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Abstract: Coordinated positioning based on direction of arrival (DOA)–time difference of arrival
(TDOA) is a research area of great interest in beyond-visual-range target positioning with shortwave.
The DOA estimation accuracy greatly affects the accuracy of coordinated positioning. With existing
positioning methods, the elevation angle’s estimation accuracy in multipath propagation decreases
sharply. Accordingly, the positioning accuracy also decreases. In this paper, the elevation angle
is modeled as a random variable, with its probability distribution reflecting the characteristics of
multipath propagation. A new coordinated positioning method based on DOA–TDOA and Bayesian
estimation with shortwave anti-multipath is proposed. First, a convolutional neural network is used
to learn the three-dimensional spatial spectrogram to make an intelligent decision on the number
of single and multiple paths, and to obtain a probability distribution of the elevation angle under
multiple paths. Second, the elevation angle’s estimated value is modified using the elevation angle’s
probability distribution. The modified elevation angle’s estimated value is substituted into a DOA
pseudo-linear observation equation, and the target position’s estimated value is obtained using the
matrix QR decomposition iteration algorithm. Finally, a TDOA pseudo-linear observation equation is
established using the target estimate obtained in the DOA stage, and the coordinated positioning
result is obtained using the matrix QR decomposition iteration algorithm again. Simulation results
demonstrated that the proposed method had a stronger anti-multipath capability than traditional
methods, and it improved the coordinated positioning accuracy of the DOA and TDOA. Measured
data were used to validate the proposed method.

Keywords: shortwave; coordinated positioning; anti-multipath; prior information; deep learning

1. Introduction

Shortwave communication is an important means of long-distance communication
and it has the characteristics of high destructibility and strong mobility. Shortwave signal
source positioning has wide applications in both the military and civilian fields [1,2]. Target
positioning based on position parameters is the main method for shortwave positioning.
The position parameters mainly include direction of arrival (DOA), time of arrival, time
difference of arrival (TDOA), and frequency difference of arrival. Usually, a single posi-
tioning parameter can be used to estimate the target position; however, a combination
of multiple parameters can effectively improve the positioning accuracy [3]. DOA posi-
tioning and TDOA positioning are the two most representative shortwave positioning
approaches. A combination of DOA and TDOA can significantly improve the accuracy of
shortwave positioning.

For propagation within the visual range, researchers have proposed many algorithms
for DOA positioning [4–6], TDOA positioning [7–9], and DOA–TDOA coordinated posi-
tioning [10–12]. However, these algorithms cannot be used directly in beyond-visual-range
(BVR) shortwave communication. At present, there are few positioning algorithms for BVR
shortwave targets. In [13], the authors proposed a TDOA positioning method for BVR
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shortwave targets based on a grid search. Their method has high positioning accuracy;
however, it is a complex computational process. In [14], the authors proposed a TDOA
positioning algorithm with gradient projection based on an ionospheric quasi-parabolic
(QP) model. However, using the QP model requires many ionospheric parameters, which
are difficult to obtain in practice. Moreover, the QP model has the limitation of only consid-
ering specific ionospheric reflections. Compared with the QP model, the ionospheric virtual
height reflection model [15,16] only requires the ionospheric reflection virtual height as an
input parameter, and different reflection virtual heights correspond to different ionospheric
reflections. In [17], the authors proposed a method to conduct pseudo-linearization on the
DOA and TDOA observation equations based on an ionospheric virtual height reflection
model. They obtained solutions using an iterative matrix QR decomposition algorithm
with simple calculations. However, this method only considers a single transmission path
without considering the shortwave multipath effect in the practical process. In [18], the
authors proposed a DOA–TDOA coordinated positioning method based on an ionospheric
virtual height reflection model using two propagation paths without the need for a known
ionospheric virtual height. However, this method requires a large amount of computation
and requires the accurate arrival elevation angles of two propagation paths, which are
difficult to achieve in practice.

The multipath effect under the ionospheric influence leads to difficulties in shortwave
positioning, which has a great impact on the estimation of positioning parameters such
as the arrival angle, and thus, the positioning accuracy. In actual shortwave positioning,
the measurement error of the azimuth angle can reach about 3◦, while the measurement
error of the elevation angle can reach about 5–10◦. Therefore, the elevation angle is not
usually used for positioning. At present, data fusion is used to handle multipath data
after the signal is received in the main methods designed for multipath scenarios [16,19,20].
However, these cannot be applied directly to the DOA or TDOA positioning scenarios
in this study.

