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Abstract: Transport is Australia’s third-largest source of greenhouse gases accounting for around
17% of emissions. In recent times, and particularly as a result of the global pandemic, the rapid
growth within the e-commerce sector has contributed to last-mile delivery becoming one of the
main emission sources. Delivery vehicles operating at the last-mile travel long routes to deliver
to customers an array of consignment parcels in varying numbers and weights, and therefore
these vehicles play a major role in increasing emissions and air pollutants. The work reported
in this paper aims to address these challenges by developing an IoT platform to measure and
report on real-world last-mile delivery emissions. Such evaluations help to understand the factors
contributing to freight emissions so that appropriate mitigation measures are implemented. Unlike
previous research that was completed in controlled laboratory settings, the data collected in this
research were from a delivery vehicle under real-world traffic and driving conditions. The IoT
platform was tested to provide contextualised reporting by taking into account three main contexts
including vehicle, environment and driving behaviours. This approach to data collection enabled
the analysis of parcel level emissions and correlation of the vehicle characteristics, road conditions,
ambient temperature and other environmental factors and driving behaviour that have an impact on
emissions. The raw data collected from the sensors were analysed in real-time in the IoT platform,
and the results showed a trade-off between parcel weight and total distance travelled which must
be considered when selecting the best delivery order for reducing emissions. Overall, the study
demonstrated the feasibility of the IoT platform in collecting the desired levels of data and providing
detailed analysis of emissions at the parcel level. This type of micro-level understanding provides
an important knowledge base for the enhancement of delivery processes and reduction of last-mile
delivery emissions.

Keywords: IoT; greenhouse gas; sustainable logistics; last-mile emission; supply chain

1. Introduction

Fossil fuel combustion has made vehicles one of the main sources of greenhouse
gas (GHG) emissions. In Australia, transport is the second main sources of GHG emissions
after electricity, and this emission rate is on the increase. In 2017, the per capita CO2
emission produced by transport sector in Austerlia was 32.7 tons. More importantly, road
transport in Australia contributes to 85% of transport sector pollution and GHG emissions,
which is more than global average [1]. One of the main transport sectors which contributes
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to GHG emissions is last-mile delivery. In particular, rapid growth of e-commerce has
significantly increased the number of last-mile deliveries in the last decade [2–4]. Last-mile
delivery emissions have been discussed in previous studies [5–8]. However, research to date
has concentrated on estimating the last-mile delivery emissions based on theoretical data
about vehicle emission and have not conducted field experiments to determine last-mile
delivery emissions.

This paper utilises the Internet of Things (IoT) to deploy multiple sensors on a delivery
van to analyse the emissions at parcel level in real-time. The resulting data provide
comprehensive information on how different factors can impact delivery and how the
delivery process can be enhanced to reduce the last-mile delivery emission.

Vehicle emissions are an inevitable consequence of fossil fuel combustion, but there
are certain factors which impact vehicle fuel combustion and emission rates that can
be monitored and addressed. These factors can be categorised into several major cate-
gories including road condition, driving style, vehicle condition, vehicle mass and weather
condition [9].

In fuel consumption analysis research, driving style is categorised into two main
categories which are aggressive driving and eco-driving. Aggressive driving refers to high
acceleration and deceleration and high speed with sudden breaking patterns. Eco-driving,
on the other hand, refers to smooth acceleration and deceleration, optimal gear shifting,
and driving with optimal speed. Vehicle condition is another category that impacts vehicle
emissions and includes multiple factors such as lubrication, tyres condition, engine tune
and air filter. Another aspect impacting vehicle emissions is weather conditions, with
rain, snow and ambient temperature effecting fuel consumption [9]. While each of these
categories has been a focal point of other research aiming to determine their impact on
fuel consumption and vehicle emissions, most of these studies have been conducted in a
laboratory environment on chassis dynamometers. Studies show that the results of such
tests in controlled laboratory environments are remarkably different from actual vehicles
emissions in the real world [10–12]. Weiss et al. [10] performed emissions testing in both
laboratory and real-world contexts. They argue that, even though that laboratory testing can
be used to perform repetitive tests in identical conditions to compare the acquired results,
the laboratory environment fails to capture all the factors which impact fuel consumption
and vehicle emissions in real-world. Therefore, they argue that there is need for data
collection under ordinary operating condition on the road to complement the laboratory
data and obtain accurate information to find the correlation between different factors and
vehicle emissions.

