Lateral Flow Immunoassay Reader Technologies for Quantitative Point-of-Care Testing
Abstract
:1. Introduction
2. Colorimetric Readers
3. Fluorescence Readers
4. Magnetic Readers
5. Photothermal Readers
6. Electrochemical Readers
7. Dual-Signal Readers
8. Readers for Quantitative COVID-19 Analysis
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, R.; Tse, H. Lateral Flow Immunoassay; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Mohit, E.; Rostami, Z.; Vahidi, H. A comparative review of immunoassays for COVID-19 detection. Expert Rev. Clin. Immunol. 2021, 17, 573–599. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. Sensors 2021, 21, 5185. [Google Scholar] [CrossRef] [PubMed]
- Andryukov, B.G. Six decades of lateral flow immunoassay: From determining metabolic markers to diagnosing COVID-19. AIMS Microbiol. 2020, 6, 280–304. [Google Scholar] [CrossRef] [PubMed]
- Shirshahi, V.; Tabatabaei, S.N.; Hatamie, S.; Saber, R. Photothermal enhancement in sensitivity of lateral flow assays for detection of E-coli O157:H7. Colloids Surf. B Biointerfaces 2020, 186, 110721. [Google Scholar] [CrossRef]
- Guo, J.; Chen, S.; Guo, J.; Ma, X. Nanomaterial Labels in Lateral Flow Immunoassays for Point-of-Care-Testing. J. Mater. Sci. Technol. 2021, 60, 90–104. [Google Scholar] [CrossRef]
- Urusov, A.E.; Zherdev, A.V.; Dzantiev, B.B. Towards Lateral Flow Quantitative Assays: Detection Approaches. Biosensors 2019, 9, 89. [Google Scholar] [CrossRef]
- Ye, H.; Xia, X. Enhancing the sensitivity of colorimetric lateral flow assay (CLFA) through signal amplification techniques. J. Mater. Chem. B 2018, 6, 7102–7111. [Google Scholar] [CrossRef]
- Xiao, R.; Lu, L.; Rong, Z.; Wang, C.; Peng, Y.; Wang, F.; Wang, J.; Sun, M.; Dong, J.; Wang, D.; et al. Portable and multiplexed lateral flow immunoassay reader based on SERS for highly sensitive point-of-care testing. Biosens. Bioelectron. 2020, 168, 112524. [Google Scholar] [CrossRef]
- Park, J. An Optimized Colorimetric Readout Method for Lateral Flow Immunoassays. Sensors 2018, 18, 4084. [Google Scholar] [CrossRef]
- Zeng, N.; You, Y.; Xie, L.; Zhang, H.; Ye, L.; Hong, W.; Li, Y. A new imaged-based quantitative reader for the gold immunochromatographic assay. Optik 2018, 152, 92–99. [Google Scholar] [CrossRef]
- Saisin, L.; Amarit, R.; Somboonkaew, A.; Gajanandana, O.; Himananto, O.; Sutapun, B. Significant Sensitivity Improvement for Camera-Based Lateral Flow Immunoassay Readers. Sensors 2018, 18, 4026. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Kang, Y.; Liang, S.; Zhang, J. Detection of Hg (II) in adsorption experiment by a lateral flow biosensor based on streptavidin-biotinylated DNA probes modified gold nanoparticles and smartphone reader. Environ. Pollut. 2020, 266, 115389. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; O’Dell, D.; Hohenstein, J.; Colt, S.; Mehta, S.; Erickson, D. NutriPhone: A mobile platform for low-cost point-of-care quantification of vitamin B12 concentrations. Sci. Rep. 2016, 6, 28237. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, C.; Phogat, N.; Laufer, S.; Kohl, M.; Deigner, H.P. A smartphone readout system for gold nanoparticle-based lateral flow assays: Application to monitoring of digoxigenin. Mikrochim. Acta 2019, 186, 119. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Huang, C.; Xu, F.; Yan, J.; Bian, H.; Fu, Q.; Xie, K.; Wang, L.; Tang, Y. A simple and compact smartphone-based device for the quantitative readout of colloidal gold lateral flow immunoassay strips. Sens. Actuators B Chem. 2018, 266, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Shi, Z.; Fang, C.; Zhang, Y.; Liu, Y.; Li, C. Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk. Biosens. Bioelectron. 2015, 69, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, H.-B.; Zhong, Z.-T.; Li, C.-Q.; Chen, W.; Liu, B.; Zhao, Y.-D. A smartphone-based rapid quantitative detection platform for lateral flow strip of human chorionic gonadotropin with optimized image algorithm. Microchem. J. 2020, 157, 105038. [Google Scholar] [CrossRef]
