbarth et al. [35] presented a practical assessment of the LiDAR Intel® RealSense™ L515.
They followed the VDI/VDE Guideline 2634 to perform the metrological characterization.
According to this guideline, they define three quality parameters: probing error, sphere-
spacing error, and the flatness measurement error. They conduct additional experiments on
different measuring distances for plane objects with different surfaces. Moreover, results
regarding the measurements of angles and the influence of the surface characteristics are
also presented.

In [36], the most advanced international standard regulation—ISO 10360-13:2121 is
used to evaluate and compare the performance of three RGB-D cameras from a metrological
perspective. Furthermore, systematic errors were analyzed for the case of the acquisition
of images of flat objects and also for the case of 3D reconstruction of objects. The sensors
chosen for this study were the Intel® RealSense™ models D415, D455, and L515. Although
the authors tested three cameras, in practice, only two different operating principles were
tested, as both the D415 and D455 work by active stereoscopy.

Most comparison studies between RGB-D cameras are focused on the metrological
characterization of sensors. All these analyses are based on the assumption that the sensor
is in a transparent medium (air) observing a non-transparent target. That is, it is assumed
that light rays reflected by the scene objects travel to the observer without being affected
by reflections and/or without crossing different physical media. However, since RGB-D
sensors are used in various applications, observed scenes can contain transparent, reflective,
and refractive elements that affect depth estimation.

This paper aims to compare the depth estimation performance of three RGB-D devices
with different operating principles in scenes containing transparency. We propose an
experimental assessment involving scenarios with well-defined transparency levels.
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3. Fundamentals
3.1. Operating Principles and RealSense Cameras

Optical depth sensing techniques can be divided into passive and active approaches [30].
Passive methods rely on the reflection of radiation (typically in the visible spectrum) naturally
present in the scene to infer the 3D distance measurement [37]. Thus, passive systems do not
interfere with the scene to obtain its depth. A well-known example of this class is the stereo-
vision system, which is inspired by the human binocular vision system. This approach uses
as an input the 2D images of two (or more for the generalized case: N-view stereo system)
monochrome or color cameras located slightly apart from each other. Depth information
can be obtained by establishing correspondences between pixels from different cameras and
then using triangulation [9]. The main drawback of passive systems is the high dependence
of texture in the scenes. This issue does not apply to active vision systems since they use
an external lighting source to provide depth information [30]. The three RGB-D cameras
addressed in this work use active approaches, based on the use of IR projectors. The core of
this work is to evaluate and compare the depth estimation performance of the three cameras
in transparent and translucent scenarios. Therefore, it is pertinent to provide an overview of
the technology behind each camera. In Figure 1, we can see the three models considered in
this paper. On the left we have the D415 model which uses active stereoscopy technology; in
the middle the LiDAR camera L515 whose operating principle is based on indirect time of
flight; and in the right the SR305 model, a structured light depth camera.

(a) (b) (c)

Figure 1. Intel® RealSense™ cameras considered in this work. (a) Intel® RealSense™ D415. (b) Intel®

RealSense™ L515. (c) Intel® RealSense™ SR305.

3.1.1. Structured Light

As aforementioned, passive methods might fail in featureless zones, since the corre-
spondences needed for the triangulation process may not be enough. Structured Light (SL)
technology addresses this issue by using light patterns to facilitate the correspondence
problem. Differently from the stereo-vision system, SL substitutes a camera with a laser
projector. Figure 2 illustrates the projector emitting various coded patterns, which, in
turn, introduce artificial features into the scene being captured by the camera. The pattern
reflected from the scene back to the camera will distort according to the shape variation
of the scene. That is, for planar targets, the pattern remains the same [38]. By decoding
the pattern, the correspondences between the projected pattern and the pattern captured
by the camera can be established. Since we have correspondences, their displacement
gives us a disparity map, which, similarly to stereo-vision, is used to estimate depth [39].
Considering that the focal length f of the camera and the baseline b between the projector
and the camera are known, the depth of a given pixel (x, y) can be estimated using the
respective disparity value m(x, y) for this pixel as

D =
b. f

m(x, y)p
, (1)

being p the pixel size in length units [21].
The design of patterns is a crucial piece in the Structured Light systems. Therefore,

several techniques have been proposed to guarantee high-resolution and high-accuracy in
3D acquisition [40]. Time-coding and Space-coding are the two fundamental categories:
in the first, multiple patterns are sequentially projected to identify each point in the scene
with a times series; in the latter, a single pattern is emitted. Time-coding should be used if
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high accuracy is a requisite. For dynamic scenes, spatial coding is more suitable, although
it implies a lower spatial resolution [41].

Figure 2. An illustration of a Structured Light sensor: the projector emits one or more patterns
sequentially onto the scene. These patterns are warped by the scene, reflected back and captured by
the camera. The scene depth is estimated by comparing the projected patterns and the distorted ones
acquired by the camera.

Regarding the pros and cons of the SL technology: the non-dependency of the scene’s
features and the capacity to achieve high resolution and high accuracy in 3D reconstruction
turn Structured Light methods very appealing. On the other hand, external factors, such
as ambient illumination and the reflectance and transparency of the surfaces drastically
affect the performance of Structured Light sensors [42]. Additionally, its triangulated-based
principle implies that the performance is affected by the physical dimensions and by the
range. Strictly speaking, the measurement uncertainty is directly related to the size of the
baseline and increases with the square of the range.

Intel® RealSense™ SR305

The Intel® RealSense™ SR305 contains the same depth module board as the SR300 cam-
era since it is basically the SR300 redesigned as an entry level depth camera, more affordable
and suitable for applications in robotics than the SR300 camera. Table 1 presents the main
specifications of SR305. Of the three cameras, it is the one with the lowest maximum depth
resolution (640× 480) and the shortest measurement range (0.2–1.5 m). Being an SL camera,
SR305 uses multiple different coded light patterns that change over time [43]. Specifically,
a time-multiplexing code, called Gray Code (GC), which is a particular type of binary
code [28], is used. Gray code patterns are a set of binary patterns coded by intensity, e.g.,
dark for 0 and bright for 1. Every adjacent code word with 2N bits differs by only one bit,
where N is the sequence number of the patterns. In this way, GC minimizes errors allowing
us to obtain accurate correspondences between camera pixels and projector. In Figure 3, an
example of Gray code patterns for N = 3 [44] is shown [45].

The SR305’s IR projector comprises an 860 nm laser diode emitting a small spot laser
beam, a lens that expands the beam into a vertical bar, and a MEMS mirror that horizontally
scans the patterns. Therefore, while the scene is illuminated with sequential patterns, the
IR camera captures the 2D array of monochromatic pixel values that will be then processed
by the vision processor to generate a depth frame.
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An exemplar of a colorized depth frame obtained by the SR305 camera is shown in
Figure 2.

Figure 3. Gray Code patterns (N = 3).