To summarize, in this paper, shortwave anti-multipath coordinated positioning with
DOA–TDOA is addressed. To accurately reflect the characteristics of ionospheric reflection,
the arrival elevation angle was simulated as a random variable with a Gaussian mixture
model (GMM). First, a convolutional neural network (CNN) was used to learn the three-
dimensional spatial spectrogram to identify the modes of single-path propagation and
multipath propagation. The corresponding probability distribution of the elevation angle
was obtained and used to modify the estimated value of the elevation angle. Then, a
two-dimensional DOA pseudo-linear observation equation was established based on the
azimuth estimate and the elevation angle’s modified estimate. The matrix QR decomposi-
tion iteration algorithm proposed in [17] was used to obtain the DOA positioning results.
Finally, a TDOA pseudo-linear observation equation was established based on the DOA
positioning results, and the final positioning results were obtained using the matrix QR
decomposition iteration algorithm again.

The remainder of this paper is as follows: Section 2 introduces the impact caused
by the multipath problem and the observation model. Section 3 proposes the improved
method. Section 4 shows the results of the simulation experiments. Section 5 shows the
results of the measured data, and Section 6 summarizes the paper.

2. Problem Statement and Observation Models
2.1. Multipath Problem

The ionospheric signal channel varies randomly with space, time, and frequency,
which has an impact on transmitted signals such as multipath fading and polarization
fading. The electromagnetic wave incident in the ionosphere is divided into an ordinary
(O) mode and unusual (X) mode. These two modes correspond to different paths and
generate multipath fading. Ionospheric passive oblique detection technology can be used to
obtain the ionospheric information regarding the reflection points between the transmitting
and receiving stations. The high frequency radio signal is transmitted by the transmitting
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station, and the delay in the propagation time is calculated by the signal received by the
receiving station, so as to infer the characteristics of the ionosphere. Figure 1 shows the
result of passive oblique detection. The abscissa in Figure 1 represents frequency and the
ordinate represents the group path. The colors indicate the electron concentrations. It can
be observed that when the frequency is between 10 and 12 MHz, there are two propaga-
tion modes that correspond to the O and X waves. Therefore, when the communication
frequency falls within this frequency range, there are multiple propagation paths that affect
signal reception.
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Figure 1. An example of an ionization map in ionospheric passive oblique detection.

Figure 2 shows a geometric illustration of multipath propagation. The electromagnetic
wave reaches the receiving station after it is transmitted through the ionosphere. Because
of the layered structure of the ionosphere, each layer corresponds to a different reflection
height. The electromagnetic wave can reach the receiving station through different reflection
heights that correspond to different paths. The elevation angles of the signals that reach the
receiving station through different paths are different [15]. Target positioning under two
paths was investigated in this study.
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Multipath propagation in the spatial spectrogram is manifested by multiple spectral
peaks at the same azimuth. Therefore, angle estimation ambiguity may occur [16]. Figure 3
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shows spatial spectrogram examples of a single path and two paths. In the case of two
paths, the spectral peaks are formed at two elevation angles, and the two spectral peaks are
not easy to separate. Therefore, the angle estimation accuracy is affected.
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Remark 1. Only one single path and two paths are taken as examples to illustrate the influence
of multipath on the spatial spectrogram. When the number of paths increases, the spectral peak of
spatial spectrum will increase correspondingly; however, the case for a larger number of paths is
very rare [20].

When the fading amplitude follows the Rayleigh distribution, the probability distri-
bution of the multipath time delay follows a normal distribution [21]. Inspired by this
phenomenon, in this study, the authors modeled the single-path arrival elevation angle as
a Gaussian distribution, with the true value as the mean. Figure 2 shows that the reflection
height corresponds to the elevation angle. Because the ionosphere is time varying, the
reflection height also varies, which results in a change in the elevation angle. Therefore,
a Gaussian distribution model of the elevation angle can reflect the ionospheric change.
When the elevation angles under the two paths are simulated as a GMM, their mean values
are the true values at the corresponding reflection heights. The multipath elevation angles
are modeled as a GMM to determine target positioning with multipath.