These studies demonstrate that, in order to obtain comprehensive and accurate data re-
garding last-mile delivery emissions and their correlation with internal and external factors,
there is need to perform field evaluation in real-world context. Although obtaining fuel
consumption and vehicle emissions data in a real-world environment would be beneficial
to better determine various emission factors impact, but performing such tests has certain
challenges. One of the challenges is that laboratory devices are designed to be in fixed
positions and are usually connected to the vehicle using wired communication technologies.
In addition, gas analyser devices are mostly designed to collect data from cars in stationary
mode. These facts hinder deployment of sensors and gas analysers on a moving car. In or-
der to capture live data from vehicles in real-world environment the devices which are used
in laboratory must be modified to transfer live data to cloud via wireless communication.
Technological advancement and emergence of the IoT has provided substantial advantages
to address similar challenges in capturing and processing live and heterogeneous data from
multiple sensors in several real-world applications such as precision agriculture, smart
cities, healthcare, environmental monitoring and so forth [13–18].

The IoT enables the automation of data collection with different types of sensors and
integration of various data types into a single data model without human interaction.
In addition, through edge computing, the IoT enables primary data processing in the
same location where data are collected by sensors. The data are then transferred from
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edge device to the IoT cloud for real-time visualisation and data analysis. To the best of
our knowledge, no field experiment to determine last-mile delivery emission at a parcel
level has been conducted before. Such research can provide micro level understanding of
last-mile delivery vehicles emission and can provide the information required to improve
the efficiency and effectiveness of last-mile delivery procedures.

The main contribution of this research is the design, implementation, and evaluation
of an IoT-based emission monitoring platform (referred to as ParcEMon) which enables
parcel level emission analysis of last-mile delivery vehicles in real-world contexts.

The rest of this paper is organised as follows: Section 2 discusses the related work,
Section 3 presents the methodology including platform architecture, platform implementa-
tion and data collection process. Section 4 presents the results of the research. Section 5
concludes this paper.

2. Related Work

Different modes of transport such as road, rail, aviation and shipping all result in
the emission of GHG and air pollutants through fossil fuel combustion. However, the
amount of emission across each transport mode is different with road transport being the
most prolific producer of emissions in this sector. Road transport causes around 12% of
entire global GHG emissions [19] with light duty vehicles contributing around 72% of this
value [20]. Due to the fact that light duty vehicles such as vans are among the main vehicles
used in last-mile deliveries, last-mile deliveries must be considered a contributor to GHG
emissions. Although emission factors are highly intertwined, research identifies the most
prominent emission factors to include driving behaviour, vehicle condition, vehicle mass,
aerodynamics, road condition and weather condition.

One of the main factors which impact vehicle emission is driving behaviour.
Merkisz et al. [21] conducted a research to measure driving style influence on CO2 emission
in the real environment. They characterised driving behaviour into three different eco,
normal and aggressive styles. Their research shows that eco-driving results in 4.5% less
fuel consumption compared to normal driving style and 12.4% less compared to aggressive
driving style. Allison et al. [22] argue that eco-driving training has a short-term impact on
drivers’ behaviour and after a short period they return to their normal habit of driving. They
mention that there is a need for a constant feedback mechanism to continuously inform
drivers about the financial and environmental benefits of their eco-driving behaviour. The
IoT can play a major role in implementing such real-time feedback systems to continuously
encourage the drivers to follow eco-driving behaviour.

Different aspects of vehicle conditions such as lubricants, tyres and engine mainte-
nance can impact fuel consumption. Around 25% of vehicle energy is used to overcome
friction in different components of vehicles and using low viscosity lubricants can improve
energy consumption. Lowering internal friction in an engine using a suitable motor oil
can reduce fuel consumption by 2.5%. Tyres directly impact vehicle resistance which in
turn impacts fuel consumption. Low resistance tyres can reduce fuel consumption by
3%. Misaligned wheels and poorly tuned engines are among other vehicle conditions
which adversely impact fuel consumption. Flaws like this in vehicles can increase fuel
consumption by 3.5% [9]. Vehicle weight is another factor which directly impacts fuel
consumption. Zervas et al. [23] argue that, in order to control future gas emission, not
only the efficiency of cars in fuel consumption must increase but also their weight must
not exceed certain upper limits to reduce fuel consumption. They conducted research
on passengers cars and analysed the CO2 emission reduction when the weight of cars
decreases. The result shows that, when compared to the reference 1600 kg weight limit,
cars with 1400 kg weight generate 9% less CO2, cars with 1200 kg weight generate 16% less
CO2 and cars with 1000 kg weight generate 28% less CO2.