3.1.2. Active Stereoscopy

Active stereoscopy, like passive stereoscopy, comprises two ordinary cameras that
see the same scene and match the pixels between both to estimate depth by triangulation.
The differential in AS lies in the features added to the scene through an unstructured light
pattern. These artificial features are significant for low-texture surfaces, allowing a better
reconstruction once we have many more correspondence points to triangulate [30,33]. The
triangulation principle applies in a similar manner as in SL, so the Equation (1) also applies
to AS. Consequently, we have to consider the limitations related to the triangulation-based
principle (baseline and range affecting the measurement uncertainty). The two cameras
make AS systems less sensitive to non-idealities in sensors and projectors and also to
ambient light, since the two patterns being compared will be affected by the same factors
in equal proportion [42]. In Figure 4, an illustration of the active stereoscopy technology
is shown.

Intel® RealSense™ D415

The D415 model is part of D400 series which offers complete depth cameras integrating
vision processor, stereo depth module, RGB sensor with color image signal processing, and
Inertial Measurement Unit (IMU) in the case of D435 and D455 models.

The active stereoscopy technology of D415 consists of left and right imagers and
two AMS Heptagon projectors placed side by side used to improve texture-less scenes by
projecting a non-visible static IR pattern with wavelength of 850 nm [46]. In Table 1, we give
some of the specifications of D415 model, of which we can highlight the high-resolution
depth (up to 1280 × 720 pixels at 30 frames per second), the long-range capability and a
field of view well suited for high-accuracy applications [31,47].

Examples of IR cameras frames of the D415 stereo system can be seen in Figure 4, as
well as a resulting depth frame, colorized in the function of depth values.

3.1.3. Time of Flight

The Time of Flight technology, as the name suggests, is based on measuring the time
it takes from emitting a signal until the reflection is received. Since the speed of light c is
a known constant, the distance between camera and object can be estimated [16,30,32,42].
There are two different types of ToF technology (depending on the measuring mode) which
are categorized into direct Time of Flight (d-ToF), also called Pulsed ToF, and indirect Time
of Flight (i-ToF), also known as Modulated ToF.

Direct ToF technique is based on transmitting a light pulse, receiving the reflection and
then measure the delay between the emitted and the received light pulse, ∆t. The scene
depth can be estimated as half of the measured round trip distance:

D =
c× ∆t

2
. (2)
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Figure 4. An illustration of an Active Stereoscopy sensor: The projector emits one random pattern
onto the scene. This pattern adds additional features, thus, more correspondences. The scene depth
is then estimated by triangulation using the disparity map.

On the other hand, in i-ToF, instead of measuring the delay of a single pulse trip, a
continuous modulated light is transmitted and the phase difference between outgoing and
incoming signals is measured. The phase shift (∆Φ) estimation is completed in a robust and
precise way using cross-correlation techniques. The distance can be calculated according to:

D =
c× ∆Φ

4π f
, (3)

where f is the modulation frequency. In this paper, we analyze the i-ToF principle present
in L515 camera from Intel® Realsense™.

Contrarily to structured light and active stereoscopy technologies, ToF systems have
the advantage of not being affected by their physical dimensions nor by significant oc-
clusion. The reason for the latter is that the transmitter and receiver are designed such
that they are collinear, that is, the transmitter is placed on a line close to the receiver [42].
A drawback of this system is the dependency on the reflectivity of the scene. ToF is not
ideal for dark surfaces (black/gray/shiny). Additionally, challenging lighting conditions
(e.g., outdoor environment) can limit the range. One common issue with ToF sensors is
the multiple propagation paths from the light source to pixel, commonly called multi-path
interference. This phenomenon can result from inter-reflections in the scene and/or the
lens camera system, subsurface scattering, and mixed pixels due to the solid angle viewed
by a pixel covering two distinct objects [48]. Of the three technologies presented here, this
is the most expensive.

Intel® RealSense™ L515

Intel® RealSense™ presents its only LiDAR camera as a highly accurate depth sensing
able to fit in a palm of a hand. This camera relies on the i-ToF technology explained above.
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More precisely, while a pulse is continuously transmitted and received, multiple frequencies
are cross-correlated with a known template. This correlation generates recognizable peaks
that represent the best match and the best accuracy for a specific point and this is also the
value that is then transmitted.

The L515 device comprises a transmitter, a receiver and a depth module. The transmit-
ter consists of an Edge-Emitter Laser (EEL) that modulates at 500 Mbps (megabits per sec-
ond) a continuous IR code (at 860 nm) and an advanced 2D MEMs (micro-electromechanical
system) mirror that moves the laser across the field of view [49,50]. In the receiver the return
light is collected by a single avalanche photodiode (APD) featuring low input referred
noise (IRN). This omni receiver is able to collect the light of the entire scene so it does not
follow the laser beam but it collects photo photons coming in from the full scene. The
depth module, a custom-made ASIC, is where the visual processing takes place, comprising
all cross-correlation algorithms, depth calculations, and post-processing filters. Figure 5
schematizes the ToF technology present in the L515 camera.

Figure 5. An illustration of the Time of Light technology present in L515 camera: an Edge-Emitting
laser (EEL) emits a continuous modulated IR beam that is scanned across the entire FOV through
a 2D MEMS mirror. The scene reflects the IR which is received by a single Avalanche Photodiode
(APD). The scene depth is estimated by measuring the phase delay between the transmitted and
received light beam.

Since L515 measures the depth at each pixel in a direct way, its edge resolution is
higher compared to that of other depth sensors, such as stereo cameras. The L515 outstands
from conventional ToF sensors, featuring a reduced multi-path effect. For instance, in a
scenario where we have the intersection of two walls (a corner), the L515 shows straight
walls with a small amount of curvature at the corner, while a conventional TOF camera
shows bowed walls and a much larger curvature at the intersection [49]. On the other hand,
L515 is highly dependent on the signal to noise ratio (SNR), meaning that a change in the
quality of the returned signal significantly affects the depth results.

The principal specifications of L515 can be found in Table 1.
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Table 1. Main specifications of the Intel® RealSense™ cameras considered in this work.

D415 L515 SR305 Units

Depth Measurement technology Active Stereoscopy Time-of-Flight Structured Light -
Image Sensor Technology Rolling Shutter MEMS mirror scan Global Shutter
IR max. resolution 1280 × 720 1024 × 768 640 × 480 (pix)
RGB max. resolution 1920 × 1080 1920 × 1080 1920 × 1080 (pix)
Maximum frame rate 90 30 60 (fps)
Baseline 55 - - (mm)
Depth Field of view (FOV) H: 65 ± 2|V: 40 ± 1 H: 70 ± 2|V: 55 ± 2 H: 69 ± 3|V: 54 ± 2 (°)
Measurement range 0.3–10 0.25–9 0.2–1.5 (m)
Dimension 99 × 20 × 23 61 × 26 139 × 26.13 × 12 (mm)
Weight 72 95 70 (gr)

3.2. Light Interaction with Transparent and Translucent Objects

As described above, active approaches depend (each in their way) on the returned
light then captured by the camera. The ideal conditions for which 3D active systems
are designed are the air as propagation medium (of the active light) and considering
Lambertian targets [51,52]. Their performance may be affected in non-ideal conditions by
the nature of the materials involved, or more precisely, the way that light interacts with
them [45]. When a light wave encounters an object, we can expect some phenomena, such
as transmission, reflection, absorption, refraction, scattering, and others, depending on
the composition of the object and the wavelength of the light. We can define materials in
terms of reflectance, absorbance, and transmittance. Transmittance of a material, that is, its
effectiveness in transmitting light, is the least studied property compared to the others [53].

