
Citation: Van Glabbeek, R.; Deac, D.;

Perale, T.; Steenhaut, K.; Braeken, A.

Flexible and Efficient Security

Framework for Many-to-Many

Communication in a Publish/

Subscribe Architecture. Sensors 2022,

22, 7391. https://doi.org/10.3390/

s22197391

Academic Editors: Nikos Fotiou,

Peter Kieseberg, Simon Tjoa and

Henri Ruotsalainen

Received: 8 July 2022

Accepted: 23 September 2022

Published: 28 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Flexible and Efficient Security Framework for Many-to-Many
Communication in a Publish/Subscribe Architecture
Roald Van Glabbeek 1,2 , Diana Deac 1,3 , Thomas Perale 1, Kris Steenhaut 1,2,* and An Braeken 1

1 Department of Engineering Technology (INDI), Vrije Universiteit Brussel, Pleinlaan 2,
B-1050 Brussels, Belgium

2 Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Pleinlaan 2,
B-1050 Brussels, Belgium

3 Communications Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
* Correspondence: kris.steenhaut@vub.be

Abstract: Message Queuing Telemetry Transport (MQTT) is a lightweight publish/subscribe protocol,
which is currently one of the most popular application protocols in Internet of Things (IoT) thanks to
its simplicity in use and its scalability. The secured version, MQTTS, which combines MQTT with the
Transport Layer Security (TLS) protocol, has several shortcomings. It only offers one-to-one security,
supports a limited number of security features and has high computation and communication costs.
In this paper, we propose a flexible and lightweight security solution to be integrated in MQTT,
addressing many-to-many communication, which reduces the communication overhead by 80% and
the computational overhead by 40% for the setup of a secure connection on the client side.

Keywords: IoT; WSN; MQTT; security; many-to-many; publish/subscribe; TLS

1. Introduction

Wireless Sensor Networks (WSNs), which represent an important subset of the Internet
of Things (IoT), are nowadays increasingly popular. They are used in a variety of domains
and applications, such as smart home, smart health, smart manufacturing, environmental
monitoring, etc.

One of the most popular and mature application protocols in IoT is the Message
Queuing Telemetry Transport (MQTT) protocol. It is based on a highly decoupled publisher
and subscriber model, in which the senders and receivers do not communicate directly, but
via a central server.

In MQTT, senders are called publishers, receivers are called subscribers, and the central
server is called the broker. The publishers define upfront the type of category or topic
in which they will send information, the subscribers express their interest in the topics,
and the broker takes care of the dissemination from publisher to subscriber based on the
selected interests.

For the security in MQTT, authentication is of utmost importance. In order to trust the
information coming from publishers, subscribers should be able to verify its origin. The
same holds for a publisher in case a query is received from the subscriber.

Confidentiality can also be interesting, but is not always required, for instance in case
of a simple outdoor temperature sensor. Other security features, such as non-repudiation,
anonymity, and unlinkability, can play an important role in some situations. Consider
the example of a smart home, in which an attacker should not be able to follow the
communication pattern of the alarm sensor.

MQTTS represents the secured version of MQTT, relying on the standard Transport
Layer Security (TLS) protocol. However, there are several problems with this approach.
First, TLS only offers a limited set of security features: confidentiality and authentication
from publishing device to broker and from broker to subscriber. Consequently, all messages

Sensors 2022, 22, 7391. https://doi.org/10.3390/s22197391 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197391
https://doi.org/10.3390/s22197391
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8388-9375
https://orcid.org/0000-0002-4552-409X
https://doi.org/10.3390/s22197391
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197391?type=check_update&version=2

Sensors 2022, 22, 7391 2 of 17

are stored unencrypted and in case of a dishonest broker (e.g., a hacked broker), all messages
can be retrieved. Next, anonymity is not possible with standard TLS. Moreover, as shown
in [1,2], TLS still has very high demands with respect to communication and computational
costs. Moreover, TLS communication is limited to one-to-one communication.

To overcome the above mentioned shortcomings, we have proposed a solution, result-
ing in the following main contributions of the paper.

• We have developed a global framework, offering three types of lightweight security
options in a highly efficient way. In the highest security option, security features of
authentication, confidentiality, non-repudiation, and anonymity are included.

• We have embedded this security framework into the context of MQTT communication,
enabling secure many-to-many communication, while taking into account the trade-off
between security and efficiency.

• We have implemented our proposed solution in a testbed and, compared with MQTTS,
show that the communication overhead is reduced by 80% and the computational
overhead by 40% for the setup of a secure connection on the client side.

2. Related Work

There exists in literature different approaches to integrate secure group key protocols
for multicast communication. In [3], the use of a network multicast manager is proposed,
which takes the role of administration of the different multicast groups among the nodes
in a wireless sensor network, participating in the communication. The authors proposed
a symmetric-key-based protocol, which enables to achieve confidentiality, integrity, and
mutual authentication among the members of the group. In [4], a robot-assisted network
bootstrapping technique is proposed to support various multicast group semantics. The
authors established a location-class-aware symmetric key management framework offering
confidentiality and authentication protection. Another type of architecture in which group
key communication is proposed is in the context of fog computing. In [5], a group key
between the fog device and the edge devices is constructed based on partial secrets shared
by the server with each of the IoT devices belonging to that group. Their scheme relied
on elliptic curve cryptography and Lagrange interpolation. In the schemes above, the
participants can individually derive the group key at any moment. This is different from
secret sharing schemes, where a so-called dealer distributes the shares to the different
participants in such a way that only authorized subsets of participants can reconstruct the
secret when they are all together. A recent survey on Perfectly Secure Verifiable Secret-
sharing is given in [6], where perfect means that computationally unbounded adversaries
are tolerated. Using quantum cryptography, also a verifiable multi-dimensional (t, n)
threshold secret sharing scheme has been proposed [7]. However, this type of schemes are
not very practical for the generation of a group key, due to the strict requirement of the
need to combine all secrets at the same time.

As the main focus of the paper is the proposal of a security framework to enable
many-to-many communication with the MQTT protocol, we limit the rest of the related
work on providing an overview of the security schemes for multicast communication
protocols, added to the most well-known application protocols Constrained Application
Protocol (COAP) and MQTT in literature.

A significant amount of research exists on multicast communication with the CoAP
protocol. One of the first approaches was to maintain regular DTLS sessions between each
pair of sender node and listener node [8]. However, this approach is not scalable and
requires a very high amount of resources. In [9], the Axiom protocol was proposed in
which unicast communication was secured by means of an individual key, derived from
the group key. This approach clearly does not offer authentication as every member of the
group is able to derive such a key. As an improvement, the authors proposed to rely on
a trusted third party for the key management [10], but this approach was only valid for
unicast DTLS communication.