2.2. Array Receiving Signal Model

For an assumed circular array with p elements, there are q signals that have incident
angles Θ1, Θ2, . . . , Θq in the array, where Θi = (θi, φi), and θi Lining φi are the arrival angle
and elevation angle of the ith signal, respectively. The arrival azimuth refers to the angle
between the incident direction of the signal and the north direction of the local observation
station. The elevation angle refers to the angle between the incident direction of the signal
and the surface plane of the observation station. The output of the kth element in the
antenna array can be expressed as

xk(t) =
q

∑
i=1

gkisi(t− τki) + nk(t) (1)

where si(t) denotes the ith incident signal in the array, gki denotes the complex gain of the
kth array element in the ith signal array, nk(t) denotes the additive noise in the kth array
element, and τki denotes the time delay of the signal reaching the array element relative to
the reference point.

It is assumed that the array elements are isotropic and there are no impacts, such as
channel inconsistency and mutual coupling. Therefore, gki = 1, and the received signal
model of the array is given by

X = A(Θ)S + N (2)
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In Equation (2), X = [x1(t), . . . , xp(t)]
T ∈ Cp×1 is the array output vector.

N = [n1(t), . . . , np(t)]
T ∈ Cp×1 is the additive noise vector of the array.

S = [s1(t), . . . , sq(t)]
T ∈ Cq×1 is the signal source vector. A(Θ) = [a(Θ1), . . . , a(Θq)] ∈ Cp×q

is an array flow pattern matrix, where a(Θi) = [e−jωoτ1i , . . . , e−jωoτ1p ]
T ∈ Cp×1 is the array

direction vector, and ωo is the carrier frequency of the signal.

Remark 2. A is the array manifold matrix, which is related to the shape of the array and the
direction of the signal. In practice, the shape of the antenna array will not change once it is fixed, so
A is closely related to the direction of the signal. In practice, the self-adjustment of the antenna array
can ensure A can be used for angle estimation, and there will be no ill-conditioned matrix. N stands
for additive noise. The larger it is, the lower the accuracy of angle estimation. When it reaches a
certain level, angle estimation cannot be carried out. In addition, N does not have a substantial
impact on the structure of matrix A, and N only has an impact on the estimation accuracy.

Under the narrowband model defined in Equation (2), the DOA estimation based on
the multiple signal classification (MUSIC) algorithm is given by

ΘMUSIC = argmax
Θ

(1/(aH(Θ)UNUH
Na(Θ))) (3)

In Equation (3), UN ∈ Cp×(p−q) is the noise subspace in the MUSIC algorithm.

2.3. MUSIC Algorithm

The MUSIC algorithm is a classical direction of arrival estimation algorithm, and the
main steps are as follows:

(1) Calculate the covariance matrix of array output data based on Equation (2);
(2) Eigenvalue decomposition is performed on the covariance matrix obtained in step (1)

to obtain the signal subspace US and noise subspace UN ;
(3) Search the angle corresponding to the maximum value of Equation (3), which is the

angle estimate value.

2.4. Positioning Solution Algorithm

The positioning scenario in this study is the same as that in [16], with N DOA position-
ing observation stations and M TDOA positioning observation stations, which are denoted
as u1, u2, . . . , uN , uN+1, . . . , uN+M.

The positioning algorithm is divided into two stages. In the first stage, the pseudo-
linear observation equations of the azimuth and the elevation angle are established, as
shown in Equation (4). According to the geographical constraints of the earth surface and
the algebraic relationship between the auxiliary variables

∣∣∣∣u∣∣|22 and the target position
u ∈ R3×1, the equality constraint shown in Equation (5) can be obtained. u is the target
position vector in the earth-centered earth-fixed coordinate system. The estimation criterion
with a double quadratic equality can be obtained by combining Equations (4) and (5). Then,
the DOA stage estimate can be obtained using the matrix QR decomposition iteration
algorithm [16] as follows:

Bθu = bθ

Bφ

[
u∣∣∣∣u∣∣|22

]
= bφ

(4)

{
tT

uA1tT
u = R2

e

tT
uA2tT

u + cT
1 tu = 0

(5)



Sensors 2022, 22, 7379 6 of 18

where Bθ ∈ RN×3, Bφ ∈ RN×4, tu ∈ R4×1 and Re is the equatorial radius of the earth and e
is the first eccentricity of the earth. In Equation (5)

Bθ [i, :] = [si,1 cos(θi)− si,2 sin(θi)]
T, bθ [i, :] = (si,1 cos(θi)− si,2 sin(θi))