For the sake of clarity (in this paper), there are three concepts of optics and human
perception that must be clarified: transparency, opacity, and translucency. Roughly speak-
ing, an object is described by human perception as transparent if we can see things behind
that object (high transmittance) and as opaque otherwise (low transmittance) [54]. Despite
transparency and translucency being occasionally used interchangeably, they mean dif-
ferent concepts. Translucency is understood as the intermediate phenomenon between
transparency and opacity [55].

In geometrical optics terms, a transparent surface produces both reflected and trans-
mitted light rays, as illustrated in Figure 6. Transparent objects transmit light without
diffusing it, whereas translucent ones transmit light diffused in all directions which results
in a “blurred” image of the background [55].

Figure 6. Light emission from a transparent surface is in general a combination of reflected and
transmitted light.

Translucent objects exhibit both surface and subsurface scattering (or volume scatter-
ing). Moreover, light is propagated from one point of incidence through the object’s interior,
emerging at different positions. For these reasons, the optical properties of translucent
objects are complex to analyze. The translucency of a material depends on intrinsic and
extrinsic factors. The intrinsic factors define how the light propagates thought the media.
They are the refractive index, the absorption and scattering coefficients, and the scattering
phase function. The extrinsic factors can be, among others, the illumination direction, the
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object shape/size, the surface roughness, and the color of the background behind the object.
For instance, large translucent objects will transmit less light than small translucent objects
made of the same material and shape [53].

When a light beam is incident upon a transparent surface, part of it is reflected and
part is transmitted through the material as refracted light, as illustrated in Figure 7. Because
the speed of light is different in different materials, the path of the refracted light is different
from that of the incident light. The direction of the refracted light, specified by the angle of
refraction with respect to the surface normal vector, is a function of the index of refraction
of the material and the incoming direction of the incident light. The angle θ of refraction is
calculated from Snell’s law as

sinθr =
ηi
ηr

sinθi (4)

where θ is the angle of incidence, ηi is the index of refraction for the incident material, and
ηr is the index of refraction for the refracting material. The overall effect of the refraction
is to shift the incident light to a parallel path as it emerges from the material (when the
boundary surfaces are parallel).

Figure 7. An incident light ray coming from the medium with refractive index ηi is reflected and
refracted through the directions R and T, respectively, upon a surface with refractive index ηr.

As mentioned, translucent materials exhibit scattering. The main observable conse-
quences of multiple scattering in volumetric media are spatial and angular spreading of the
incident light distribution, as could be seen in Figure 8. The absorption effect is also present
in many materials including water, however, the absorption is often orders of magnitude
smaller than the scattering.

Figure 8. Effects of multiple scattering in colloids [56]. The first picture shows us an aquarium filled
with water and a collimated laser beam running the full length of it. When milk is sequentially added
to water (2–6), the solution becomes colloidal and there is spatial and angular spreading of the laser
beam (Tyndall effect). At the point of picture 6, the laser spreading is essentially diffuse and has no
longer the directionality present in the first picture.

4. Materials and Methods
4.1. Experimental Setup

As stated in Introduction, the core of this work lies in comparing the performance
of three different operating principles in depth estimation for transparent and refractive
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targets. For this purpose, Intel® RealSense™ cameras were chosen, specifically the models
SR305 (SL) [27], D415 (AS) [46], and the newest L515 (LiDAR) [49], all operating with
the Intel® RealSense™ SDK 2. The RealSense library librealsense2 served as a basis for
all the depth acquisition software, that was coded in C++ and run in Ubuntu operating
system. For each different test, 100 depth frames were obtained and saved. In addition
to depth, data from the RGB and infrared cameras were also recorded. To ensure a fair
comparison, we set the cameras with the same depth resolution 640 × 480, since it is the
unique resolution of the SR305 camera. The remaining streaming settings were used in the
default mode, except for the L515 camera, where the “Short Range” preset was selected.
The acquisitions were made in a darkroom containing an adjustable LED board. In this
way, all the acquisitions were performed under constant illumination. Our setup for the
experiments with the aquarium was the following:

• A glass aquarium with dimensions 0.84× 0.22× 0.58 m (and about 6 mm of thickness);
• A table to support and elevate the aquarium so that the floor does not appear in the

visual field;
• A flat white wall behind the aquarium that is partially covered with a black cardboard

(Figure 9);
• A RealSense™ depth camera mounted on a tripod. The device is pointed to the

aquarium, having the optical axes approximately perpendicular to the wall.

Figure 9. An image captured by the (RGB) SR305 camera where the black cardboard on the white
wall (on the left) is visible.

Figure 10 illustrates the configuration of the experimental setup and the distances
between the camera, the aquarium, and the wall. The aquarium setup can be visualized in
the pictures of Figure 11.

Figure 10. Illustration of the experimental setup. The aquarium is located 9.7 cm away from the
wall and the camera is 31.4 cm away from the front surface of the aquarium. Since the width of the
aquarium is 22 cm, the distance between the camera and the wall is 63.1 cm.

Our experimental framework includes the following tests outlined below:

• Wall: This is a zero test where we acquire depth images directly from the wall, that
is, without any transparent objects between the camera and the wall. These depth
measurements will serve as a reference to the following tests since we do not have
ground truth for the depth.
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• Empty: In this test, the aquarium is inserted between the camera and the wall. There-
fore, we aim to analyze the influence of the two transparent glass walls of the aquarium
(with air in-between) in the depth estimation.

• Water full: This test introduces another challenging scenario regarding transparency.
The aquarium is filled with water (about 95 L). Then, between the camera and the
wall, we have a first glass wall, water, a second glass wall, and air.

• Water milk1/2/3/4: Set of tests, where the water is dyed with milk to experience different
levels of transmittance (transparency, translucency and opacity). Water milk1 is the
less opaque of the four, with a milk concentration of 0.03% (v/v). Then, water milk2
with 0.13% (v/v) and water milk3 with 0.24% (v/v) Finally, the most opaque solution,
water milk4 with 1.13% (v/v).

For each of these experiments, the cameras were sequentially switched. In Figure 11,
we can see the pictures regarding the test water full and also the tests water milk1/2/3/4.
Examples of depth frames acquired by the three cameras for each transparency scenario
are shown in Table A1.

(a)

(b) (c)

(d) (e)

Figure 11. Pictures showing the aquarium at different stages of the experiment. (a) water full.
(b) water milk1. (c) water milk2. (d) water milk3. (e) water milk4.