Studies show that driving uphill can increase fuel consumption by 13%. Road rough-
ness and unevenness also can increase fuel consumption by 2.7% [9]. Zabaar and Chatti [24]
conducted research to analyse road roughness on fuel consumption. They used five vehicles



Sensors 2022, 22, 7380 4 of 18

in field trials with different weights including a medium car, SUV, van, light truck and
heavy truck. They argue that the impact of roughness is intertwined with other factors
including vehicle weight, aerodynamics, temperature and road grade. Although several
road factors would impact fuel consumption and emission rate, but the most impactful
road characteristics on fuel consumption is from traffic congestion, based on the number
of vehicles on the road and traffic status. Vehicles on congested roads with heavy traffic
condition require repeated decreases and increases in the speed over a long period of time
and such fluctuations in speed increase fuel consumption. Greenwood et al. [25] conducted
a test to analyse the impact of traffic congestion on fuel consumption and emissions. They
found out that fuel consumed when compared to steady speed consumption for a real-life
section of motorway increased by around 13% over a 24 h period. Similarly, various vehicle
emissions increased by as much as 25%.

Different weather conditions such as precipitation, temperature and air density also
impact fuel consumption. Rain and snow both impact the rolling resistance of a car as
well as the road surface characteristics. For a depth of one mm, rain can increase fuel
consumption by 30%. Temperature is another factor which impacts tyres and also engines
due to a cold start. A study shows that temperature between 0 to 20 can increase fuel
consumption by 10% [9]. Saboohi and Farzaneh [26] developed a model for eco-driving
based on least fuel consumption. They argue that air resistance has the highest impact
on fuel consumption compared to other weather-related emission factors. In addition to
direct impacts on vehicle and road conditions, various weather conditions can also increase
fuel consumption and vehicle emissions by forcing the driver to regularly decelerate and
accelerate and prevent eco-driving style.

Laboratory, simulation and real-world context are the environments where data analy-
sis is performed to determine vehicle emissions and air pollutants.

Pelkmans and Debal [11] have performed data collection using a chassis dynamometer
to compare laboratory emission with on-road emissions. The data which were captured
include speed, relative positive acceleration (RPA), fuel consumption and CO2, CO, NOx,
THC and PM emissions. Based on their findings, the emissions rate in laboratory is 10–20%
less compared to on-road emission. Weiss et al. [10] used a portable emission measurement
system (PEMS) to analyse on-road emission of light duty vehicles in Italy. They installed gas
analyser and other components including GPS, humidity, temperature and pressure sensors
inside the test vehicles and the data were stored locally. The test was conducted using
12 light duty vehicles on four different routes with different characteristics representing
rural, urban, uphill/downhill and motorway driving. They argue that their test provides
accurate data which indicate on-road NOx emissions of light duty diesel vehicles exceeds
Euro 3–5 emission limits, whereas on-road CO and THC emissions generally remain below
the Euro 3–5 emission limits.

Miles et al. [27] propose an IoT-based decision support system for monitoring and
mitigating pollution in smart cities. They used the IoT capability to integrate data from
multiple sources to determine the factors which impact vehicle emission. They integrated
vehicle, weather and traffic data using an IoT platform to improve their decision-making
process and select appropriate mitigation strategies such as signal optimisation, heavy
vehicle ban, parking regulations and road closure or diversion. However, the data collection
from vehicle emissions is not IoT-based and standardised vehicle emission models were
integrated into the IoT platform to simulate the data.

Much of the prior research conducted to analyse how various emission factors im-
pact fuel consumption and vehicle emissions has acquired data for analysis either from
laboratory or from simulation applications. Even though such data can reveal significant
information regarding correlation between emission factors and fuel consumption, they
cannot fully implement real on-road contexts and characteristics [11]. Therefore, there is
always a certain data gap between laboratory data and on-road data. Moreover, to the best
of our knowledge, no research has been conducted so far to integrate the IoT capabilities
with an advanced industrial gas analyser to analyse vehicle on-road emission in real-time.
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As a result, the focus of this research is to utilise the IoT capabilities to capture data from
multiple emission factors in real on-road contexts in order to analyse parcel level emissions
in last-mile delivery processes. The architecture, implementation and data collection of the
ParcEMON IoT-based emission monitoring system are addressed in the following section.

3. Methodology

In this research, contextual data [28] regarding three different areas of impact on
emissions are gathered. These contexts include environment, vehicle and driver behaviour
contexts. Each of these contexts have certain parameters which can effect the GHG emission
rate. Figure 1 shows the impacting contexts and related parameters.

Figure 1. Emission impacting contexts and related parameters.