- Tiplady, S. Consumer Diagnostics—Clearblue Pregnancy and Fertility Testing. In The Immunoassay Handbook, 4th ed.; Wild, D., Ed.; Elsevier: Oxford, UK, 2013; Chapter 7; pp. 537–540. [Google Scholar]
- Liu, X.; Xiang, J.J.; Tang, Y.; Zhang, X.L.; Fu, Q.Q.; Zou, J.H.; Lin, Y. Colloidal gold nanoparticle probe-based immunochromatographic assay for the rapid detection of chromium ions in water and serum samples. Anal. Chim. Acta 2012, 745, 99–105. [Google Scholar] [CrossRef]
- Berlina, A.N.; Taranova, N.A.; Zherdev, A.V.; Vengerov, Y.Y.; Dzantiev, B.B. Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk. Anal. Bioanal. Chem. 2013, 405, 4997–5000. [Google Scholar] [CrossRef]
- Lu, Z.; O’Dell, D.; Srinivasan, B.; Rey, E.; Wang, R.; Vemulapati, S.; Mehta, S.; Erickson, D. Rapid diagnostic testing platform for iron and vitamin A deficiency. Proc. Natl. Acad. Sci. USA 2017, 114, 13513–13518. [Google Scholar] [CrossRef] [Green Version]
- Masello, M.; Lu, Z.; Erickson, D.; Gavalchin, J.; Giordano, J.O. A lateral flow-based portable platform for determination of reproductive status of cattle. J. Dairy Sci. 2020, 103, 4743–4753. [Google Scholar] [CrossRef] [PubMed]
- Rong, Z.; Xiao, R.; Peng, Y.; Zhang, A.; Wei, H.; Ma, Q.; Wang, D.; Wang, Q.; Bai, Z.; Wang, F. Integrated fluorescent lateral flow assay platform for point-of-care diagnosis of infectious diseases by using a multichannel test cartridge. Sens. Actuators B Chem. 2021, 329, 129193. [Google Scholar] [CrossRef]
- Kim, K.; Kashefi-Kheyrabadi, L.; Joung, Y.; Kim, K.; Dang, H.; Chaven, S.G.; Lee, M.-H.; Choo, J. Recent advances in sensitive surface-enhanced Raman scattering-based lateral flow assay platforms for point-of-care diagnostics of infectious diseases. Sens. Actuators B Chem. 2021, 329, 129214. [Google Scholar] [CrossRef]
- Tran, V.; Walkenfort, B.; König, M.; Salehi, M.; Schlücker, S. Rapid, Quantitative, and Ultrasensitive Point-of-Care Testing: A Portable SERS Reader for Lateral Flow Assays in Clinical Chemistry. Angew. Chem. Int. Ed. Engl. 2019, 58, 442–446. [Google Scholar] [CrossRef]
- Kim, Y.; Lim, H. Laser-induced fluorescence reader with a turbidimetric system for sandwich-type immunoassay using nanoparticles. Anal. Chim. Acta 2015, 883, 32–36. [Google Scholar] [CrossRef]
- Hu, L.-M.; Luo, K.; Xia, J.; Xu, G.-M.; Wu, C.-H.; Han, J.-J.; Zhang, G.-G.; Liu, M.; Lai, W.-H. Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine. Biosens. Bioelectron. 2017, 91, 95–103. [Google Scholar] [CrossRef]
- Lu, J.; Wu, Z.; Liu, B.; Wang, C.; Wang, Q.; Zhang, L.; Wang, Z.; Chen, C.; Fu, Y.; Li, C.; et al. A time-resolved fluorescence lateral flow immunoassay for rapid and quantitative serodiagnosis of Brucella infection in humans. J. Pharm. Biomed. Anal. 2021, 200, 114071. [Google Scholar] [CrossRef]
- Jin, B.; Yang, Y.; He, R.; Park, Y.I.; Lee, A.; Bai, D.; Li, F.; Lu, T.J.; Xu, F.; Lin, M. Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles. Sens. Actuators B Chem. 2018, 276, 48–56. [Google Scholar] [CrossRef]
- Gong, Y.; Zheng, Y.; Jin, B.; You, M.; Wang, J.; Li, X.; Lin, M.; Xu, F.; Li, F. A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing. Talanta 2019, 201, 126–133. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, D.; Jiao, L.; Su, E.; He, N. A new quality control method for lateral flow assay. Chin. Chem. Lett. 2018, 29, 1853–1856. [Google Scholar] [CrossRef]