4.2. Experimental Evaluation

Since the camera SDK provides its intrinsic parameters, it was possible to convert
the depth frames into point clouds [47]. Given the pixel coordinates and the respective
depth measurements dm in an image with no distortion, the corresponding 3D points were
computed. The z coordinates correspond to the depth values measured at that points, i.e.,
z = dm. The coordinates x and y were computed as follows:

x = z× u− ppx

fx
(5)

y = z×
v− ppy

fy
(6)

where (u, v) are the pixel coordinates, (ppx, ppy) are the coordinates of the principal point
and fx and fy are the focal lengths in pixel units.
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An example of a depth frame converted to a point cloud is shown in Figure 12. Since a
D415 acquisition is given as an example, it is visible in the frame’s leftmost area the invalid
depth band, a D415’s particularity that is explained in [46].

(a) (b)

Figure 12. Example of a depth frame from the acquisition D415—empty converted to a point cloud.
(a) Depth frame (by D415 camera) colorized in the function of depth values. (b) Point cloud.

4.2.1. Depth Estimation Failure Rate

One way to evaluate the sensors performance in first instance is through the number
of points per image where the cameras failed to estimate depth. These points correspond
to the invalid pixels in the frames, i.e., pixels whose cameras cannot estimate a depth value
and their value is set to zero by the Intel RealSense SDK. Considering that in this article the
analysis is performed in relation to 3D points, instead of invalid pixels, we use the term
invalid points. Therefore, the evaluation of the invalid points was conducted as follows:

1. For each experiment (Camera-test), two Regions of Interest (RoI) were segmented—
the right band (rb) and the left band (lb). The decision of having two different regions
aimed at allowing the evaluation of the depth estimation as a function of the material
reflectivity. Thus, the left band is a RoI with a black background (a cardboard) and
the right band is a RoI with a white background (the wall). These areas were carefully
selected (avoiding artifacts and the invalid band of D415) and defined in a frame (as
illustrated in Figure 13a). A single frame out of 100 was used to select and define
the two RoIs. The RoIs so defined were the same for all the frames of the same
acquisition. Figure 13b shows the respective representation of the segmented regions
in the generated point cloud.

2. For each one of the 100 samples, the points in the RoIs whose depth estimation failed
were counted and the percentage of invalid points was obtained. Then, the average of
the 100 percentages for each experiment was estimated.

(a) (b)

Figure 13. Example of a depth frame with segmented regions and respective point cloud with the
segmented regions from the acquisition D415—empty. (a) Depth frame with segmented bands/regions.
(b) Point cloud with segmented bands/regions. The left band is colored in magenta and the right band
is colored in cyan.

By using regions to do the analysis, we can evaluate and compare the performance of
the cameras against the two different backgrounds on the wall. Due to the dependence of
L515 and SR305 on the reflection of the IR pattern, they perform worse on dark surfaces,
as expected. So, it would be unfair to evaluate everything homogeneously. Furthermore,
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this approach also leaves out the invalid band of the D415. In Appendix A, the segmented
bands for all the Camera-test experiments are shown (Table A1).

4.2.2. Depth Precision

The precision was evaluated in terms of point-to-plane orthogonal distances. Given the
3D structure of the scene, it was considered that a reference plane corresponding to the wall
should be considered. Even though in some of the experiments points belonging to other
planes were detected, and for each experiment, a single dominant plane was considered.

Therefore, the point clouds were fit onto a single dominant plane, i.e., the following
plane equation was used:

xnx + yny + znz − d = 0 (7)

where (nx, ny, nz) are the components that constitute the unitary normal, (x, y, z) are the
points coordinates and d stands for distance from plane to the origin.

Total Least Squares (TLSs) were used to estimate the plane parameters. The processing
steps applied to the data are described below and illustrated in Figure 14 (for a single case).
Additionally, Table 2 shows the structures of the point clouds.

1. Coherent points filtering: In this process, only the coherent points of each point cloud
are saved to further be concatenated. We designate as a coherent point a point that
in all the 100 point clouds meets the following condition 0 m < z < 0.7 m, with z
being the depth. That is, the coherent point depth has to be greater than zero, since
the SDK sets depth to zero in case of an invalid depth measure. Additionally, the
coherent point depth must be less than 0.7 m, given that the wall is 0.63 m away from
the cameras and so points with depth beyond this value are physically impossible.
The coherent point depth must be within this range for all 100 point clouds. Otherwise,
this point is excluded and will not be saved in the concatenated point cloud. In Figure
14, we can visualize one of 100 point clouds in raw Figure 14a, named ptCloud_raw.
Furthermore, the same point cloud after filtering for coherent points is in ptCloud_filt.

2. Concatenation: We concatenate all the 100 point clouds into a single one. In other
words, considering a filtered point ptCloud_filti with i = 1, . . . , N and N = 100, a fil-
tered point cloud has a shape, such as (3, n(ptCloud_filti)), where n(ptCloud_filti)
is the number of points of the filtered point cloud i. The concatenated point cloud—the
ptCloud_concat has the shape ptCloud_concat(3, ∑N

i=1 n(ptCloud_filti). A point
cloud ptCloud_concat resulting from the concatenation is shown in Figure 14c.

3. Removal of outliers: Despite the previous coherent points filtering, there are still
artifacts in the point clouds. In Figure 14c, we can observe a cluster of 3D points
distant (in the Z axis) from a potential cluster to a plane. Therefore, it is important
to remove outliers from the ptCloud_concat with respect to the depth values (the z
coordinate of the 3D points). So, a point was considered an outlier if its Z coordinate
is greater than three scaled median absolute deviations (MAD). The scaled MAD is
defined as follows:

C× (median(|xi −median|)), i = 1, 2, 3, . . . , n (8)

C =
1√

2ICE(3/2)
(9)

where xi is the depth value of the i point, n is the number of points and ICE is
the Inverse Complementary Error [57]. Figure 14d shows the resulting point cloud
ptCloud_in with inlier points.

4. Data centering: Each set of points was centered in the X and Y axes so that their
center of mass is positioned at the center of the XY’s plane of the camera’s coordinate
system. Figure 14e presents the centered point cloud—ptCloud_cent.

5. Fitting point clouds to planes: After the described processing steps, we have 21 point
clouds (of type ptCloud_cent) corresponding to the three cameras and the seven dif-
ferent tests. Planes were then estimated for these point clouds. The Total Least
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Squares (TLS) method, also known as Orthogonal Regression method, was used to
estimate the parameters. TLS minimizes the sum of the squared orthogonal distances
between the points and the estimated plane [58]. In [59], we can find the fundamentals
and the mathematical equations used to estimate the plane. For the practical estima-
tion with the TLS method, the Principal Component Analysis (PCA) was used, based
on the MATLAB example [60]. In Figure 14f, we can see an example of an estimated
plane, as well as the orthogonal distances between the plane and the data points. In
Appendix B, plots with the orthogonal distances for all cameras and tests are shown.