Sensors 2022, 22, 7391 3 of 17

In [11], a datagram TLS (DTLS)-based secure group communication scheme for IoT has
been proposed, which outperforms previous related work [8–10]. Compared to [8,9], with
the scheme proposed in [11] every sender in the group is able to send multicast messages,
not only one per group. It is based on a centralised approach in which a group controller
establishes unique keys among the different group members by means of DTLS. The sender
sends multicast requests and the listener nodes reply with a unicast response. The main
weakness of this scheme is that the security completely relies on the trustworthiness of the
group controller.

In publish/subscribe architectures, which are the basis of MQTT, most of the propos-
als are limited to one-to-one communications. Peng et al. propose an identity (ID)-based
publish/subscribe protocol in [12] to avoid the burden of classical public key infrastruc-
ture (PKI). However, due to the inherent nature of ID-based cryptography, the system
is vulnerable to key escrow attacks. Moreover, the proposed approach is still limited to
one-to-one communication.

In [13], a proxy re-encryption (PRE) scheme is integrated in the publish/subscribe
architecture. In a PRE scheme, a publisher encrypts information using a public key with-
out knowing the subscribers. Then, a re-encryption key is generated without interaction
between publishers and subscribers to convert the encrypted data of the publisher such
that it can be decrypted by the intended receiver. Polyakov et al. in [13] proposed two
multi-hop unidirectional PRE schemes being secure for indistinguishability under chosen-
plaintext attack (IND-CPA), relying on the Ring Learning with Error (RLWE) key switching
approach from the lattice based homomorphic encryption literature. The main draw-
back of the scheme is that a fully trusted interactive policy authority needs to be present
in the scheme. Moreover, the scheme is also limited to one-to-one communication and
possesses a significant computational and communication cost due to the underlying
cryptographic algorithms.

In [1,2], a resource efficient end-to-end publish/subscribe based security scheme
relying on elliptic curve operations has been proposed and compared with the traditional
TLS-based scheme. However, the proposed schemes still contain a significant number of
handshakes and a significant communication cost. Moreover, both schemes do not involve
group-based communication as the broker needs to develop a separate message for each
subscriber of the topic. In the scheme of [1], the broker is considered as a fog device, but
needs to be completely trusted as a common pre-shared key between device and fog is
required. The scheme of [2] relies on a honest but curious broker for the confidentiality, but
not for the authentication.

Additionally, the scheme of [14] is developed for fog computing architectures where
the fog takes over the role of broker. It is again a one-to-one communication scheme
proposing the use of the TLS-ECDHE-PSK mode and, thus, requiring the existence of a
preshared key for authentication purposes. Their proposal is compared against different
cipher suites of TLS like ECDHE-RSA, ECDHE-ECDSA, and TLS-PSK.

Attribute-based encryption (ABE) schemes enable end-to-end encryption and access
control only for subscribed clients to decrypt the publisher’s message and, thus, are in-
herently many-to-many. Several ABE-based proposals, applied to the publish/subscribe
architecture, exist in literature. In [15], Ion et al. propose a scheme which combines ABE,
multi-user encrypted search, and PRE. The main goal of the scheme is to avoid that a broker
learns something about the content, event, or filtering constraints of the subscribers, with-
out the need to share keys between publishers and subscribers. The keys of all participants
are all generated by a trusted third party. Due to the usage of computationally intensive
pairing operations, the scheme is not feasible for IoT applications with constrained devices.

Tariq et al. [16] propose a brokerless publish/subscribe system with the aid of Cipher-
text policy attribute-based encryption (CP-ABE), which embeds authorization policies into
the ciphertexts and also relies on compute intensive pairing operations. A separated key is
needed for each authorization credential by each publisher and subscriber, resulting in very
complex key management on the side of the participants in the publish/subscribe protocol.

Sensors 2022, 22, 7391 4 of 17

Duan et al. [17] propose a bidirectional policy matching scheme and a fully homo-
morphic encryption for the encryption of published events in order to enable one-to-many
communication, providing both data and service privacy. A Certificate Authority (CA)
derives both private and public keys for all entities. Again, this scheme requires too much
computational effort for resource constrained devices.

A completely different approach to the topic is given in [18], where differential privacy
is applied instead of encryption. By adding noise to the data, privacy of the measurements
is obtained, causing a reduction in accurateness of the data.

In [19], Su et al. propose the MQTT Thing-to-Thing Security (MQTT-TTS) framework
providing thing-to-thing security without data leaks. It consists of four different modes,
symmetric encryption, asymmetric encryption, hash function, and user-defined mecha-
nisms. No details are provided on key management. It is notable that it provides a method
to include these modes, making it compliant with the original MQTT protocol.

For this work, we became inspired by the approach in [19], but we include a more
coherent framework by adding proper key management and by enabling many-to-many
communication. We avoid computationally intensive operations and huge key management
burden typically present in attribute-based schemes. As a consequence, we do not offer
privacy in service policies or relations among publishers and subscribers, but instead
include device accountability in all our proposed modes, such that any receiver is able to
verify the origin of the message. Moreover, the CA is not aware of the unique private key
of each of the devices.

3. Background and Preliminaries
3.1. Architecture and Attack Model

We consider a publish/subscribe setting, as shown in Figure 1. Different publishers
are connected to different subscribers. Publishers send their data, which are forwarded by
the broker to the interested subscribers. On the other hand, subscribers can also send a
query via the broker to the group of publishers. This results in a many-to-many communi-
cation pattern.

An external party, called the CA, takes care of the registration and distribution of the
key material and is considered to be fully trusted. The owner of the devices first makes
sure that the devices, together with their topics of interest and topics on which they publish,
are registered at the CA. Based on that, the CA starts the derivation of the required keys
in the scheme. Each device has its unique private key and both groups of publishers and
subscribers each have their own common private key.

Topics

Broker

/home/kitchen/presence

/home/kitchen/temperature

/home/kitchen/battery

/home/kitchen/temperature

/home/kitchen/battery

/home/kitchen/presence

/home/kitchen/battery

Figure 1. The broker in MQTT routes messages between groups of publishers and subscribers.

The broker is considered honest but curious. It means that it will do all the required
actions, but is curious in deriving the message for its own purposes, such as, for instance,
selling the data. There are two options for storage at the broker side: either the storage is
limited to the group public keys of the publishers and subscribers, or the broker stores all
the public keys and, thus, in addition also the individual public keys of the devices.

Sensors 2022, 22, 7391 5 of 17

We further assume that the attackers behave like those described in the Dolev-Yao
security model [20], being able to execute both passive and active attacks. As a consequence,
they do not only eavesdrop on the channel, but they can also actively manipulate by
deleting, modifying, adding, etc., messages to the channel.

3.2. Security Features

In our proposed framework, we consider the following three options of combinations
of security features.

• Option 1: Authentication and non repudiation. In this option, the receivers are able to
verify the origin and content of the message. The sender is unable to afterwards deny
the submitted message. This situation is typically applied in the case of environmental
sensors, measuring temperature, humidity, etc.