- Koshy, T.I.; Buechler, K.F. The Triage® System. In The Immunoassay Handbook, 4th ed.; Wild, D., Ed.; Elsevier: Oxford, UK, 2013; Chapter 7.5; pp. 541–544. [Google Scholar]
- Yang, X.; Liu, L.; Hao, Q.; Zou, D.; Zhang, X.; Zhang, L.; Li, H.; Qiao, Y.; Zhao, H.; Zhou, L. Development and Evaluation of Up-Converting Phosphor Technology-Based Lateral Flow Assay for Quantitative Detection of NT-proBNP in Blood. PLoS ONE 2017, 12, e0171376. [Google Scholar] [CrossRef] [PubMed]
- Zijlmans, H.J.; Bonnet, J.; Burton, J.; Kardos, K.; Vail, T.; Niedbala, R.S.; Tanke, H.J. Detection of cell and tissue surface antigens using up-converting phosphors: A new reporter technology. Anal. Biochem. 1999, 267, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Niedbala, R.S.; Feindt, H.; Kardos, K.; Vail, T.; Burton, J.; Bielska, B.; Li, S.; Milunic, D.; Bourdelle, P.; Vallejo, R. Detection of analytes by immunoassay using up-converting phosphor technology. Anal. Biochem. 2001, 293, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhou, L.; Zhao, Y.; Wang, J.; Huang, L.; Hu, K.; Liu, H.; Wang, H.; Guo, Z.; Song, Y.; et al. Rapid quantitative detection of Yersinia pestis by lateral-flow immunoassay and up-converting phosphor technology-based biosensor. Sens. Actuators B Chem. 2006, 119, 656–663. [Google Scholar] [CrossRef]
- Hall, D.A.; Gaster, R.S.; Lin, T.; Osterfeld, S.J.; Han, S.; Murmann, B.; Wang, S.X. GMR biosensor arrays: A system perspective. Biosens. Bioelectron. 2010, 25, 2051–2057. [Google Scholar] [CrossRef]
- Moyano, A.; Serrano-Pertierra, E.; Salvador, M.; Martínez-García, J.C.; Rivas, M.; Blanco-López, M.C. Magnetic Lateral Flow Immunoassays. Diagnostics 2020, 10, 288. [Google Scholar] [CrossRef]
- Lei, H.; Wang, K.; Ji, X.; Cui, D. Contactless Measurement of Magnetic Nanoparticles on Lateral Flow Strips Using Tunneling Magnetoresistance (TMR) Sensors in Differential Configuration. Sensors 2016, 16, 2130. [Google Scholar] [CrossRef]
- Park, J. Superparamagnetic nanoparticle quantification using a giant magnetoresistive sensor and permanent magnets. J. Magn. Magn. Mater. 2015, 389, 56–60. [Google Scholar] [CrossRef]
- Park, J. A giant magnetoresistive reader platform for quantitative lateral flow immunoassays. Sens. Actuators A Phys. 2016, 250, 55–59. [Google Scholar] [CrossRef]
- Nikitin, P.; Vetoshko, P.; Ksenevich, T. Magnetic immunoassays. Sens. Lett. 2007, 5, 296–299. [Google Scholar] [CrossRef]
- Nikitin, P.I.; Vetoshko, P.M.; Ksenevich, T.I. New type of biosensor based on magnetic nanoparticle detection. J. Magn. Magn. Mater. 2007, 311, 445–449. [Google Scholar] [CrossRef]
- Orlov, A.V.; Bragina, V.A.; Nikitin, M.P.; Nikitin, P.I. Rapid dry-reagent immunomagnetic biosensing platform based on volumetric detection of nanoparticles on 3D structures. Biosens. Bioelectron. 2016, 79, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, T.; Cao, B.; Xu, H.; Cheng, Y.; Zheng, C.; Zheng, W.; Cui, D. Simulation and improvements of a magnetic flux sensor for application in immunomagnetic biosensing platforms. Sens. Actuators A Phys. 2022, 333, 113299. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, S.; Dong, C.; Yang, J.; Ma, T.; Zhang, H.; Cui, Y.; Hui, W. Lateral flow immunoassay based on gold magnetic nanoparticles for the protein quantitative detection: Prostate-specific antigen. Anal. Biochem. 2021, 627, 114265. [Google Scholar] [CrossRef]
- Ojaghi, A.; Pallapa, M.; Tabatabaei, N.; Rezai, P. High-sensitivity interpretation of lateral flow immunoassays using thermophotonic lock-in imaging. Sens. Actuators A Phys. 2018, 273, 189–196. [Google Scholar] [CrossRef]