6. Analysis of the orthogonal distances: The orthogonal distances are analyzed in
terms of descriptive statistics (statistical measures of central tendency and statistical
dispersion). The formulas used for the descriptive statistics of a set of observations
x1, . . . , xn (which correspond to the estimated orthogonal distances) are the following:

• Arithmetic mean

x̄ =
1
n

(
n

∑
i=1

xi

)
. (10)

• Median

x̃ =

{
the n+1

2 -th element, if n is odd
the mean of the n

2 -th and the ( n
2 + 1) -th element, if n is even.

(11)

• Standard Deviation

σ =

√
1

n− 1

n

∑
i=1
|xi − x̄|2. (12)

• Mean Squared Error (MSE)

MSE =
∑n

i=1(xi − x̂i)
2

n
. (13)

where n is the number of the observations (in this case, the number of the orthogonal
distances) and x̂i is the corresponding predicted value by the model.

4.2.3. Precision in Terms of Plane Modeling Consistency

In the previous sections, an estimated plane model was obtained for every camera-test
experiment with the corresponding analysis being focused on the orthogonal distances. In
order to assess the consistency of the plane parameters (especially the normal), we also carry
out an additional analysis where instead of estimating the plane for the concatenated point
cloud, planes are calculated for each and every one of the 100 point clouds (after filtering
and with outliers removal). Once again, descriptive statistics (statistical measures of central
tendency and statistical dispersion) were used to characterize the observations, that are, in
this case, the estimated parameters. Moreover, directional statistics are employed on the
planes’ normal vectors to better describe the model’s variation. All the formulas regarding
circular statistics and spherical statistic are given in the Appendix C.

4.2.4. Qualitative Analysis of Depth Distribution

In order to qualitatively evaluate the distribution of depth as a function of different
materials with different degrees of transparency/translucency (glass, water, and water and
milk solution), all the 100 acquisitions from each test were used. Having the point clouds,
we estimated the average depth (i.e., the z coordinate) for each point (in the image) from
the 100 samples. To exclude non-stable depth values, we did not estimate depths for those
points where less than 80 positive depths (out of 100 measurements) were obtained. This
data analysis allows us to qualitatively analyze the estimation of depth, as a function of
the material.



Sensors 2022, 22, 7378 17 of 40

(a) (b)

(c) (d)

(e) (f)

Figure 14. Methodology steps for the case of D415—water full. (a) ptCloud_raw. (b) ptCloud_filt.
(c) ptCloud_concat. (d) ptCloud_in. (e) ptCloud_cent. (f) Estimated plane and orthogonal distances.
Positive orthogonal distances are colored in red and negative in green. For visualization purposes,
(f) contains a sub-sample of the estimated orthogonal distances. That is, the distances were displayed
with a ratio of 1

1000 regarding the total number of distances.

Table 2. The structure of the point clouds at different processing stages for the case of D415—
water full.

nº Points X Limits Y Limits Z Limits

ptCloud_raw 307, 200 [−11.2596, 0.0066] [−2.5039, 0.6715] [0, 27.7300]

ptCloud_filt 233, 977 [−0.3198, 0.0066] [−0.2086, 0.0763] [0.3080, 0.7000]

ptCloud_concat 18, 229, 200 [−0.3068, 0.0067] [−0.2090, 0.0770] [0.3090, 0.7000]

ptCloud_in 18, 126, 707 [−0.3068, 0.0067] [−0.2090, 0.0770] [0.5390, 0.5890]

ptCloud_cent 18, 126, 707 [−0.1788, 0.1346] [−0.1421, 0.1439] [0.5390, 0.5890]

5. Results and Discussion

The results presented in this section are organized according to the methodologies
(described in the previous section) used to asses the depth estimation performance of the



Sensors 2022, 22, 7378 18 of 40

cameras in the configurations considered. The results are discussed within a framework of
a comparison between the cameras performances.

5.1. Results and Discussion Regarding Depth Estimation Failure Rate

Table 3 shows the results for the average percentage of invalid points regarding the
points existing in the right band and in the left band. The results show that the D415 camera
outperforms L515 and SR305 since it has the smallest failure rates for each test and in both
bands. As expected, the results show that the color background (being white or black)
affects the failure rate of depth estimation, particularly for the L515 and SR305 cameras that
are highly dependent on the laser reflection. As expected, the experiments with smaller
failure rates, independently of the cameras, are the those corresponding to the wall test. The
results for empty test and for the water full test have failure rates slightly higher. Regarding
the tests with milk, the results are more complex to analyze. A higher concentration of
milk in water leads to higher light scattering (Figure 8) and depth can not be estimated
at bigger distances. In those cases (and due to the decrease in transparency) the first
wall of the aquarium is detected and most depth estimates correspond to this first wall
of the aquarium. In what concerns tests water milk3 and water milk4, D415 presents low
percentages of invalids points since the milk present in water is enough for the camera
to detect the first wall of the aquarium. For the L515 camera, the average percentage in
the water full test is almost 100% in the left band. That means that the L515 camera can
not estimate depth for the full aquarium (with only water) when the background is dark.
Adding milk to water, we observe a similar pattern in results as for D415. The SR305
exhibits the worst results. This camera is only capable of estimate depth in the left band for
the water milk4. This is explained by the fact of, in water milk4, the opacity of the water–milk
solution prevents the detection of the black cardboard visible (for the infrared patterns).

Table 3. Average percentage of invalid points for the right band and left band.

D415wall D415empty D415w_ f ull D415w_milk1 D415w_milk2 D415w_milk3 D415w_milk4

¯f %rb 0.0041 0.0150 0.0177 0.0001 37.9954 0.6936 0.0000
¯f %lb 0.0000 0.0011 0.2806 81.4556 2.3833 1.0275 0.0147

L515wall L515empty L515w_ f ull L515w_milk1 L515w_milk2 L515w_milk3 L515w_milk4

¯f %rb 0.0000 0.0000 0.0321 1.4239 87.9116 2.5124 0.0000
¯f %lb 0.0014 8.0577 99.8891 99.9018 0.7502 0.0417 0.0000

SR305wall SR305empty SR305w_ f ull SR305w_milk1 SR305w_milk2 SR305w_milk3 SR305w_milk4

¯f %rb 0.0000 0.0021 100.0000 100.0000 100.0000 100.0000 0.0378
¯f %lb 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 0.0198

¯f %rb—Average of percentage of invalid points regarding the RoI right band (rb). ¯f %lb—Average of percentage of
invalid points regarding the RoI left band (lb).

5.2. Results and Discussion Regarding Depth Precision—Orthogonal Distances

The statistical analysis of the orthogonal distances, obtained by estimating planes in
the point clouds, is given in Tables 4 and 5. In addition to the statistical parameters, the
estimated distance from the camera to the plane and the percentage of points used for the
plane estimation are also included in the table. The distance to the plane is relevant to
determine which was the plane of the scene that was estimated (since the scene contains
multiple planes namely the wall and the aquarium front and back walls). On the other
hand, the percentage of points used is also pertinent since a greater number of points is
advantageous to the quality of the estimates. The percentage of points used was calculated
based on the initial number of points (from the initial point cloud without filtering) and the
number of final points (after the processing steps described in Section 4.2.2). Due to the
low percentage of points used in some of the acquisitions, the corresponding analysis was
not performed.
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In the first table (Table 4), we have the results for the experiments wall, empty and
water full.