• Option 2: Authentication, non repudiation and confidentiality. Here, nobody, not even
the broker, except the subscribers are able to derive the message sent by the publishers.
The broker is able to verify the authentication of the publisher in a non-repudiable
manner. A typical use case for which this security level can be of interest are sensors
measuring air quality and pollution. In order not to cause panic, it can be good to only
let authorized people analyze the data.

• Option 3: Authentication, confidentiality, anonymity, unlinkability, and non-repudiation.
Finally, in the full option, anonymity and unlinkability are also included. These
features ensure that an attacker is unable to derive patterns in the communication of a
set of sensors. For instance, sensors and actuators related to presence, door openers,
alarms, and lamps should best keep their anonymity and unlinkability in order to
avoid patterns by attackers to derive the real presence of the owner in the house. The
same holds for sensors attached to a body sensor network of the patient in order to
avoid tracking of a patient.

3.3. Cryptographic Operations

First, hash operations H(M1‖M2) on the concatenated message M1‖M2 are needed.
Hash operations, such as SHA2 or SHA3, should be resistant against collision, pre-image,
and second pre-image attacks.

Next, encryption operations relying on a symmetric key K and applied on the message
M to obtain the ciphertext C will be used and are denoted by EK(M).

Finally, for the public key-based operations, we will rely on elliptic curve cryptography
(ECC) [21], which offers more lightweight solutions than classical RSA. ECC is based on
the algebraic structure of elliptic curves (ECs) over finite fields. We denote the curve in the
finite field Fp with p a large prime by Ep(a,b), defined by the equation y2 = x3 + ax + b with
a and b two constants in Fp and ∆ = 4a3 + 27b2 6= 0. The base point generator of Ep(a,b) of
prime order q is denoted by G.

The EC multiplication R = rP = (Rx, Ry) with r ∈ Fq and Rx, Ry ∈ Fp results in a
point of the EC. The security of ECC is based on the Elliptic Curve Discrete Logarithm
Problem (ECDLP) and the Elliptic Curve Diffie–Hellman Problem (ECDHP) [21].

Three well established ECC-based algorithms are used, Elliptic Curve Integrated
Encryption Scheme (ECIES), Schnorr signature, and Elliptic Curve Qu Vanstone (ECQV).

• Elliptic Curve Integrated Encryption Scheme [22]. ECIES enables efficient encryption
to a particular receiver with public key QR using a random EC point R = rG. The
common secret key equals to K = rQR. Since QR = dRG, the receiver is able to derive
the same key K = dRR if R is added to the message.

• Schnorr signature [23]. Denote the key pair of the sender S by (dS, QS) with QS = dSG,
where dS represents the private key and QS the public key. To sign a message M with
the Schnorr signature scheme, the sender first chooses a random value v ∈ F∗q and
computes V = vG. Next, it derives h = H(M‖V), resulting in the actual signature
s = v− hdS. Using V, s, everybody knowing the public key of the sender QS is able to
verify the signature on M by checking the equality of the equation sG = V − hQS.

Sensors 2022, 22, 7391 6 of 17

• Elliptic Curve Qu Vanstone certificates [24]. ECQV certificates are a lightweight
alternatives of the classical X509 certificates and are typically used in IoT applications.
In addition, they have interesting security features, as they do not need a secure
channel between the certificate authority (CA) and the device requesting a certificate.
In addition, they offer protection against key escrow attacks, as the CA is also not
aware of the private key established by the device during the protocol. Assume the
key pair of the CA is defined by (dCA, QCA) and is publicly available and trusted.
In the ECQV protocol, the device chooses a random value r1 ∈ F∗q and computes
R = r1G. This value, together with its identity and eventually a proof of identity,
R, ID1, are sent to the CA. The CA then also chooses a random value r2 ∈ F∗q and
computes R = r2G. The certificate C1 is then defined as C1 = R1 + R2. Next, the CA
derives the auxiliary information a1 = H(ID‖C1)r2 + dCA for the device to derive its
private key.
Based on the received data a, C1 of the CA, the device is able to compute its key pair
(d1, Q1). Here, d1 = a1 + H(ID1‖C1)r1 and Q1 = d1G = H(ID1‖C1)C + QCA. Only
if the last equality is correct, the device accepts the key pair. Any other entity is able to
derive the public key Q1 knowing ID1, C1 by using this last equality. Note that also an
expiration time can be included in the hash of the computations.

3.4. MQTT

The MQTT protocol [25] is a simple machine-to-machine communication protocol that
sits on top of the Transport Control Protocol (TCP) and is used to transport, both bandwidth
and energy efficient, all types of sensor data gathered by a gateway to a server.

The MQTT protocol inherits all aspects of a publisher/subscriber model, as shown in
Figure 1.

• Both publisher and subscriber are spatially separated. They only need to know the
hostname/IP and port of the broker in order to send and receive messages.

• Decoupling in time is possible as the broker can store the messages for clients that are
not online.

• The communication flow in MQTT works asynchronously. This means that there are
no tasks blocks while awaiting or publishing a message.

In MQQT, the client has three options for the selection of level of Quality of Service
(QoS), which is determined based on the network dependability and application logic.
At the lowest level, QoS 0, the messages are delivered at most once and no delivery is
guaranteed. In the QoS level 1, it is guaranteed that the message is delivered at least once
to the receiver, while for the highest level, QoS 2, there is no message loss or duplication as
messages are exactly once published.

For the proposed security process, in particular the key initialization and the key
update phase, it is essential that the nodes receive the latest updates from the broker, since
otherwise the node will fail to send and receive anything on the updated topic until a new
node joins or leaves the topic. QoS in MQTT originally only applies to PUBLISH packets
but could be extended to the key update packets to maintain the nodes with the correct
keys. Since the security mechanisms in the protocol (e.g., use of timestamps) already offer
protection against replay attacks, from a security point of view, QoS 1 is sufficient.

4. Framework

We distinguish four different phases in the actual operation, set-up phase, key initial-
ization, secure communication, and update. Each of them will now be discussed.

4.1. Set-Up

Each device possesses a unique identity IDi, based on the identity provided by the
manufacturer. The action rules among the different devices are programmed by the owner.
The public key of the CA is also pre-loaded on each of the devices, which is used to verify

Sensors 2022, 22, 7391 7 of 17

the authenticity of the messages received from the CA. In addition, the owner registers the
topics corresponding to the devices for the publishing and subscribing processes.

4.2. Key Initialization

We here distinguish two main phases, first the individual key construction and later
the group key derivation. These phases are demonstrated in Figures 2 and 3, respectively.