Tui

Bφ[i, :] =
[
2uT

i ,−1
]T, bφ =

∣∣∣∣∣∣ui

∣∣∣|22−∣∣∣∣∣∣u− ui

∣∣∣|22, i = 1, 2, . . . , N

A1 = diag
{

1, 1, 1/(1− e2), 0
}

, A2 = diag{1, 1, 1, 0}

c1 = [0, 0, 0,−1]T

tu =

[
u∣∣∣∣u∣∣|22

]
(6)

si,2 = [− cos(ωi,1) sin(ωi,2),− sin(ωi,1) cos(ωi,2), cos(ωi,2)]
T, si,1 = [− sin(ωi,1), cos(ωi,2), 0]T,

ωi,1, ωi,2 are the longitude and latitude of the ith observation station, respectively.
In the second stage, the pseudo-linear equation of the time difference is established

based on the DOA estimate, as shown in Equation (7). Similarly, Equations (5) and (7)
are combined to construct an estimation criterion that contains the double quadratic
equality. The matrix QR decomposition iteration algorithm is used to obtain the final
positioning results [16].

Bτ

[
u∣∣∣∣u∣∣|22

]
= bτ

Bτ [m− 1. :] =
[
2a2

muT
N+m,−a2

m
]
, bτ [m− 1, :] = 4R2

0µ2
m + a2

m(
∣∣∣∣uN+m

∣∣|22 − 4R2
0)

m = 2, 3, . . . , M

(7)

where Bτ ∈ R(M−1)×4, am = 2R0(R0 + hm), µm is defined in Equation (73) of [16]. R0 is the
average radius of the earth.

3. Improved Method
3.1. Path Number Discrimination and the Elevation Angle’s Prior Distribution Learning Based on
the CNN

The CNN is a type of feedforward neural network that contains convolutional compu-
tation and a deep structure [22,23]. It is a representative deep learning network and widely
used in the field of image processing. Its learning technology has matured gradually. In
this study, when the two paths are close to each other, the two spectral peaks are merged
into one spectral peak in the spatial spectrogram, as shown in Figure 4. Traditional spectral
peak search techniques cannot distinguish a single path from two paths; hence, only one
spectral peak can be obtained rather than the elevation angles of two paths.

In this study, the CNN was used to detect and identify spatial spectrograms to dis-
criminate between a single path and multiple paths. In the multipath case, the CNN was
used to obtain the elevation angle of each path.
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3.1.1. Path Number Discrimination

The problem of path number discrimination based on spatial spectrograms belongs
to an image classification problem with supervised learning. In this study, 10,000 spatial
spectrogram images with different numbers of paths were generated with an elevation
angle range of 5◦ to 70◦. The number ratio between the single path and the two paths was
approximately 1:1. The spatial spectrogram contained RGB images of 256 × 256 pixels.

Remark 3. When there are multiple signals, there are many possible combinations of signals and the
number of paths, which will lead to the very complex training process of neural network and a large
amount of training data is required. In addition, based on the theory of array signal processing [24],
when the arrival direction of multiple signals is different, multiple signals can be reduced into a
single signal by dimensionality reduction. Therefore, each signal can be processed in this way. By
using this method, the accuracy will not decrease, but the computation can be greatly reduced.

Remark 4. The network used in this paper can be used to identify the number of paths under
more paths, and only needs to increase the corresponding training data. However, the case for a
larger number of paths is very rare [21] so this paper focuses on two common cases: single path and
two paths.

The CNN structure is shown in Figure 5. It contained four convolutional layers and two
fully connected layers. The convolutional layer is used to extract spatial spectral features.
The fully connected layer plays the role of mapping the learned feature representation
to the label space of samples. The activation function was the ReLU function. The loss
function was the BCELoss function. To prevent overfitting, an early stop mechanism was
used in the training process. If the loss value of the validation set did not decrease for
10 consecutive times, the training was stopped.