Data collection from the discussed contexts in Figure 1 was conducted using several
IoT-based sensors from a van in last-mile deliveries. Data collection was conducted during
the autumn season where van emissions were monitored in real time via the proposed
ParcEMon platform. The van loaded the goods to be delivered and started the deliveries to
different locations from 7:00 a.m. Different data including speed, acceleration, deceleration,
gear shift, RPM, external temperature, road condition and vehicle path were captured.
The data were then transferred to the IoT cloud using an edge device installed in the van
for further data analysis and identification of their correlation with vehicle emissions. In
Section 3.1, platform architecture is addressed, and, in Section 3.2, platform implementation
is discussed.

3.1. Platform Architecture

In this research, an IoT testbed was developed to enable data capturing of a last-mile
delivery van in a real-world context. The developed platform is based on a three layer IoT
architecture including device, edge and application layers. The data between these layers
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can be exchanged through a wide range of wired and wireless communication protocols.
The IoT architecture and the communication protocols are depicted in Figure 2.

Figure 2. ParcEMon platform architecture.

The device layer includes the physical components of the IoT-based emission mon-
itoring platform. This includes the sensors which are used to capture data regarding
environment, vehicle and driving behaviour contexts. The data from the device layer
were transferred to the edge layer using both wired and wireless communications. In the
edge layer, three data processing operations including data acquisition, data cleaning and
data integration were conducted using a Raspberry PI single board computer (SBC). Data
acquisition refers to the process of sampling the signals transferred from the IoT device and
converting them into numeric values to be manipulated by the data analysis software. Data
acquisition is followed by data integration where data from multiple sensors with different
data types are integrated into a single structured database for further processing. Data
cleaning is also performed on the edge layer where incorrect, corrupted and incomplete
data are removed from the data set. The data are then transferred to the application layer
using a mobile network for data visualisation and data analysis. For data visualisation,
an interactive dashboard was designed to present the acquired data from sensors in the
IoT device layer. The dashboard also enables the management of the emission monitoring
platform by providing an interactive interface for the system administrator. This enables
different data sets to be filtered and generate different type of reports with different levels
of granularity for data analysis purposes. In addition, the system management component
enables additional data, such as the log of parcel size and delivery times, to be added into
the database and integrated with the sensor readings from the IoT device layer. A detailed
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list of sensors, communication technologies and dashboard functionalities are discussed
in Section 3.2.

3.2. Platform Implementation

Since the gas analyser receives and reads toxic gases form the vehicle emissions, it
was necessary to design and install all sensor components outside of the vehicle. The gas
analyser and its components were installed on the exterior chassis of the vehicle in such a
way as to prevent any object or road bump damage to the devices. The temperature sensor
was also installed underneath the van to capture ambient temperature. Other sensors
including OBD, dashboard camera, GPS and the edge device were installed inside the
driver cabin.

The implemented platform included multiple hardware and software components
which are as follows.

• On-Board Diagnostics (OBD) Module: An OBD module was used to read vehicle
performance data throughout the deliveries. The data which were captured by OBD
included speed, acceleration, deceleration, and gear shift. The data were transferred
to the edge device using Bluetooth communication. The OBD module used in this
paper supported OBD version 2 with the frequency range of 2402 to 2480 MHz, supply
voltage of 12 V, and data transmission range of up to 10 m.

• Dashboard Camera: A dashboard camera was used to record an entire trip in HD quality.
The data were used to check the road condition and special events in case of sudden
changes in OBD data to better perceive the impact of road condition, special events and
driver behaviour on vehicle emission. The dashboard camera data were locally stored
on an SD card with time and GPS location integrated in the video. Furthermore, a low
resolution video was sent to the dashboard to show the real-time situation of the vehicle.

• GPS Module: A GPS module was integrated into the platform to continuously record
the vehicle location. The data were used to determine the vehicle path and distance
travelled and also to determine whether vehicle was doing deliveries in rural or urban
areas. The GPS data were transferred to the edge device via USB communication.
The GPS module used in this paper was GlobalSat BU-353-S4 utilising SiRF STAR IV
GSD4e GPS chipset.

• Temperature and Humidity Sensor: A temperature sensor was installed on an Arduino
microcontroller to continuously record the ambient temperature. The sensor was
deployed underneath the van on the opposite side of the exhaust to prevent exhaust
heat from impacting the sensor readings. The data were then transferred to the edge
device using USB communication. The ambient temperature was used to analyse
the impact of temperature on fuel consumption and vehicle emission in particular
the impact of early morning cold weather on engine performance. The ambient
condition sensor used in this paper was an SHT31 weather-proof temperature and
humidity sensor.

• Gas Analyser: The vehicle gas emission (i.e., CO2) was measured using an industrial
gas analyser. The gas analyser used in this paper was able to capture five gases
including CO, CO2, O2, HC and NOx. However, in this paper, we only report CO2,
which is the most prolific GHG. The gas analyser included a nozzle which was fixed
inside the exhaust and transferred the exhaust emissions to the gas analyser module
using a pipe. The data were then transferred from a gas analyser to the edge device
using serial communication. The specification of the gas analyser used in this paper is
shown in Table 1.