Version September 7, 2022 submitted to Sensors 7 of 17

broker

CA

pub/sub

, pub, pub (2),r(3)

, pub, pub

(1)

,r

(4)

(5)

Figure 2. Certificate request and reception between a client node and a broker communicating with
a certificate authority. (1) ECQV request of device, (2) ECQV request of client forwarded by broker to
CA, (3) ECQV response of CA, (4) ECQV response forwarded by broker to device, (5) Reception and
verification of device

4.2. Key initialization 276

We here distinguish two main phases, first the individual key construction and later 277

the group key derivation. These phases are demonstrated in Figures 2 and 3 respectively. 278

4.2.1. Individual key 279

The devices then start the ECQV protocol to derive their key pair. We slightly modify 280

the protocol by sending an additional random EC point Gi = giG to the CA in the certificate 281

request. As a consequence, each device i sends Ri, IDi, Gi to the broker, who further 282

forwards it to the CA. 283

Next, the CA aggregates Gi also in the auxiliary data derivation ai and thus the final 284

definition of the public key of the device becomes Qi = diG = H(IDi‖Ci‖Gi)Ci + QCA. 285

Similar as in the ECQV protocol, the CA sends the auxiliary data and certificate to the 286

broker, who further forwards it to the device. Next, based on this information, the device is 287

able to compute its private key and to verify the correctness of it. 288

See Figure 2 for a schematic overview of the communication messages between the 289

node, broker and CA. 290

4.2.2. Group key 291

We distinguish six main steps in this phase. 292

1. Group key request of client. 293

The device sends di + gi securely to the CA (via the broker) as response on the 294

individual key construction, by encrypting it with the key K = diQCA. This allows the 295

CA to verify the authenticity by checking if (di + gi)G = Qi + Gi as only the device is 296

capable to derive this value. 297

2. Group key request of client, forwarded by broker to CA. 298

The broker collects all the info received by the devices and forwards it to the CA. 299

3. Construction of the group key related info by CA. 300

Denote the identity of the group with IDg, containing the group of publishers with 301

identities {IDP1, ..., IDPn} and corresponding group of subscribers with identities 302

{IDS1, ..., IDSn}. For both groups, a secret key pair for the publishers (dP, QP) and 303

for the subscribers (dS, QS) is derived. To this end, the CA first defines a group public 304

key QCAg by 305

QCAg = H(IDg‖IDP1‖...‖IDPn‖IDS1‖...‖IDSn‖dCA)G

= dCAgG.

Figure 2. Certificate request and reception between a client node and a broker communicating with a
certificate authority. (1) ECQV request of device, (2) ECQV request of client forwarded by broker to
CA, (3) ECQV response of CA, (4) ECQV response forwarded by broker to device, and (5) reception
and verification of device.

Version September 7, 2022 submitted to Sensors 9 of 17

broker

CA

pub sub

... (2)(,))

(4)

(priv+ priv)

(1)

(priv , pub))

(5)
(pub , priv))

(5)

(6)

(3)

(6)

Figure 3. Confirmation sending and group key reception. (1) Group key request of client, (2) Group
key request of client forwarded by broker to CA, (3) Construction of group key related info by CA, (4)
Response of CA to broker, (5) Response of broker to both publishers and subscribers, (6) Verification
of the devices.

• Option 1: Authentication and non-repudiation. 334

Here, the publisher with identity IDi and key pair (di, Qi) sends the message 335

M1 = {IDG, IDi, T, M, V, s},

where V, s corresponds with the Schnorr signature and thus V = vG with a randomly 336

chosen value v and s = v− H(M‖T‖IDG)di. 337

Upon arrival of this message at the broker side, the broker can check the validity by 338

verifying the signature. If correct, the broker further forwards the message to the 339

subscribers of the group. 340

In a similar way as the broker, the subscribers of the group can verify the authenticity 341

of the message. 342

• Option 2: Authentication, non repudiation and confidentiality. In this case, the 343

publisher sends the message 344

M2 = {IDG, IDi, T, EK(M), V, s},

with K = H(diQP‖T). The parameters V, s are referring to the Schnorr signature and 345

thus V = vG with a randomly chosen value v and s = v− H(EK(M)‖T‖IDG)di. 346

After receiving this message, the broker is able to verify the authentication by checking 347

the signature. If correct, the broker further forwards the message to the subscribers of 348

the group. 349

The subscribers, who are in the possession of the private group key dP are able to 350

decrypt the message and also to verify the individual authenticity of the message. 351

• Option 3: Authentication, confidentiality, non-repudiation and anonymity 352

For the full option, the publishers send 353

M3 = {IDG, T, Z, EK(M, ID1, s1), s2},

with K = H(zQP‖T) and Z = zG refers to the random value of the signature, while 354

the two signatures s1, s2 are defined as s1 = z − H(EK(M, ID1, s1)‖T‖IDG)di and 355

s2 = z− H(EK(M, ID1, s1)‖T‖IDG)dS. 356

The broker can again in the same way validate the authentication of the message at 357

group level, while the subscribers are able to decrypt the message and to verify the 358

authenticity. 359

Figure 3. Confirmation sending and group key reception. (1) Group key request of client,
(2) group key request of client forwarded by broker to CA, (3) construction of group-key-related info
by CA, (4) response of CA to broker, (5) response of broker to both publishers and subscribers, and
(6) verification of the devices.

4.2.1. Individual Key

The devices then start the ECQV protocol to derive their key pair. We slightly modify
the protocol by sending an additional random EC point Gi = giG to the CA in the certificate
request. As a consequence, each device i sends Ri, IDi, Gi to the broker, who further
forwards it to the CA.

Next, the CA aggregates Gi also in the auxiliary data derivation ai and, thus, the final
definition of the public key of the device becomes Qi = diG = H(IDi‖Ci‖Gi)Ci + QCA.
Similar as in the ECQV protocol, the CA sends the auxiliary data and certificate to the
broker, who further forwards it to the device. Next, based on this information, the device is
able to compute its private key and to verify the correctness of it.

See Figure 2 for a schematic overview of the communication messages between the
node, broker and CA.

Sensors 2022, 22, 7391 8 of 17

4.2.2. Group Key

We distinguish six main steps in this phase.

1. Group key request of client.
The device sends di + gi securely to the CA (via the broker) as response on the
individual key construction, by encrypting it with the key K = diQCA. This allows the
CA to verify the authenticity by checking if (di + gi)G = Qi + Gi as only the device is
capable to derive this value.

2. Group key request of client, forwarded by broker to CA.
The broker collects all the info received by the devices and forwards it to the CA.

3. Construction of the group key related info by CA.
Denote the identity of the group with IDg, containing the group of publishers with
identities {IDP1, . . . , IDPn} and corresponding group of subscribers with identities
{IDS1, . . . , IDSn}. For both groups, a secret key pair for the publishers (dP, QP) and
for the subscribers (dS, QS) is derived. To this end, the CA first defines a group public
key QCAg by

QCAg = H(IDg‖IDP1‖ . . . ‖IDPn‖IDS1‖ . . . ‖IDSn‖dCA)G

= dCAgG.