In the case of the wall test, the estimated distance from the cameras to the wall plane
(one of the parameters computed by the TLS method) is approximately 0.63 m, which
coincides with the measured distance between the cameras and the wall. The L515 camera
has the biggest percentage of points used in the estimation (98%) whereas the D415 has less
9% (89%) and the SR305 has only 49%. This result from SR305 is due to the black cardboard
existing in the background that absorbs the projected patterns. Regarding the statistical
estimates, the smallest median of the signed distances median corresponds to D415 with an
order of magnitude of O− 5. For the median of the absolute distances, the three cameras
have the same order of magnitude values (O − 3), with the D415 having the smallest value.
In what concerns the average of signed distance values, D415 has the biggest orthogonal
distances average (which is very small O − 19).

In the case of the average of absolute distances, the smallest average is for the D415
(O− 3). Both the standard deviation (std) for signed distances and the standard deviation
for absolute distances have the same order of magnitude (O − 3) for the three cameras,
with the D415 having the smallest value. In what concerns the estimated MSE (mean
squared error) the smallest value is for the D415 with a value with an order of magnitude
of O − 6. Therefore, in the wall test, and for the three cameras, we have very small distance
errors. Regarding the dispersion parameters, the small values of MSE and std indicate a
concentrated distribution of the error distance values. For the wall test, and overall, D415
has the best performance.

In the test empty, the estimated distance to the plane is still approximately 0.63 m for
the three cameras. The number of used points decreases for all cameras, though the D415
has the smallest decrease. The overall analysis of the results show that also in this case
D415 has the best results.

Additionally, in Table 4, we have the water full test, where the estimated distances to
planes are different from the previous tests. For the D415, we have a plane estimated at 0.56
m, the L515 estimates a plane at 0.67 m and the SR305 at 0.31 m. The number of points used
to compute the estimates decreases for all cameras. The reduction is more significant for
the L515 and SR305 cameras which use only 9% and 0.4% of points, respectively. Given the
very small number, the data for the SR305 were not analyzed. Overall the results for D415
and L515 are similar.

Then, in the following table (Table 5) the results for the experiments with milk are
presented. In some of the tests, the model parameters as well as the distances were not
estimated given the size of the dataset. Overall, the estimates obtained with the D415 are
the best in water milk tests. D515 is the only of the 3 cameras for which the number of points
was considered sufficient to allow to estimate the plane parameters.

The following histograms (Figures 15, 16 and 17) represent the distribution of the
number of points (relative frequency) with respect to the orthogonal distances to the
estimated plane (relative orthogonal distance). It allows and enables a visual evaluation of
the results presented in the tables. For example, and in the case of the D415 camera, the
histograms show that the distribution of the points relative to the orthogonal distances is
less spread out than those corresponding to the L515 and SR305 (for the same experiment).
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Table 4. Results for orthogonal distances to planes for the experiments wall, empty and water full.
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x̄(
|ε|
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8

σ(
|ε|
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D415 wall 88.7129% 0.6393 m −9.34× 10−5 −2.50× 10−19 0.0021 4.50× 10−6 0.0015 0.0017 0.0013
empty 80.2240% 0.6266 m −2.01× 10−5 6.03× 10−20 0.0024 5.68× 10−6 0.0016 0.0019 0.0014
water full 59.3398% 0.5630 m −2.40× 10−4 −7.53× 10−20 0.0053 2.80× 10−5 0.0040 0.0044 0.0030

L515 wall 97.7275% 0.6441 m 6.55× 10−4 1.70× 10−20 0.0038 1.45× 10−5 0.0023 0.0029 0.0025
empty 67.6309% 0.6414 m 0.0014 1.01× 10−19 0.0059 3.51× 10−5 0.0021 0.0036 0.0047
water full 8.9310% 0.6748 m 4.81× 10−4 3.96× 10−20 0.0060 3.55× 10−5 0.0038 0.0046 0.0037

SR305 wall 48.9993% 0.6407 m 4.13× 10−5 5.75× 10−20 0.0055 3.01× 10−5 0.0027 0.0038 0.0040
empty 28.2650% 0.6248 m −1.89× 10−5 7.50× 10−19 0.0025 6.21× 10−6 0.0016 0.0020 0.0015
water full 0.3529% 0.3075 m - - - - - - -

1 Percentage of used points regarding the initial points (of the original point cloud). 2 Distance from plane to camera. 3 Median of the orthogonal distances ε. 4 Mean of the orthogonal
distances ε. 5 Standard deviation of the orthogonal distances ε. 6 Mean Squared Error of the orthogonal error distances. 7 Median of the absolute orthogonal distances ε. 8 Mean of the
absolute orthogonal distances ε. 9 Standard deviation of the absolute orthogonal distances ε.

Table 5. Results for orthogonal distances to planes for the experiments water milk1, water milk2, water milk3 and water milk4.
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D415 water milk1 38.7015% 0.5681 m −2.51× 10−5 −1.39× 10−19 0.0025 6.03× 10−6 0.0016 0.0020 0.0015
water milk2 8.5417% 0.3411 m 8.56× 10−5 −3.49× 10−20 0.0018 3.11× 10−6 0.0011 0.0013 0.0011
water milk3 36.8538% 0.3419 m 2.49× 10−5 2.21× 10−19 0.0017 2.82× 10−6 0.0011 0.0013 0.0010
water milk4 78.2705% 0.3257 m 1.05× 10−4 3.03× 10−19 0.0011 1.28× 10−6 6.50× 10−4 8.21× 10−4 7.81× 10−4

L515 water milk1 1.1019% 0.4221 m - - - - - - -
water milk2 21.9079% 0.3867 m −5.01× 10−5 −4.17× 10−19 0.0132 1.75× 10−4 0.0083 0.0103 0.0103
water milk3 54.7113% 0.3921 m 3.37× 10−4 −1.52× 10−19 0.0101 1.03× 10−4 0.0065 0.0080 0.0063
water milk4 99.3779% 0.3798 m 6.29× 10−5 9.68× 10−21 0.0035 1.24× 10−5 0.0025 0.0029 0.0021

SR305 water milk1 0.0918% 0.0177 m - - - - - - -
water milk2 0.1139% 0.0519 m - - - - - - -
water milk3 0.0579% 0.0222 m - - - - - - -
water milk4 45.4095% 0.3370 m −1.45× 10−4 −1.51× 10−19 0.0025 6.03× 10−6 0.0013 0.0018 0.0017

1 Percentage of used points regarding the initial points (of the original point cloud). 2 Distance from plane to camera. 3 Median of the orthogonal distances ε. 4 Mean of the orthogonal
distances ε. 5 Standard deviation of the orthogonal distances ε. 6 Mean Squared Error of the orthogonal error distances. 7 Median of the absolute orthogonal distances ε. 8 Mean of the
absolute orthogonal distances ε. 9 Standard deviation of the absolute orthogonal distances ε.
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Figure 15. Histogram of orthogonal distances for the D415 camera.