The loss curves of the training set and validation set are shown in Figure 6. The loss
values of the training and validation sets maintained the same decreasing trend, and there
was no overfitting during the training process. A total of 2000 spatial spectrograms were
used as the test set. The accuracy of path number discrimination was 99.8%. Therefore, we
can use the trained network to determine the number of paths.
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3.1.2. Search for Multipath Spectral Peaks

After the number of paths was determined, the search for the spectral peak in the
spatial spectrogram was performed using a regression method based on the CNN. The
regression network model structure is shown in Figure 7. The convolutional layer dimen-
sion was added in the model structure based on the path number discrimination model
to improve the characteristic extraction capability of the model. The model output was
modified from the classification result to the regression result of the elevation angle. The
loss function was the MSELoss function. A total of 10,000 spatial spectral spectrogram
images of the two paths were generated as the training data with an elevation angle range
of 5◦ to 70◦. The early stop mechanism was the same as the network shown in Figure 5.
The loss curve in the training process is shown in Figure 8. The decreasing trend of the
loss value in the training set was consistent with that in the validation set. There was no
overfitting in the training process. A total of 1000 randomly generated spatial spectrogram
images were used as the test set. When the angle error was within 1.5◦, the prediction
accuracy was acceptable. The prediction accuracy rate of the elevation angle is defined as
the ratio of the number of correctly predicted spatial spectral spectrograms to the number of
total spatial spectral spectrograms. It was 94.75%, which demonstrated satisfactory model
performance that met the expected requirements.
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3.1.3. Elevation Angle’s Prior Distribution Learning

A simulation was conducted to generate 10,000 spatial spectrogram images that
included a single path and two paths for a specific region. The elevation angles of the
two paths followed a GMM. First, the number of paths was determined by the path
discrimination model to obtain the numbers of single-path and two-path spectrograms,
which were 3823 and 6177, respectively. For the single-path spatial spectrograms, the
elevation angle was obtained using a traditional search method for the spectral peak. For
the two-path spatial spectrums, the network shown in Figure 7 was used to determine the
elevation angle, and the probability distribution of the elevation angle was also collected.
Figure 9 shows the result of the comparison between the actual probability distribution of
the elevation angle and the probability distribution obtained by CNN learning. As shown
in Figure 9, neural network learning helped us to obtain an important characteristic, that
is, the elevation angles of the two paths followed a GMM. Therefore, the network met the
expected requirements.
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The prior distribution information of the elevation angle can be used to modify the pos-
terior probability to obtain the modified posterior probability. This idea is important and pro-
vided by Equation (9). According to this idea, the prior distribution of the elevation angle can 
be used to modify the elevation angle’s estimated value obtained using Equation (3). 
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3.2. Estimate Modification of the Elevation Angle Based on Prior Information

Under the influence of multipath fading, the elevation angle φ of the same target is no
longer a fixed value but a random variable that varies with the direction measurement’s
time and site, denoted by φ(r, t), where r is the location of the measurement station and
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t is time. Different from traditional methods in which the elevation angle is considered as
a deterministic parameter for direction measurement, in this paper, Bayesian estimation
theory was introduced and the elevation angle distribution under the ionospheric multi-
layer reflection was considered as prior information to estimate the maximum posterior
probability of the elevation angle as follows:

P(φ|X) = P(X|φ)P(φ)
P(X)

(8)

where X is the array observation vector defined by Equation (2), P(φ|X) is the posterior
probability, P(X|φ) is the likelihood function of the elevation angle with respect to the
observation vector, and P(φ) is the prior probability distribution of the elevation angle.
Equation (8) can be simplified as follows:

P(φ|X) = ηP(X|φ)P(φ) (9)

where
η = (P(X))−1 =

1
∑A P(X|φ)P(φ)

(10)

The prior distribution information of the elevation angle can be used to modify the
posterior probability to obtain the modified posterior probability. This idea is impor-
tant and provided by Equation (9). According to this idea, the prior distribution of the
elevation angle can be used to modify the elevation angle’s estimated value obtained
using Equation (3).

φMUSIC = argmin
φ

(aH(Θ)UNUH
Na(Θ)) P(φ) (11)

It should be noted that the elevation angle’s correction only involved multiplying the
angle’s estimate by a coefficient, so that the increase in the computational effort was limited.
Although the prior probability distribution of the elevation angle requires a large amount
of data analysis, the computation is an offline process. Therefore, only one deep learning
calculation is needed to obtain the distributions for actual positioning.

As shown in Figure 2, the calculation method of the azimuth and the elevation angle
of the signal that passes each path to arrive at the ith DOA observation station is as follows:

θi = arctan

(
ux − uix
uy − uiy

)
,

R
sin
(

π
2 − φi − βi

) =
R + hi

sin
(

π
2 + φi

) , i = 1, 2, . . . , N (12)

where R is the average radius of the earth, and u were ui are the coordinates of the target and
ith observation station, respectively, in the earth-centered earth-fixed coordinate system.