The key pair (dP, QP) of the publishers is then defined by

QP =
n

∑
i=1

Qpi +
n

∑
i=1

Gpi + QCAg

dP =
n

∑
i=1

(dpi + gpi) + dCAg (1)

Similar for the key pair (dS, QS) of the subscribers holds that

QS =
n

∑
i=1

Qsi +
n

∑
i=1

Gsi + QCAg

dS =
n

∑
i=1

(dsi + gsi) + dCAg (2)

4. Response of CA to broker.
Consequently, the group info with group identity IDG contains the information

{ (QCAg, QP, QS,

(IDp1, Cp1, Gp1, Qp1), . . . , (IDpn, Cpn, Gpn, Qpn),

(IDs1, Cs1, Gs1, Qs1), . . . , (IDsn, Csn, Gsn, Qsn) }.

In addition, the CA also computes for each of the individual publishers and sub-
scribers the encryption of dP and dS, respectively, by means of the ECIES algorithm in
which a random point R = rG is created in order to derive the common secret key
K = rQi, where Qi is the public key of the publisher or subscriber.
Both the group key information and the individual information is sent to the broker.

5. Response of broker to both publishers and subscribers.
Upon receiving this information, the broker first checks the validity of the group key
information of both the individual public keys (by the ECQV mechanism) and the
group keys (by construction with QCAg). In the first two communication modes, these
data should be publicly available and stored at the broker side. In the last mode,
option 3 with anonymity, the broker only stores {(QCAg, QP, QS)}.

Sensors 2022, 22, 7391 9 of 17

The broker then forwards to the publishers of the group

QP, (IDs1, Cs1, Gs1, Qs1), . . . , (IDsn, Csn, Gsn, Qsn),

and to the subscribers of the group

QS, (IDp1, Cp1, Gp1, Qp1), . . . , (IDpn, Cpn, Gpn, Qpn).

Note that the broker is not able to verify the individual information as it does not
know the private keys of the devices.

6. Verification of the devices.
Based on the received info of the broker and the construction (Equations (1) and (2)),
the publishers can validate the private group key dS and the subscribers the private
group key dP.

4.3. Secure Communication

We focus here on the communication of the message M by the publishers to the
subscribers. Similar explanation holds for the communication from subscribers to publish-
ers in case of a query. Denote the timestamp by T. We distinguish the three options as
mentioned above.

• Option 1: Authentication and non-repudiation.
Here, the publisher with identity IDi and key pair (di, Qi) sends the message

M1 = {IDG, IDi, T, M, V, s},

where V, s corresponds with the Schnorr signature and thus V = vG with a randomly
chosen value v and s = v− H(M‖T‖IDG)di.
Upon arrival of this message at the broker side, the broker can check the validity by
verifying the signature. If correct, the broker further forwards the message to the
subscribers of the group.
In a similar way as the broker, the subscribers of the group can verify the authenticity
of the message.

• Option 2: Authentication, non-repudiation, and confidentiality. In this case, the
publisher sends the message

M2 = {IDG, IDi, T, EK(M), V, s},

with K = H(diQP‖T). The parameters V, s are referring to the Schnorr signature and,
thus, V = vG with a randomly chosen value v and s = v− H(EK(M)‖T‖IDG)di.
After receiving this message, the broker is able to verify the authentication by checking
the signature. If correct, the broker further forwards the message to the subscribers of
the group.
The subscribers, who are in the possession of the private group key dP are able to
decrypt the message and also to verify the individual authenticity of the message.

• Option 3: Authentication, confidentiality, non-repudiation, and anonymity.
For the full option, the publishers send

M3 = {IDG, T, Z, EK(M, ID1, s1), s2},

with K = H(zQP‖T) and Z = zG refers to the random value of the signature, while
the two signatures s1, s2 are defined as s1 = z − H(EK(M, ID1, s1)‖T‖IDG)di and
s2 = z− H(EK(M, ID1, s1)‖T‖IDG)dS.
The broker can again in the same way validate the authentication of the message
at group level, while the subscribers are able to decrypt the message and to verify
the authenticity.

Sensors 2022, 22, 7391 10 of 17

4.4. Key Update Phase

In order to guarantee both backward and forward security, each time a new member
enters or an old member leaves the publishing or subscribing group, the group public
keys QCAg, QP, QS and corresponding private keys dCAg, dP, dS need to be refreshed. Con-
sider the following situation in which the publishing member IDp1 is leaving the group.
In this case, the CA defines the new public group key of the publishers
Q∗CAg = H(IDg‖IDP2‖ . . . ‖IDPn‖IDS1‖ . . . ‖IDSn‖dCA)G = d∗CAgG. As a consequence, the
new Q∗P becomes Q∗P = QP−Q1−QCAg +Q∗CAg and the new d∗P = dP − d1 − dCAg + d∗CAg.

Additionally, dS and QS should be updated accordingly by d∗S = ds − dCAg + d∗CAg
and Q∗S = Qs −QCAg + Q∗CAg.

For the update process, the CA sends the new list of participants and corresponding
security parameters, together with the new group keys Q∗CAg, Q∗P, Q∗S to the broker. The
group of subscribers is able to securely receive d∗P by means of a broadcast communication
using the previous dP. However, for the publishers, the parameter d∗S should be individually
sent to each of the members as the usage of dS will prevent backward security. Note that
the devices do not need to update their individual key.

The process is similar for devices entering the group of publishers or for devices
entering or leaving the group of subscribers.

5. Security Analysis

The security of the proposed protocol heavily relies on the security strength of well
proven algorithms ECIES, ECQV, and Schnorr signature. We will explain more in depth the
consequences for the construction of the key material and for the three different communi-
cation modes.

5.1. Construction of Key Material

First of all, due to the usage of the ECQV protocol, all nodes uniquely know their
private key di and their share of the group key di + gi. Note that di + gi is also communicated
to the CA. However, this information is still not sufficient to derive the unique private key
di in order to potentially impersonate one of the nodes. Moreover, the CA is considered to
be fully trusted.

Thanks to the ECIES, the nodes also uniquely receive from the CA the private key for
subscription of publishing dS, dP, respectively.

5.2. Communication Modes

Here, there are the three modes to be discussed.

• Option 1: Thanks to the usage of the Schnorr signature and the construction of the key
material, authentication, and non-repudiation are established.

• Option 2: Similar as in option 1, authentication and non-repudiation are established.
In addition, due to the usage of the ECIES algorithm, also confidentiality is obtained.

• Option 3: The main difference with option 2 is that the identity of the sender is
included in the encrypted message in order to obtain anonymity. As a consequence,
the signature linked to that identity is also added to the encrypted message. An
additional signature is included in order to allow the verification at group level by the
broker. As a result, anonymity and unlinkablity are obtained as well.