Figure 16. Histogram of orthogonal distances for the L515 camera.
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Figure 17. Histogram of orthogonal distances for the SR305 camera.

5.3. Results and Discussion Regarding Plane Modeling Consistency

As aforementioned in Section 4.2.3, the consistency of the planes estimation was eval-
uated in terms of statistical parameters. More specifically, the standard deviations of the
components of the normal to the plane and the spherical variance of the normal were
estimated. Table 6 presents the results for the standard deviations and for the spherical
variances for the cases of the three cameras and for the seven different experiments. Simi-
larly to the the previous results (Section 5.2), the parameters were not estimated when the
number of points was small.

One remark that can be made, from the analysis of the results, is related to the standard
deviations of the components of the normal. The z component of the normal always has
consistently a smaller standard deviation than the other two components. This results from
the specific configuration of the setup, where all the planes are approximately perpendicular
to the optical axes of the cameras.

The behavior of the standard deviations is similar for the cases of the three cameras
(relative to the types of experiments) with the smallest values corresponding to the wall
experiment. In all the other experiments the standard deviations increase, except for the
case of water milk4 (less transparent) where their orders of magnitude are similar to the
values of the wall experiment.

Regarding the spherical variance, the smallest variance corresponds to the wall acquisi-
tion from D415 with an order of magnitude of O − 6. All the other variances have a higher
order of magnitudes. For the three cameras, the highest spherical variances corresponds to
the acquisitions water milk2 and water milk3.

The evaluation of the variation of the plane normals throughout the various experi-
ments allows us to conclude that the D415 has smallest standard deviations and spherical
variances in all the scenarios compared to L515 and SR305. Therefore, the D415 provides
more stable estimates of the planes and so, more consistency/precision in depth estimations.
As expected, the cameras more dependent on the laser/light reflection are less stable in
scenarios with transparent and translucent surfaces.

5.4. Results and Discussion Regarding Depth Distribution

In Figure 18, the histograms that show the relative number of points as a function of
the average estimated depths are presented.
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Table 6. Camera precision in terms of plane modelling consistency: Standard deviations of the normal
components and spherical variance of the normal.

Cam
er

a

Acq
uisi

tio
n

σ n x
1

σ n y
2

σ n z
3

V sp
h
4

D415 wall 3.4× 10−4 2.4× 10−4 3.2× 10−5 7.2× 10−6

empty 4.3× 10−4 4.3× 10−4 1.8× 10−5 1.1× 10−4

water full 1.3× 10−3 1.1× 10−3 7.9× 10−5 3.1× 10−4

water milk1 1.7× 10−3 1.1× 10−3 1.9× 10−4 1.2× 10−4

water milk2 4.4× 10−3 2.4× 10−3 1.9× 10−4 3.2× 10−3

water milk3 2.1× 10−3 1.9× 10−3 8.4× 10−5 2.2× 10−3

water milk4 3.2× 10−4 2.6× 10−4 2.3× 10−5 1.3× 10−5

L515 wall 8.0× 10−4 5.4× 10−4 4.0× 10−5 1.3× 10−4

empty 1.0× 10−3 4.4× 10−4 3.4× 10−5 3.1× 10−4

water full 4.1× 10−3 2.8× 10−3 1.3× 10−4 8.8× 10−3

water milk1 - - - -
water milk2 1.1× 10−2 8.1× 10−3 8.9× 10−4 1.0× 10−2

water milk3 3.6× 10−3 3.4× 10−3 5.0× 10−5 6.7× 10−2

water milk4 1.1× 10−3 7.3× 10−4 2.5× 10−5 1.4× 10−3

SR305 wall 9.7× 10−3 5.6× 10−4 4.3× 10−4 1.3× 10−2

empty 9.2× 10−3 3.6× 10−4 3.2× 10−4 1.4× 10−2

water full 2.0× 10−2 1.2× 10−2 4.1× 10−4 3.3× 10−1

water milk1 - - - -
water milk2 - - - -
water milk3 - - - -
water milk4 4.7× 10−3 6.3× 10−4 2.7× 10−4 1.5× 10−3

1 Standard deviation of the x component of the normal given by the estimated plane model. 2 Standard deviation
of the y component of the normal given by the estimated plane model. 3 Standard deviation of the z component
of the normal given by the estimated plane model. 4 Spherical variance of the normal given by the estimated
plane model.

It should be noted that the bars at 0m represent the relative frequency of the number
of invalid points, that is, points where the cameras were unable estimate a depth value
with their value being set to zero. In the wall test, the three cameras have a distribution of
the depth estimates with peaks of the relative frequencies at 0.63 m (corresponding to the
distance between the camera and the wall). The peaks continue to occur at 0.63 m for the
the empty test.

The results show that the transparency of the empty aquarium barely affects the
estimation of the wall for the three cameras. On the other hand, when the aquarium is
filled with water, depth estimation is significantly affected, especially for the SR305 camera
and also for the L515. In the case of the L515 camera, the offset of the depth estimation
can be explained by the time-of-flight operating principle that the camera uses. This
is because the IR rays emitted by the sensor are refracted and their velocities in water
are greatly attenuated. The speed of light in water is 2.26 × 108 m/s while in air it is
2.99 × 108 m/s. Thus, the flight time will be longer and the estimated distance will be
greater than the actual distance. The addition of milk to the water in the aquarium adds to
the problems with the estimates obtained with the SR305 and L515 cameras. This behavior
results from the phenomenon shown in Figure 8. That is, the infra red light used by the
cameras undergo significant multiple scattering along the aquarium.
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Figure 18. Histograms for each acquisition (allowing a comparison between cameras): each histogram represents the relative frequency for each average depth value
estimated by each camera.
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6. Conclusions

In this paper, we have presented an experimental assessment of depth estimation
performance for three low-cost RGB-D cameras, with different operating principles, in
scenes with transparent and translucent objects. After reviewing the literature, no research
has been found to evaluate and compare these three state-of-the-art cameras, or similar
cameras with these operating principles in scenarios with transparent and translucent
objects. The authors [34] have also presented an evaluation comparing these same cameras
but in a different context, where the cameras have to estimate depth of a white wall at
different distances. The operating principles of each camera have been investigated to
better understand the relative disadvantages or advantages of each camera for the specific
experiments of the evaluation. We have proposed a set of different experiments that have
been performed in a controlled environment, a darkroom with controlled light conditions.
In the experiments, an aquarium has been used to introduce different levels of transparency
and translucency, having been filled with water and with water–milk mixtures with four
different concentrations. On the white wall behind the aquarium, a black cardboard has
been used to create a difficult surface for the active estimation of depth. On the other
hand it also enabled the visual perception of the degree of translucency of the mixture
of water and milk. Depth image acquisitions were performed and converted into point
clouds to facilitate the processing of depth data. The performance of the depth estimates
has been evaluated in terms of failure rate, statistical analysis of point-to-planes orthogonal
distances, and consistency of the estimated normal vectors. Furthermore, a qualitative
analysis of the depth distribution is performed. The results obtained through the different
analyses provide the following conclusions:

– The black cardboard was a significant constraint for the SR305 and L515 cameras,
being more significant for the SR305;

– The transparency due to the aquarium glass walls do not affect the depth estimation
in the three cameras. The wall is detected by all the cameras in a consistent way;

– When the aquarium is filled with water, we have a more complex degree of trans-
parency that negatively impacts depth estimation. The SR305 and the L515 are the
most affected, having a high failure rate and very few coherent points to estimate
consistent planes;

– The water–milk mixture is a true issue even for the D415 camera. Still, the D415
continues to outperform the other two. The translucency of the water–milk mixture
transmits light diffused in all directions, which drastically interferes with the entire
operating principle of the SR305 and L515 cameras that emit an infra-red light that
which ends up being interfered.