- Hu, X.; Wan, J.; Peng, X.; Zhao, H.; Shi, D.; Mai, L.; Yang, H.; Zhao, Y.; Yang, X. Calorimetric lateral flow immunoassay detection platform based on the photothermal effect of gold nanocages with high sensitivity, specificity, and accuracy. Int. J. Nanomed. 2019, 14, 7695–7705. [Google Scholar] [CrossRef]
- Min, J.; Nothing, M.; Coble, B.; Zheng, H.; Park, J.; Im, H.; Weber, G.F.; Castro, C.M.; Swirski, F.K.; Weissleder, R.; et al. Integrated Biosensor for Rapid and Point-of-Care Sepsis Diagnosis. ACS Nano 2018, 12, 3378–3384. [Google Scholar] [CrossRef]
- Zhu, X.; Sarwar, M.; Zhu, J.J.; Zhang, C.; Kaushik, A.; Li, C.Z. Using a glucose meter to quantitatively detect disease biomarkers through a universal nanozyme integrated lateral fluidic sensing platform. Biosens. Bioelectron. 2019, 126, 690–696. [Google Scholar] [CrossRef]
- Su, L.; Chen, Y.; Wang, L.; Zhang, H.; Sun, J.; Wang, J.; Zhang, D. Dual-signal based immunoassay for colorimetric and photothermal detection of furazolidone. Sens. Actuators B Chem. 2021, 331, 129431. [Google Scholar] [CrossRef]
- Fang, B.; Hu, S.; Wang, C.; Yuan, M.; Huang, Z.; Xing, K.; Liu, D.; Peng, J.; Lai, W. Lateral flow immunoassays combining enrichment and colorimetry-fluorescence quantitative detection of sulfamethazine in milk based on trifunctional magnetic nanobeads. Food Control 2019, 98, 268–273. [Google Scholar] [CrossRef]
- Zhu, X.; Shah, P.; Stoff, S.; Liu, H.; Li, C.Z. A paper electrode integrated lateral flow immunosensor for quantitative analysis of oxidative stress induced DNA damage. Analyst 2014, 139, 2850–2857. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wang, K.; Xiao, K.; Qin, W.; Lu, W.; Tao, W.; Cui, D. Smartphone-Based Dual-Modality Imaging System for Quantitative Detection of Color or Fluorescent Lateral Flow Immunochromatographic Strips. Nanoscale Res. Lett. 2017, 12, 291. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- WHO. Coronavirus Disease (COVID-19). Available online: https://covid19.who.int (accessed on 25 August 2022).
- Hsiao, W.W.; Le, T.N.; Pham, D.M.; Ko, H.H.; Chang, H.C.; Lee, C.C.; Sharma, N.; Lee, C.K.; Chiang, W.H. Recent Advances in Novel Lateral Flow Technologies for Detection of COVID-19. Biosensors 2021, 11, 295. [Google Scholar] [CrossRef] [PubMed]
- Adams, E.R.; Ainsworth, M.; Anand, R.; Andersson, M.I.; Auckland, K.; Baillie, J.K.; Barnes, E.; Beer, S.; Bell, J.I.; Berry, T.; et al. Antibody testing for COVID-19: A report from the National COVID Scientific Advisory Panel. Wellcome Open Res. 2020, 5, 139. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.L.; Tseng, W.P.; Lin, C.H.; Lee, T.F.; Chung, M.Y.; Huang, C.H.; Chen, S.Y.; Hsueh, P.R.; Chen, S.C. Four point-of-care lateral flow immunoassays for diagnosis of COVID-19 and for assessing dynamics of antibody responses to SARS-CoV-2. J. Infect. 2020, 81, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Nimse, S.B.; Kim, J.; Song, K.S.; Kim, T. Development of a Lateral Flow Strip Membrane Assay for Rapid and Sensitive Detection of the SARS-CoV-2. Anal. Chem. 2020, 92, 14139–14144. [Google Scholar] [CrossRef]
- Ning, B.; Yu, T.; Zhang, S.; Huang, Z.; Tian, D.; Lin, Z.; Niu, A.; Golden, N.; Hensley, K.; Threeton, B.; et al. A smartphone-read ultrasensitive and quantitative saliva test for COVID-19. Sci. Adv. 2021, 7, eabe3703. [Google Scholar] [CrossRef]
- Wang, D.; He, S.; Wang, X.; Yan, Y.; Liu, J.; Wu, S.; Liu, S.; Lei, Y.; Chen, M.; Li, L.; et al. Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA. Nat. Biomed. Eng. 2020, 4, 1150–1158. [Google Scholar] [CrossRef]