6. Performance Analysis

In the proposed security model we assume the existence of a known CA server that
will handle the security operations described along the paper. The public key of the CA
server has to be pre-loaded in each end node to allow them to verify the origin of the
certificate on certificate reception.

In the implementation of this security scheme, the broker is responsible of all the
security operations to generate the certificate and the group keys without relying on an

Sensors 2022, 22, 7391 11 of 17

external CA server. This is, of course, not a safe situation, a malicious broker can store
the group keys and generate the symmetric keys to decrypt all the messages it receives.
However, it is sufficient to conduct an analysis of the interaction between the broker and
the client nodes. As we can see in Figure 1, the broker just acts as a relay between the
publisher and subscriber nodes and the CA server for the security operations. We will then
consider them here both as the same entity.

6.1. Our Testbed

The security scheme was implemented (https://github.com/tperale/distmqtt, ac-
cessed on 22 September 2022) to run on the Raspberry PI platform. The testbed consisted of
a Raspberry PI 3B+ running a MQTT client and acting as a publisher connected via Wi-Fi
to a laptop running the MQTT broker and a Raspberry PI B+ running a MQTT subscriber
(shown in Figure 4. The DistMQTT implementation for MQTT was used since it was
written in Python. All the measurements were taken on the publisher side on the Raspberry
PI 3B+ and were monitored on the laptop using a UART adapter.

Figure 4. Testbed composed of a Raspberry PI 3B acting as the publisher connected to a laptop via a
UART adapter that host the MQTT broker, a Raspberry Pi B+ acting as the subscriber.

6.2. Overhead Analysis

The presented security scheme and its security keys exchanged between the nodes
and the broker can be directly added to the original MQTT connection packet exchange.
Section 4.2.2 described four steps to establish a secure communication between the pub-
lisher and subscriber. Similarly to [2], these steps can be directly embedded to the original
MQTT packets by extending the payload of these packets. As a result, the number of
packets sent between a node and the broker to make a connection is similar as for insecure
MQTT, but some additional overhead is added in the payload.

1. Connection (+certificate request). In the connection phase, the connect (see Table 1) packet
is growing by 122 bytes to include the public key and the random number g of the
pub/sub node.

2. Acknowledgement (+certificate reception and validation). The connack packet (see Table 2)
that acknowledges this connection now includes the ECQV certificate and the random
number r needed for the certificate reception and thus adds a total of 98 bytes to this
packet (see Figure 2).

3. Topic subscription (+verification number sending). For the verification phase the subscrip-
tions packet (see Table 3) must include the encrypted verification number which adds
48 bytes to the size of the packet.

4. Acknowledgement (+group key reception). The suback packet (see Table 4) contains an
encrypted public/private key pair which adds 98 bytes (see Figure 3).

https://github.com/tperale/distmqtt

Sensors 2022, 22, 7391 12 of 17

Table 1. MQTT modified connection packet.

Fixed Header (2 bytes)
packet_type remaining_length flags

Variable Header (4 bytes)
proto_name proto_level flags keep_alive

Payload (variable)
client_id pk (+66 bytes) g (+66 bytes)

Table 2. MQTT modified connack packet.

Fixed Header (2 bytes)
packet_type remaining_length flags

Variable Header (2 bytes)
session_parent return_code

Payload (98 bytes)
cert (+32 bytes) r (+66 bytes)

Table 3. MQTT modified subscribe packet.

Fixed Header (2 bytes)
packet_type remaining_length flags

Variable Header (2 bytes)
packet_id

Payload (variable)
topics verification (+ 48 bytes)

Table 4. MQTT modified suback packet.

Fixed Header (2 bytes)
packet_type remaining_length flags

Variable Header (2 bytes)
packet_id

Payload (variable)
topics return_codes group_keys private (+32 bytes) group_keys public (+66 bytes)

To summarize, the whole scheme with these four phases adds a total of 366 bytes of
communication overhead for the key initialization.

In comparison, MQTTS requires the connecting node to establish a secure connection
with the broker before performing the MQTT connection. Those steps are summarized in
Figure 5 and were measured on algorithms using the secp256k1 curves.

If we compare it to the values given in [2] (see Table 5, [2]) to establish a new TLS
connection, our proposed scheme is highly efficient since a new TLS connection introduces
an overhead of 1789 bytes, considering the use of only one certificate of 1500 bytes (four
certificates are usually used [1]). In Figure 6, a visual representation of the message flows
in our novel security scheme compared to the classical TLS handshake is presented. The
figure highlights the difference in the number of packets exchanged between a node and the
broker, depending on the security scheme. Our novel security scheme directly integrates
the classical MQTT connection and does not increase the number of packets exchanged,
contrary to TLS that requires to perform the handshake prior to the MQTT connection.
Moreover, thanks to the usage of the implicit certificates, compared to the X.509 certificates
in TLS, the messages are also much shorter. As a result, our protocol entails almost 80%
less communication overhead, as compared to MQTTS.

Sensors 2022, 22, 7391 13 of 17

Node Broker

connect

connack

ConnectionConnection

subscriptions

suback

VerificationVerification

Figure 5. Connection procedure and security overhead in MQTTS. First, a secure connection with the
broker is established and next the MQTT connection can be performed. Details on the connection
and verification steps can be found in Figures 2 and 3; the composition of the packets in Tables 1–4.

Node Broker

cert request (+132 bytes)

certificate (+98 bytes)

ConnectionConnection

verification (+48 bytes)

ack (+98 bytes)

SubscriptionSubscription

MQTT ConnectionMQTT Connection

Node Broker

ClientHello (160-170 bytes)

ServerHello (70-75 bytes)

Certificate (800-1500 bytes)

ServerKeyExchange

ServerHelloDone

ClientKeyEchange (130 bytes)

ChangeCipherSpec (1 byte)

Client Finished (12 byte)

Server Finished

HandshakeHandshake

...

...

MQTT ConnectionMQTT Connection

Figure 6. Comparison of the size overhead of our security scheme compared to a TLS 1.2 handshake.
Details on TLS packets are shown in Table 5.

Sensors 2022, 22, 7391 14 of 17

Table 5. Message sizes of TLS.

Message Size Remarks

ClientHello 160–170 bytes
Depends on parameter such as cipher suites. Client Hello extensions and
session resumption.

Session ID 132 bytes

ServerHello 70–75 bytes Varies with Server Hello extensions.

Certificate 800–1500 bytes Depends on the certificate chain size and the number of certificates needed.

ClientKeyExchange 130 bytes

ChangeCipherSpec 1 byte

Finished 12 bytes

TLS Record Header 5 bytes

TLS Handshake Header 4 bytes

6.3. Computational Cost

The design of this security scheme externalizes the computational complexity to the
CA server. The nodes participating in the MQTT network are constrained devices that
cannot handle expensive computations. There are two expensive operations performed on
the client nodes: the certificate reception and the verification computation.