• Edge device: The edge device was used to collect data from all the sensors and
transferred the data to the IoT cloud. The edge device was designed using a Raspberry
Pi single board computer. The data were captured using different communication
protocols including USB, serial and Bluetooth based on each sensor specification. The
data were transferred to the IoT cloud using Wi-Fi communication. In addition, the
edge device was equipped with a 60,000 mAh battery, which was the power source
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of all sensors except the OBD which is directly powered via the vehicle OBD port.
At the end of the experiment, 70% of the battery power was used by the deployed
components. The components of the edge device are described in Table 2.

Table 1. Gas analyser specifications.

Gases Measured CO (Carbon Monoxide)
HC (HydroCarbons—Hexane (Gasoline)
Propane (LPG), or Methane (CNG or LNG)
CO2 (Carbon Dioxide)
O2 (Oxygen)
NO (NOx, Nitric Oxide)

Analysis Method CO, HC, CO2: NDIR (Non Dispersive Infra-Red)
O2, NO: Electro-Chemical Sensor

Reporting Ranges CO: 0–10.00%
HC (Hexane and Propane): 0–9999 ppm
HC (Methane) 0.000–5.000%
CO2: 0–20.0%
O2: 0.0–25.0%
NO: 0–5000 ppm

Resolution CO: 0.01%
HC (Hexane, Propane): 1 ppm
HC (Methane): 0.001%
CO2: 0.1%
O2: 0.1%
NO: 1 ppm

Accuracy All gas channels +/−5% relative to gas reading
Repeatability All gas channels +/−3% full scale
Response Time Less than 8 s to 90% final value.
Warm-Up Time 30 s to 10% accuracy 5 min to full accuracy. (Constant ambient conditions)
Gas Sample Rate 350 mL/min typical. (Flow control pneumatics system).

Table 2. Edge device components.

Components Description

Raspberry Pi 4 Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5 GHz, 4 GB LPDDR4-3200
SDRAM 2.4 GHz and 5.0 GHz IEEE 802.11 ac wireless, Bluetooth 5.0, BLE, Gigabit Ethernet
Raspberry Pi standard 40 pin GPIO header
Micro-SD card slot for loading operating system and data storage
5V DC via USB-C connector

Power Bank Battery Type: Li-Polymer
Capacity: 64,000 mAh DC
Input: 19 V 2 AAC
Output: 220 V 50 HZ 130 W
TYPE-C Output: 5 V/9 V/12 V 3 A
USB Output: 5 V/9 V/12 V 3 A
Recharging Time: 8–10 h

7 inches Touchscreen Display TFT Display Screen
Dimensions: 194 mm × 110 mm × 20 mm
Viewable screen size: 155 mm × 86 mm
Screen Resolution 800 × 480 pixels
10 finger capacitive touch
Connects to the Raspberry Pi board using a ribbon cable connected to the DSI port.

Huawei 4G USB E3372 FDD: DD800/900/1800/2100/2600
UMTS: 900/2100
GSM: 850/900/1800/1900
LTE FDD: Cat4 DL: 150 Mbps/UL: 50 Mbps @20 M BW
UMTS: DCHSPA+: 42/5.76 Mbps; 21 M/5.76 Mbps; 14 M/5.76 M
HSUPA: 7.2 M/5.76 M
2G: EDGE packet data service of up to 236.8 kbps
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Figure 3 illustrates the platform implementation and the IoT components.

Figure 3. ParcEMon platform implementation.

The acquired data from the sensors were transferred to the IoT cloud platform for
real-time visualisation and data analysis.

The dashboard presented in Figure 4 is a web-based online application that enables
monitoring of the ParcEMon in real-time to ensure the platform, and its components are
operational during the field-trial. In addition, it reports and records the vehicle location and
status. The dashboard also generates several emission reports from the collected data with
a preferred granularity level. Furthermore, this dashboard can be extended to facilitate
lower emission route suggestion based on the historical and real-time data.