In general, comparing the precision of the three cameras, the D415 camera has advan-
tage over the L515 and SR305 when facing transparent or translucent objects. As expected,
the structured light technology of SR305 is drastically affected by transparency or translu-
cency. The transparent/translucent objects inserted between the SR305 and the actual
target work as barriers to the patterns preventing these from being projected in the target.
Since L515 is highly dependent on the signal to noise ratio (SNR), a change in the quality
of the returned signal, caused by the interference of transparent or translucent objects,
significantly affects the depth estimates. On the other hand, the two cameras of D415
makes the system less sensitive to external factors (the transmittance of the material in
this case), since the two patterns being compared will be affected by the same factors in
equal proportion.
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Appendix A. Depth Frames with the Segmented Bands

Table A1. Depth frames acquired by the D415, L515, and SR305 cameras for seven different trans-
parency scenarios and the segmented bands (rb and lb).

D415 L515 SR305

Plane

Empty

Water_full

Water_milk1
(0.03% milk)

Water_milk2
(0.13% milk)

Water_milk3
(0.24% milk)

Water_milk4
(1.13% milk)
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Appendix B. Fitted Planes and Orthogonal Distances

Appendix B.1. Results for the D415 Camera

Figure A1. Results of orthogonal errors for the D415 camera referring to the wall test.

Figure A2. Results of orthogonal errors for the D415 camera referring to the empty test.
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Figure A3. Results of orthogonal errors for the D415 camera referring to the water full test.

Figure A4. Results of orthogonal errors for the D415 camera referring to the water milk1 test.
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Figure A5. Results of orthogonal errors for the D415 camera referring to the water milk2 test.

Figure A6. Results of orthogonal errors for the D415 camera referring to the water milk3 test.
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Figure A7. Results of orthogonal errors for the D415 camera referring to the water milk4 test.

Appendix B.2. Results for the L515 Camera

Figure A8. Results of orthogonal errors for the L515 camera referring to the wall test.
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Figure A9. Results of orthogonal errors for the L515 camera referring to the empty test.

Figure A10. Results of orthogonal errors for the L515 camera referring to the water full test.
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Figure A11. Results of orthogonal errors for the L515 camera referring to the water milk1 test.

Figure A12. Results of orthogonal errors for the L515 camera referring to the water milk2 test.
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Figure A13. Results of orthogonal errors for the L515 camera referring to the water milk3 test.

Figure A14. Results of orthogonal errors for the L515 camera referring to the water milk4 test.
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Appendix B.3. Results for the SR305 Camera

Figure A15. Results of orthogonal errors for the SR305 camera referring to the wall test.

Figure A16. Results of orthogonal errors for the SR305 camera referring to the empty test.
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Figure A17. Results of orthogonal errors for the SR305 camera referring to the water full test.

Figure A18. Results of orthogonal errors for the SR305 camera referring to the water milk1 test.



Sensors 2022, 22, 7378 36 of 40

Figure A19. Results of orthogonal errors for the SR305 camera referring to the water milk2 test.

Figure A20. Results of orthogonal errors for the SR305 camera referring to the water milk3 test.
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Figure A21. Results of orthogonal errors for the SR305 camera referring to the water milk4 test.

Appendix C. Analyzing the Planes’ Normal with Directional Statistics

Appendix C.1. Circular Statistics for the Normal

Firstly, we have to convert the normal from Cartesian coordinates to
Spherical coordinates: 

θ = tan−1
(

ny
nx

)
φ = tan−1

(
nz√

n2
x+n2

y

)
(A1)

The mean directions of the normal (θ̄, φ̄) are estimated according to [61], i.e., the Carte-
sian coordinates of the center of mass ¯C, S̄ are obtained:{

C̄θ = 1
n ∑n

j=1 cosθj S̄θ = 1
n ∑n

j=1 sinθj

C̄φ = 1
n ∑n

j=1 cosφj S̄φ = 1
n ∑n

j=1 sinφj
(A2)

and then (θ̄, φ̄) are given by:

θ̄ =

tan−1
(

S̄θ
C̄θ

)
if C̄θ ≥ 0

tan−1
(

S̄θ
C̄θ

)
+ π if C̄θ < 0

(A3)

φ̄ =

tan−1
(

S̄φ

C̄φ

)
if C̄φ ≥ 0

tan−1
(

S̄φ

C̄φ

)
+ φ if C̄φ < 0

(A4)

The sample circular variance was estimated was follows:

Vθ = 1− R̄θ Vφ = 1− R̄φ, (A5)

where the Mean Resultant Length R̄ is the length of the center of mass vector and is given by

R̄θ,φ = (C̄2
θ,φ + S̄2

θ,φ)
1/2. (A6)
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By transforming the sample variance V, we have the sample circular standard deviation:

vθ = −2log(1−Vθ)
(1/2) vφ = −2log(1−Vφ)

(1/2). (A7)

Appendix C.2. Spherical Statistics for the Normal

Consider a collection of points P1, . . . , Pn on the surface of the unit sphere centered at
O, with Pi corresponding to a unit vector with spherical coordinates (θiφi) and direction
cosines:

xi = sinθicosφi y = sinθisinφi z = cosθi i = 1, . . . , n. (A8)

Let

Sx =
n

∑
i=1

xi Sy =
n

∑
i=1

yi Sz =
n

∑
i=1

zi (A9)

Then
R =

√
S2

x + S2
y + S2

z (A10)

so that (θ̄, φ̄) has direction cosines (x̄, ȳ, z̄ = (Sx/R, Sy/R, Sz/R).
Thus 

sinθ̄cosφ̄ = x̄
sinθ̄sinφ̄ = ȳ
cosθ̄ = z̄

(A11)

hence

θ̄ = cos−1(z̄), 0° ≤ θ̄ ≤ 180°; (A12)

φ̄ = tan−1(ȳ/x̄), 0° ≤ φ̄ ≤ 360° (A13)

(θ̄, φ̄) is called the mean direction of the n unit vectors, R the resultant length, and
R̄ = R/n, the mean resultant length.

The sample Spherical Variance, Vsph, can be estimated by:

Vsph = 2(1− R̄). (A14)
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