The modified estimates of the azimuth and the elevation angle were obtained using
Equation (3) and (11). The estimates were substituted into Equation (4) to obtain the pseudo-
linear equations of the azimuth and the elevation angle. The matrix QR decomposition
iteration algorithm was used to obtain the DOA stage positioning results.

According to Figure 2, the propagation distance of each path can be expressed
as follows:

dm = 2
√
(R sin(βm))

2 + (R− R cos(βm) + hm)
2 m = 1, 2, . . . , M (13)

Therefore, the difference between the arrival time of the signal at the mth observation
station and the arrival time at the first observation station can be calculated as

τm =
2
c
(dm − d1) (14)
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Considering βm = arcsin(||u− um||/(2R) ) and that this calculation is related to the
target position, Equation (14) cannot be pseudo-linearized directly. In this case, the target
estimate of the DOA in the first stage can be considered as a known value in the TDOA
stage to obtain the pseudo-linear equation shown in Equation (7) and obtain the final results
using the matrix QR decomposition iteration algorithm.

4. Simulation Studies

Simulations were conducted to verify the positioning performance of the proposed
method. The default settings of the simulation parameters included the following. The
longitude and latitude of the radiation source were 134◦ and 34◦, respectively. There
were seven shortwave observation stations, among which the first three had the DOA
positioning system and the last four had the TDOA positioning system. Their longitudes,
latitudes, and corresponding ionospheric reflection heights are shown in Table 1. The
observation errors of the azimuth, elevation angle, TDOA, and ionospheric reflection
height all followed Gaussian distributions with zero means and were independent of each
other. Their covariance matrices were

ΩΘ = blkdiag
{

Ωθ , Ωφ

}
= σ2

θ I2N

Ωτ = σ2
τRM−1

Ωh = σ2
h IN+M

(15)

where the diagonal elements of the matrix RM−1 were 1, and all other elements were 0.5.
blkdiag{·} is a block-diagonal matrix formed from the matrices or vectors. The root mean
square error of positioning was the measurement standard of positioning accuracy. The
calculation formula for the root mean square error of positioning is given by

RMSE =

√√√√ K

∑
i=1

∣∣∣∣û− u
∣∣|22

K
(16)

where K denotes the number of Monte Carlo simulation runs. K takes 5000 in the simulation.

Table 1. Longitude, latitude, and ionospheric reflection virtual height of the observation station.

Observation Station Longitude (◦) Latitude (◦) Ionospheric Reflection Virtual Height (km)

DOA-1 116.23 40.22 340.00
DOA-2 112.54 33.00 390.00
DOA-3 116.00 29.71 370.00

TDOA-1 123.47 41.80 310.00
TDOA-2 114.54 38.04 350.00
TDOA-3 114.03 30.58 385.00
DOA-1 116.23 40.22 340.00

Figure 10 shows that the results for the positioning accuracy vary with the stan-
dard deviation of the angle’s error with a single path. Other parameters were set as
στ = (0.3/c)/s and σh = 2km, where the elevation angle’s search step was 0.01◦. “Max”
means that the spectral peak with the largest spatial spectrum was selected as the angle’s
estimate when the MUSIC algorithm was used. Figure 10 shows that the traditional po-
sitioning algorithm failed when the angle error was greater than 1.5◦, which resulted in
a sharply increasing positioning error. By contrast, the proposed method improved the
estimation accuracy of the elevation angle; therefore, the failure threshold of the algorithm
was raised. Figure 11 shows that the results for the positioning accuracy vary with the
target’s longitude under a single path. As shown in Figure 11, when the distance between
the observation station and the target increased, the positioning accuracy decreased, mainly
because DOA positioning was sensitive to the distance between the target and the obser-
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vation station. However, the accuracy did not decrease greatly. Therefore, the proposed
method has a certain generalization capability at the location of the radiation source.
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Table 1 shows the ionospheric reflection height; hence, the reflection elevation angle
can be determined. The elevation angle of the second path was given by the elevation
angle difference of 1◦, 3◦, 5◦, 7◦, and 10◦ in Table 1. In the case of two paths, two methods
are usually used to estimate the angle, and these are called traditional methods. The first
method selects the angle corresponding to the maximum peak of the two spectral peaks in
the spatial spectrum as the angle’s estimated value, denoted by “Max.” The second method
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uses the average value of the angles corresponding to the two spectral peaks in the spatial
spectrum as the angle’s estimated value, denoted by “Average.” The data given by the
proposed method are denoted as “Bayes.”