3.3. Data Collection

In this research, the IoT sensors, including a gas analyser, were deployed to capture live
data from a delivery van. The van was working for an Australian household chain in the
city of Melbourne and was handling last-mile deliveries. The acquired data covered a wide
range of parameters which can be divided into two categories. The first category relates to
environmental parameters including weather condition, temperature, humidity and road
condition. The second category relates to car parameters including engine’s revolution
per minute (RPM), acceleration, deceleration, gear shift, Global Positioning System (GPS)
coordinates, distance travelled and the travel path. The data from the gas analyser and other
sensors were transferred to an edge device installed in the van via different communication
protocols and subsequently the integrated data were transferred to the IoT cloud. The
last-mile delivery vehicle emission and the data related to other contexts described in
Section 3 were recorded from the vehicle departure point from the warehouse until the
last parcel delivery. As it is shown in Figure 5, the warehouse is represented using the
warehouse icon and each parcel, and its order of delivery is represented in circle icons.
In total, data for 13 delivery points were recorded. The delivery points were in different
suburbs with different road congestion and road conditions.
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Figure 4. ParcEMon online dashboard.

Figure 5. The warehouse location and the order of 13 last mile parcel deliveries.

The data collection was captured during the autumn season with a temperature range
between around 17 ◦C to 26 ◦C. The ambient temperature and humidity were recorded to
ensure that the range of these two factors is within the operational range of the gas analyser
sensor. Figure 6 shows the ambient temperature and sensor thorough the delivery process.
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Figure 6. Ambient temperature and humidity during the field-trial.

The gas analyser temperature shows a sudden increase at the beginning of the delivery
process. However, after an hour, the gas analyser temperature increase rate reduces
and shows a mild increase around 5 ◦C for the rest of the delivery day. This gas sensor
temperature increase is due to exhaust gas heat generated throughout the delivery process.
Figure 7 shows the gas analyser sensor temperature throughout the delivery process.

Figure 7. Gas analyser operating temperature during the field-trial.

For each parcel, the weight and the time of delivery were recorded. In addition,
the consignment type for each parcel, which represents the size category of the parcel, is
registered. The consignment types include economy, small and medium parcels, which
represent the parcel weight from light to heavy. The lightest parcel was parcel No. 6 with
a weight of 1 kg, and the heaviest parcel was parcel No. 1 with the weight of 194 kg. Other
information including the delivery address, suburb and the postcode are also recorded
to identify the suburb changes during the last-mile deliveries. The distance from each
delivery point to the next delivery point is also recorded. These data can be used to analyse
how many emissions have been released for each parcel based on the distance travelled,
and this can be beneficial for analysing the best possible path to reduce the emission for all
deliveries in a single day. Table 3 shows the recorded data for last-mile delivery on a single
day which includes 13 deliveries.
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Table 3. Consignment delivered during the field-trial.

No Consignment Type Weight
(kg)

Delivery
Time Approximate Delivery Street Delivery Suburb Delivery

Postcode

1 Medium 194 09:37 Rye Street Mitcham 3132
2 Medium 179 09:55 Mahoneys Road Forest Hill 3131
3 Medium 58 10:23 Manningham Road Bulleen 3105
4 Medium 176 11:01 Ballantyne Street Burwood East 3151
5 Small 16 11:18 Burwood Highway Burwood East 3151
6 Economy Parcel 1 11:36 Ringwood Square Shopping Centre Ringwood 3134
7 Economy Parcel 20 11:48 Lockhart Road Ringwood North 3134
8 Medium 119 12:27 Ferntree Gully Knoxfield 3180
9 Economy Parcel 10 13:02 Koornang Road Scoresby 3179

10 Small 5 13:33 Caroline Street Selby 3159
11 Medium 50 14:21 Fairbank Road Clayton 3168
12 Small 29 14:39 Jarrah Court Glen Waverley 3150
13 Small 30 14:48 Lincoln Avenue Glen Waverley 3150

4. Results

The acquired data of this research are analysed from four different perspectives to
determine the factors which impact each parcel delivery’s CO2 emission. These perspectives
include van weight at each delivery point, distance travelled, interruption and driver
behaviour. The driver behaviour is determined by analysing the vehicle Revolution per
Minute (RPM), speed, acceleration and deceleration data. These factors impact the fuel
consumption and subsequently the CO2 emission. Figure 8 shows the RPM fluctuation
during the last-mile deliveries. The deliveries which have resulted in higher RPM than
average can contribute to more fuel consumption. The data also enable determining the
road condition such as road gradient or traffic congestion.

Figure 8. Engine’s RPM data collected during the field-trial.

Similarly, the speed chart represented in Figure 9 enables analysis of driver behaviour
in different conditions. In Victoria, the default speed limit for built-up areas is 50 km/h
and on the highway it is 100 km/h. Using the speed chart, it can be determined in which
time of the day the delivery van has been on the highway or in built-up areas. For example,
the data points on 10:11 and 10:40 show that the vehicle has been on the highway to deliver
parcel No. 3. This can be used to analyse the impact of constant speed on parcel level
emission in comparison to the condition where there has been constant halts in vehicle
movement such as traffic condition in built-up areas. This can provide beneficial data to
determine the best possible route to reduce the deliveries emission.