The reception of the ECQV certificate requires a hash operation (H), an elliptic curve
point addition (PA), and a point multiplication (PM) to extract the private key of the
certificate. The second operation is to generate the secret key to transmit the confirmation
number to the broker of the node. This operation requires a point multiplication and an
AES encryption. The overhead of those two functions were measured on the MQTT client
running on a Raspberry Pi 3B. The overhead is summarized in Table 6. The presented
security scheme tested on Raspberry Pi 3B running in a MQTT network adds an overhead
mean is between 49.3 ms and 49.7 ms with 95% confidence interval.

Table 6. Comparison of computational overhead of the operations on a Raspberry PI 3B in our
proposed scheme versus MQTTS.

Step (Proposed Scheme) Operations Time (ms)

Certificate reception 1 PM, 1 PA, 1 H 29

Verification 1 PM, 1 AES 20

Step (MQTTS) Operations Total Time (ms)

ECDSA Verification 2 PM, 1 PA, 1 H

ECDHE 2 PM, 1 AES 144

ECDSA Signature 1 PM, 1 H

This security scheme can be compared to the performance overhead of the TLS hand-
shake but this metric depends on the type of certificate exchanged (see [26]). In Figure 7, the
performance of the TLS handshake based on ECDH_ECDSA certificate is compared to our
security scheme. We only measure the computationally intensive part of handshake where
the symmetric key is computed (the client operation part of Figure 7). This part is made
of three different computationally expensive operations: the verification, the computation
of ECDHE key and its signature, but we will measure them as a whole because they are
completed inside the same step of the TLS handshake. The number for MQTTS of Table 6
is measured during a handshake initiated from a Raspberry PI 3B using a secp256r1 curve
and takes a total of 144 ms.

We can compare the number of the two security scheme from Table 6. The compu-
tational overhead of our security scheme is smaller than the one of the traditional TLS

Sensors 2022, 22, 7391 15 of 17

handshake. To be more specific, TLS demands almost 3 times the computational overhead
of our security scheme. For this we need to add the delay of the packet exchanged by the
handshake. However, as this delay is dependant on the network connection, we do not go
into details.

Node Broker

cert request

certificate

Reception (1PM, 1PA, 1H)

ConnectionConnection

verification

ack

Verification (1PM, 1AES)

SubscriptionSubscription

MQTT ConnectionMQTT Connection

Node Broker

ClientHello

ServerHello
Certificate

ServerKeyExchange
ServerHelloDone

ECDSA verify (2PM, 1PA, 1H)

ECDHE compute (2PM, 1AES)

ECDSA Sign (1PM, 1H)

Client operationsClient operations

ClientHello
ClientKeyExchange
ChangeCipherSpec

ClientFinished

ServerFinished

HandshakeHandshake

...

...

MQTT ConnectionMQTT Connection

Figure 7. Comparison of the computational overhead of our security scheme compared to a TLS 1.2
handshake based on ECDH_ECDSA.

6.4. Scalability

A new set of topic group keys is generated each time a node joins a topic. The
equations to generate the group keys are defined by Equations (1) and (2). The CA server
only requires from the participating nodes to identify each topic to re-generate the pub/sub
group keys. The identity is required to generate the group key pair.

The set of new topic pub/sub group keys is generated by just adding the new verifica-
tion number of the joining node to the previous pub/sub group key and re-generating the
group private key. Verification numbers do not need to be stored indefinitely by the CA
server which keeps the storage overhead in the CA server per topic constant, regardless the
number of participants.

Sensors 2022, 22, 7391 16 of 17

7. Conclusions

This paper presents a flexible and lightweight MQTT security scheme developed for
constrained devices. It overcomes the issue of a dishonest broker which has the capability
to retrieve all messages sent to it. Our proposed scheme ensures the confidentiality and
non-repudiation by sharing a different key pair for the publishers and subscribers of each
topic. It relies on a trusted external certificate authority responsible for the generation of
the security keys. The CA public key is known and pre-loaded on each client node to verify
that the security keys were correctly generated by a trusted CA. The messages sent on each
topic are signed and encrypted to allow the recipients to verify that they originate from a
“publisher” node.

This novel security scheme reduces the communication overhead of TLS by approxi-
mately 80% (when comparing the amount of data exchanged) because the scheme does not
require a handshake before performing an MQTT connection. The number of packets sent
between the client and the broker which reduces the delay to establish a secure connection.
Additionally, the number of cryptographic operations used in our scheme is much lower
than the one used in traditional TLS and reduces the computational overhead of the added
security by approximately 3 times.

Future work should improve the scalability of the security scheme to avoid the re-
computation of the topic keys for each connection/disconnection. Additionally, MQTTS
should be considered to port this security scheme to small devices. Currently, the ar-
chitecture relies on a semi-trusted broker and a fully trusted CA. Note that for the key
initialization, thanks to the ECQV mechanism, the CA can be still considered honest but
curious. However, its strongest involvement is in Step 3, construction of the group key
related info, where it defines the key pair for both the groups of the publishers and the
subscribers and, thus, a completely trusted CA is needed. It is an open problem and part
of future work to investigate how the scheme can be developed with also an honest and
curious CA without significant performance cost.

Author Contributions: Conceptualization, A.B.; Formal analysis, A.B.; Investigation, D.D.; Method-
ology, R.V.G.; Project administration, K.S.; Software, R.V.G. and T.P.; Supervision, K.S.; Validation, T.P.;
Writing—review & editing, D.D., K.S. and A.B. All authors have read and agreed to the published
version of the manuscript.

Funding: The research was partly supported by the project fund for technology and transfer (TETRA)
of Flanders Innovation & Entrepreneurship (Vlaio) under grant number HBC.2020.2073 Velcro.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References
1. Diro, A.A.; Chilamkurti, N.; Kumar, N. Lightweight Cybersecurity Schemes Using Elliptic Curve Cryptography in Publish-

Subscribe fog Computing. Mob. Netw. Appl. 2017, 22, 848–858. [CrossRef]
2. Diro, A.A.; Reda, H.; Chilamkurti, N.; Mahmood, A.; Zaman, N.; Nam, Y. Lightweight Authenticated-Encryption Scheme for

Internet of Things Based on Publish-Subscribe Communication. IEEE Access 2021, 8, 60539–60551. [CrossRef]
3. Carlier, M.; Steenhaut, K.; Braeken, A. Symmetric-Key-Based Security for Multicast Communication in Wireless Sensor Networks.