Figures 12 and 13 show the root mean square errors of the estimated values of the
elevation angles given by the traditional methods and proposed method when the elevation
angles were different. Figure 12 shows that when the difference between the elevation
angles of the two paths was greater than 5◦, the angle’s estimation accuracy was less than 3◦,
and the positioning algorithm failed. Figure 13 shows that the elevation angle’s estimation
accuracies for the proposed method were all below 2◦ under various angle differences,
which indicates that the proposed method had a certain anti-multipath effect.

Figures 14 and 15 show that the results for the positioning accuracy of the traditional
methods and proposed method varied with the standard deviation of the angle’s error
when the differences between the elevation angles of the two paths were 1◦ and 3◦, re-
spectively. As the angles’ difference between the two paths increased, the positioning
error of the traditional methods gradually increased, and the threshold value was reduced.
This shows that when the difference between the angles of the two paths was large, the
traditional method could not position accurately. Moreover, when the DOA positioning
error was large in the first stage, the accuracy of the proposed coordinated positioning
was even lower than that of the standalone DOA positioning. This indicates that when
the DOA accuracy was low, coordinated positioning was not meaningful. In this case,
the accuracy of standalone positioning was better than that of coordinated positioning. It
also indicates that the accuracy of coordinated positioning was not always better than that
of standalone positioning.
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Figure 16 shows the positioning accuracy varied with the standard deviation of the
angle’s error when the elevation angles’ differences were 5◦, 7◦, and 10◦ for the proposed
method. Because the traditional methods were not effective at this point, they are not
shown in the figure.

Figures 14–16 show that as the angle difference increased, the proposed method
maintained high accuracy. Therefore, the proposed method had a strong anti-multipath
function. This is because the prior information for the elevation angle is related to the
position and time of the observation station, but is irrelevant to the path’s state. Therefore,
prior information regarding the elevation angle can be used to correct the elevation angles
under different angle differences.
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5. Measured Data

The ionospheric multipath reflection model and its variation trends with respect to
time were validated using measured data. The transmitting station used in the experiment
was a radio station in Urumqi (87◦ E, 43◦ N), Xinjiang, China. The receiving station was a
20-channel shortwave direction measurement array located in Zhengzhou (113◦ E, 34◦ N),
Henan Province, China. The experimental parameters are shown in Table 2.
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Table 2. List of experimental parameters.

Parameter Signal Modulation Type Distance Azimuth Radius-to-Wavelength Ratio

Value AM 2447 km 294.1◦ 2.5

Figure 17 shows an illustration of the arrival angle’s estimate of the transmitting
station obtained using the receiving array. In the signal direction, the elevation angle varied
greatly, and the multipath effect existed. Based on the figure, the elevation angles of the
two paths could not be separated accurately. Therefore, the estimation accuracy of the
elevation angle was reduced because of the existence of the multipath effect.
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Figure 17. Local amplification of signal directions.

Figure 18 shows the time-varying results of the elevation angle of the signal. The
difference between the elevation angles of the two paths was small at some moments,
whereas the difference was large at other moments. Figure 19 shows the distribution
of the signal’s elevation angle. The elevation angle distribution of the two paths was
approximately a GMM, thus verifying the previous analysis and the validity of this study.
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6. Conclusions

In this paper, DOA–TODA coordinated positioning for shortwave radiation sources
was addressed based on prior information regarding the distribution of the elevation
angles. First, a CNN was used to determine the number of single and multiple paths. The
probability distribution of the elevation angle with the corresponding number of paths
was learned. Then, the DOA and TDOA observation models were constructed according
to the ionospheric virtual reflection model. The elevation angle’s estimated value was
modified using the elevation angle’s prior information. An optimization model with double
quadratic equality constraints was constructed according to the pseudo-linear equations
of the azimuth, the elevation angle, and TDOA. The matrix QR decomposition iteration
algorithm was used to solve the model.

Simulations were conducted for the single-path and two-path cases. The simula-
tion results demonstrated that compared with traditional methods, the proposed method
achieved better positioning accuracy when the angle error was large, and anti-noise per-
formance improved with strong anti-multipath performance. Moreover, the proposed
method generalized the target position. Finally, the measured data were used to validate
the proposed method. It should be noted that in this paper, only DOA–TDOA coordinated
positioning for stationary targets was addressed. A future study needs to be conducted for
moving targets.
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