The other factors which reflect driver behaviour are acceleration and deceleration. In
order to show the impact of acceleration and deceleration on CO2 emission, a five minute
segment of driving and the CO2 emission has been shown in Figures 10 and 11. Figure 11
shows the acceleration and deceleration, and Figure 10 shows the CO2 emission percentage
which results a few seconds after acceleration and deceleration. Figure 11 shows that
the acceleration and deceleration can slightly impact the CO2 percentage in exhaust gas;
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however, most of the time the CO2 percentage is 15%. This value is an ideal fuel combustion
level for a diesel engine vehicle such as the delivery van engine examined in this research.

Figure 9. Vehicle’s speed data collected during the field-trial.

Figure 10. CO2 percentage in emitted gas from the tailpipe.

Figure 11. Acceleration and deceleration of the vehicle.

Another factor which must also be considered is interruptions during the deliveries.
The interruptions during delivery such as a driver’s stop for breakfast and lunch have been
removed from the data to correctly acquire the emission ratio compared to duration for
each parcel delivery. Figure 12 shows the duration for each delivery when the van has been
on, and also the duration when the van has been moving (having speed more than 0 km) in
comparison to the engine running time.

As it can be seen in Figure 12, parcel No. 5 has the highest engine off duration which
indicates an interruption in the delivery. Parcel No. 10 has the highest engine on duration
and also the vehicle movement in that period. These data can be used to show how long
the delivery van has been utilised in each parcel delivery. In addition to driver behaviour
and interruptions, parcel weight and the distance travelled also impact the emission level
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for each parcel delivery. The parcel weight has been addressed in Table 3. Table 4 integrates
distance and interruption factors along with previously discussed driver behaviour for
each parcel.

Figure 12. Engine status and vehicle movement (i.e., speed greater than zero) during each delivery in
the field-trial.

Table 4. Delivery segments during the field-trial.

Segment Round per Min Speed (km/h) Start End Duration
hh:mm

Max Acceleration
km/s

Max Deceleration
km/s

Distance
km

Interruption
(Engine Off)Avg Max Avg Max

Depot→ 1 1064 3821 13 68 8:54 9:40 00:46 11 15 7 31%
1→ 2 1297 3784 26 75 9:40 9:56 00:16 12 20 6 20%
2→ 3 1267 3486 38 103 9:56 10:26 00:30 11 11 16 17%
3→ 4 1188 5824 33 98 10:26 11:05 00:39 13 15 16 25%
4→ 5 1515 3424 28 70 11:06 11:20 00:14 10 10 2 59%
5→ 6 1663 3682 42 72 11:20 11:38 00:18 12 9 11 9%
6→ 7 1310 3085 24 58 11:38 11:49 00:11 8 8 4 27%
7→ 8 1172 3642 26 78 11:49 12:50 01:01 20 15 14 45%
8→ 9 1243 4288 23 73 12:50 1:05 00:15 9 14 4 27%

9→ 10 1624 3673 46 79 13:05 13:33 00:28 13 16 21 5%
10→ 11 1544 5056 43 88 13:33 14:23 00:50 15 15 32 10%
11→ 12 1436 3476 31 83 14:23 14:40 00:17 12 11 8 11%
12→ 13 993 3280 19 79 14:40 14:49 00:09 12 10 2 21%

Each row presents the data from the previous delivery point starting from warehouse
to delivery 1 in row No. 1. In total, 143 km has been travelled by the last-mile delivery van.
Parcel 3 delivery has the highest maximum speed which shows the driver has been driving
on the highway. This parcel has taken 30 min to be delivered over a 16 km distance. The
longest path travelled for a parcel belongs to parcel No. 11 where 32 km has been travelled
to make the parcel delivery.

The CO2 emission for each parcel has been calculated based on the parcel contribution
percentage to overall CO2 emission. These data are presented in Figure 13.

As it can be noticed from Figure 13, parcel No. 13 with a weight of 30 kg and a distance
of 2 km have the lowest emission of 1.81% from overall emission. On the other hand,
parcel No. 11 with weight of 50 kg and the distance of 32 km has the highest CO2 emission
percentage. This parcel has contributed to 20.42% of overall CO2 emission during the
delivery day. However, it must be also be taken into consideration that the weight of
parcels which have not yet been delivered including parcels 12 and 13 can contribute to
this number as they are still being carried by the delivery van during parcel 11 delivery.
As a result, the cumulative weight of the van through entire delivery has been taken into
consideration to determine the CO2 emission of each parcel by considering the weight of
other existing parcels in the van at each delivery point. Figure 13 shows the cumulative
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weight of the van at each delivery point. The weight of the van was 2000 kg, which is also
added to the overall parcel weight to have the cumulative weight at each delivery point.