Computers 2019, 8, 27. [CrossRef]
4. Ren, K.; Lou, W.; Zhu, B.; Jajodia, S. Secure and Efficient Multicast in Wireless Sensor Networks Allowing Ad hoc Group

Formation. IEEE Trans. Veh. Technol. 2009, 58, 2018–2029. [CrossRef]
5. Shabisha, P.; Braeken, A.; Kumar, P.; Steenhaut, K. Fog-Orchestrated and Server-Controlled Anonymous Group Authentication

and Key Agreement. IEEE Access 2019, 7, 150247–150261. [CrossRef]
6. Chandramouli, A.; Choudhury, A.; Patra, A. A Survey on Perfectly Secure Verifiable Secret-Sharing. ACM Comput. Surv. 2022,

54, 1–36. [CrossRef]
7. Wang, Y.; Lou, X.; Fan, Z.; Sheng, W.; Guan, H. Verifiable Multi-Dimensional (t, n) Threshold Quantum Secret Sharing Based on

Quantum Walk. Int. J. Theor. Phys. 2022, 61, 156–165. [CrossRef]
8. Keoh, S.; Kumar, S.; Garcia-Morchon, O.; Dijk, E.; Rahman, A. DTLS-Based Multicast Security for Low-Power and Lossy Networks

(LLNs). 2014. Available online: http://www.watersprings.org/pub/id/draft-keoh-tls-multicast-security-00.html (accessed on
22 September 2022).

http://doi.org/10.1007/s11036-017-0851-8
http://dx.doi.org/10.1109/ACCESS.2020.2983117
http://dx.doi.org/10.3390/computers8010027
http://dx.doi.org/10.1109/TVT.2008.2003961
http://dx.doi.org/10.1109/ACCESS.2019.2946713
http://dx.doi.org/10.1145/3512344
http://dx.doi.org/10.1007/s10773-022-05009-w
http://www.watersprings.org/pub/id/draft-keoh-tls-multicast-security-00.html

Sensors 2022, 22, 7391 17 of 17

9. Tiloca, M.; Nikitin, K.; Raza, S. Axiom: DTLS-based secure IoT group communication. ACM Trans. Embed. Comput. Syst. TECS
2017, 16, 1–29. [CrossRef]

10. Tiloca, M.; Gehrmann, C.; Seitz, L. On improving resistance to denial of service and key provisioning scalability of the DTLS
handshake. Int. J. Inf. Secur. 2017, 16, 173–193. [CrossRef]

11. Choudhury, B.; Nag, A.; Nandi, S. DTLS based secure group communication scheme for Internet of Things. In Proceedings
of the 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Delhi, India, 10–13 December
2020; pp. 156–164. [CrossRef]

12. Peng, W.; Liu, S.; Peng, K.; Wang, J.; Liang, J. A Secure Publish/Subscribe Protocol for Internet of Things Using Identity-Based
Cryptography. In Proceedings of the 5th International Conference on Computer Science and Network Technology (ICCSNT),
Changchun, China, 10–11 December 2016; pp. 628–634.

13. Polyakov, Y.; Rohloff, K.; Sahu, G.; Vaikuntanathan, V. Fast Proxy Re-Encryption for Publish/Subscribe Systems. Acm Trans. Priv.
Secur. 2017, 20, 1–31. [CrossRef]

14. Amanlou, S.; Hasan, M.; Bakar, K. Lightweight and secure authentication scheme for IoT network based on publish–subscribe
fog computing model. Comput. Netw. 2021, 199, 108465. [CrossRef]

15. Ion, M.; Russello, G.; Crispo, B. Design and implementation of a confidentiality and access control solution for publish/subscribe
systems. Comput. Netw. 2012, 56, 2014–2037. [CrossRef]

16. Tariq, M.A.; Koldehofe, B.; Rothermel, K. Securing broker-less publish/subscribe systems using identity-based encryption. IEEE
Trans. Parallel Distrib. Syst. 2014, 25, 518–528. [CrossRef]

17. Duan, L.; Sun, C.; Zhang, Y.; Ni, W.; Chen, J. A Comprehensive Security Framework for Publish/Subscribe-Based IoT Services
Communication. IEEE Access 2019, 7, 25989–26001. [CrossRef]

18. Wang, Q.; Chen, D.; Zhang, N.; Ding, Z.; Qin, Z. PCP: A Privacy-Preserving Content-Based Publish–Subscribe Scheme With
Differential Privacy in Fog Computing. IEEE Access 2017, 5, 17962–17974. [CrossRef]

19. Su, W.T.; Chen, W.C.; Chen, C.C. An extensible and transparent Thing-to-Thing security enhancement for MQTT protocol in IoT
environment. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–4.

20. Dolev, D.; Yao, A. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198–208. [CrossRef]
21. Koblitz, N. Elliptic curve cryptosystems. Math. Comp. 1987, 48, 203–209. [CrossRef]
22. Smart, N. The Exact Security of ECIES in the Generic Group Model. In Cryptography and Coding. Cryptography and Coding 2001;

Lecture Notes in Computer Science; Honary, B., Ed.; Springer: Berlin/Heidelberg, Germnay, 2001; Volume 2260, pp. 73–84.
23. Schnorr, C. Efficient identification and signatures for smart cards. In Advances in Cryptology—CRYPTO’89 Proceedings; Lecture

Notes in Computer Science; Springer: New York, NY, USA, 1990; Volume 435, pp. 239–252.
24. Brown, D.; Gallant, R.; Vanstone, S. Provably Secure Implicit Certificate Schemes. In Financial Cryptography; Lecture Notes in

Computer Science; Springer: Berlin/Heidelberg, Germnay, 2001; Volume 2339, pp. 156–165.
25. MQTT. Mq Telemetry Transport. Available online: https://mqtt.org/ (accessed on 1 September 2022).
26. Koschuch, M.; Hudler, M.; Krüger, M. Performance Evaluation of the TLS Handshake in the Context of Embedded Devices. In

Proceedings of the 2010 International Conference on Data Communication Networking (DCNET), Athens, Greece, 26–28 July
2010; pp. 35–44.

http://dx.doi.org/10.1145/3047413
http://dx.doi.org/10.1007/s10207-016-0326-0
http://dx.doi.org/10.1109/MASS50613.2020.00029
http://dx.doi.org/10.1145/3128607
http://dx.doi.org/10.1016/j.comnet.2021.108465
http://dx.doi.org/10.1016/j.comnet.2012.02.013
http://dx.doi.org/10.1109/TPDS.2013.256
http://dx.doi.org/10.1109/ACCESS.2019.2899076
http://dx.doi.org/10.1109/ACCESS.2017.2748956
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1090/S0025-5718-1987-0866109-5
https://mqtt.org/

	Introduction
	Related Work
	Background and Preliminaries
	Architecture and Attack Model
	Security Features
	Cryptographic Operations
	MQTT

	Framework
	Set-Up
	Key Initialization
	Individual Key
	Group Key

	Secure Communication
	Key Update Phase

	Security Analysis
	Construction of Key Material
	Communication Modes

	Performance Analysis
	Our Testbed
	Overhead Analysis
	Computational Cost
	Scalability

	Conclusions
	References