Figure 13. CO2 emission percentage per delivery.

Figure 14 shows the emission of each parcel based on the cumulative weight of
the vehicle.

Figure 14. Van and parcels weight during the field-trial.

As shown in Figure 15 after considering the cumulative weight of the van, the parcels’
contribution to overall CO2 changes considerably. Parcel No. 8 with weight of 199 kg
contributes to 21.88% of overall CO2 emission. This parcel has been in the van for 76 km
before it is delivered. Considering the fact that this parcel is a heavy weight parcel, it
has resulted in high CO2 emission over a long distance being on the move by delivery
van. Parcel No. 11, which showed the highest CO2 emission percentage when considered
individually, after cumulative weight analysis is dropped to the third highest contributing
parcel after parcel No. 8 and No. 4. In cumulative analysis, parcel No.11 has contributed to
16.31% of CO2 contribution. Parcel No. 11 has been in the van for a distance of 133 km, but
since its weight is 50 kg, which is much less than parcel No. 8, it therefore has continued to
be less than CO2 percentage compared to parcel No. 8. Parcel No. 4, despite the fact that it
has only been in the van for 45 km, due to its heavy weight of 176 kg has resulted in 17.9%
of overall CO2 emission. Parcel No. 13, which had only 1.81% contribution to CO2 emission
before cumulative weight analysis, shows 10.74% contribution to overall CO2 emission due
to being in the vehicle until the end of the delivery day.

The results of this research show that the cumulative weight and the distance travelled
can remarkably impact the parcel level CO2 emission. Delivering heavy weight parcels at
the beginning of delivery day can reduce the CO2 emission reporting. However, it must
also be considered that delivering the heavy weight parcels at the beginning of delivery
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day can increase the total path travelled by the delivery van. Therefore, although the CO2
emission from a weight perspective could be reduced, the CO2 emission from a distance
travelled perspective would increase. This shows that there is a trade-off between parcel
weight and total distance which must be considered when selecting the best delivery order
for reducing CO2 emission as much as possible.

Figure 15. CO2 cumulative emission percentage per consignment.

During this research, several limitations were identified which impacted the platform
implementation and data analysis process. One of the limitations was that the gas analyser
functionality could be impacted by environmental factors such as road bumps, mud and
water splash. In addition, the gas analyser could not be located in a sealed enclosure since
such enclosure prevents air flow and impacts the gas analyser reading. Moreover, the
gas analyser performs periodic self calibration which results in a few seconds of data loss
after each calibration cycle. Another limitation was that the weight of the driver and other
possible passengers and materials inside the van other than the parcels were not considered
in this research findings.

Future research directions in this topic should consider instrumentation and measure-
ment of a large number of delivery vehicles representing the Australian vehicle fleet. The
trial should also be for longer duration and cover different ambient conditions to capture
the range of representative real-life conditions that are typical for Australian parcel delivery
operations and road network conditions.

5. Conclusions

The transition to a low carbon and low emissions future depends on mitigating
climate change in all sectors of the economy. Within the transport sector, freight transport
networks, supply chains and last-mile deliveries present particular challenges to successful
emissions mitigation. This paper presented the design, implementation and evaluation of
an IoT platform for real-time parcel level last-mile delivery emissions reporting. The study
demonstrated the feasibility of the technology, which comprised multiple IoT sensors, in
measuring real-time emissions per parcel in real-world last-mile delivery vehicles. The
results showed that the cumulative vehicle weight and the total distance travelled have
substantial impacts on parcel level emissions. The findings present an approach for moving
away from static models of carbon emissions assessment, to a more detailed analysis
of on road data, including driving conditions and carbon intensity measures across the
last mile in the logistics chain. These findings provide freight delivery operators with
valuable insights in optimising their delivery schedules such that heavy-weight parcels are
delivered at the start of the vehicle’s journey to minimise the total distance travelled with
heavy loads, which would result in substantial reduction of the vehicle’s carbon footprint
during those deliveries. However, the results also showed that there is a trade-off between
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delivery of heavy items first, and the total distance travelled by the vehicle during the
day, in situations where the heavy parcels are located further away from the distribution
centres. Data from the IoT platform developed in this study can help in ameliorating
the negative impacts of such trade-offs by providing micro-level data that can be used to
determine optimal locations for distributions’ centres around the city, which would result
in reducing the distances travelled and subsequently the levels of emissions emitted by
each delivery vehicle.
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