- Diao, B.; Wen, K.; Chen, J.; Liu, Y.; Yuan, Z.; Han, C.; Chen, J.; Pan, Y.; Chen, L.; Dan, Y.; et al. Diagnosis of Acute Respiratory Syndrome Coronavirus 2 Infection by Detection of Nucleocapsid Protein. medRxiv 2020. [Google Scholar] [CrossRef]
- Nel, A.E.; Miller, J.F. Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. ACS Nano 2021, 15, 5793–5818. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Marks, F.; Clemens, J.D. Looking beyond COVID-19 vaccine phase 3 trials. Nat. Med. 2021, 27, 205–211. [Google Scholar] [CrossRef]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.-M.; et al. COVID-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef] [PubMed]
- Calina, D.; Docea, A.O.; Petrakis, D.; Egorov, A.M.; Ishmukhametov, A.A.; Gabibov, A.G.; Shtilman, M.I.; Kostoff, R.; Carvalho, F.; Vinceti, M.; et al. Towards effective COVID-19 vaccines: Updates, perspectives and challenges (Review). Int. J. Mol. Med. 2020, 46, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Cao, C.; You, M.; Han, S.; Liu, Z.; Xiao, Y.; He, W.; Liu, C.; Peng, P.; Xue, Z.; et al. Artificial intelligence-assisted colorimetric lateral flow immunoassay for sensitive and quantitative detection of COVID-19 neutralizing antibody. Biosens. Bioelectron. 2022, 213, 114449. [Google Scholar] [CrossRef]
- Hung, K.F.; Hung, C.H.; Hong, C.; Chen, S.C.; Sun, Y.C.; Wen, J.W.; Kuo, C.H.; Ko, C.H.; Cheng, C.M. Quantitative Spectrochip-Coupled Lateral Flow Immunoassay Demonstrates Clinical Potential for Overcoming Coronavirus Disease 2019 Pandemic Screening Challenges. Micromachines 2021, 12, 321. [Google Scholar] [CrossRef]
- Basu, A.; Zinger, T.; Inglima, K.; Woo, K.M.; Atie, O.; Yurasits, L.; See, B.; Aguero-Rosenfeld, M.E. Performance of Abbott ID Now COVID-19 Rapid Nucleic Acid Amplification Test Using Nasopharyngeal Swabs Transported in Viral Transport Media and Dry Nasal Swabs in a New York City Academic Institution. J. Clin. Microbiol. 2020, 58, e01136-20. [Google Scholar] [CrossRef]
Reader Type | Label Particle | Measured Signal | Sensor |
---|---|---|---|
Colorimetric | Colloidal gold or colored monodisperse latex | Contrast or color change | Charge-coupled device or complementary metal–oxide–semiconductor sensor |
Fluorescence | Fluorescent monodisperse latex | Fluorescence | Charge-coupled device or complementary metal–oxide–semiconductor sensor |
Magnetic | Paramagnetic monodisperse latex or superparamagnetic iron oxide | Magnetic field intensity | Giant magnetoresistive, tunnel magnetoresistive, or inductive magnetic sensor |
Photothermal | Graphene oxide or gold nanocage | Thermal waves | Infrared camera |
Electrochemical | Metal nanoparticle or oxidizing enzyme | Voltage, current, or impedance | Potentiometer or galvanometer |
Dual-signal | Mix of the above | Mix of the above | Mix of the above |
Reader Type | Target Analytes | Range of Concentration Measured and LOD * | Reference |
---|---|---|---|
Colorimetric | Creatine kinase-muscle/brain (CK-MB) | 0 to 10 ng/mL | [10] |
2 ng/mL | |||
Acidovorax avenae subsp. citrulli (Aac) | 0 to 1 × 107 CFU/mL | [12] | |
1 × 105 CFU/mL | |||
Hg(II) | 2 to 7 nM | [13] | |
2.53 nM | |||
Vitamin B12 | 0 to 1107 pmol/L | [14] | |
92 pmol/L | |||
Spiked serum digoxigenin | 0 to 100 nmol/L | [15] | |
19.8 nmol/L | |||
Cadmium ion | 0.16 ng/mL | [16] | |
Clenbuterol | 0.046 ng/mL | ||
Porcine epidemic diarrhea virus | 0.055 ug/mL | ||
Alkaline phosphatase (ALP) | 0.1–150 U/L | [17] | |
0.1 U/L | |||
Human chorionic gonadotropin (hCG) | 6–300 ng/mL | [18] | |
3 ng/mL | |||
Chromium ions | 5–80 ng/mL | [20] | |
4.8 ng/mL | |||
COVID-19-neutralizing antibody | 625 to 10,000 ng/mL | [69] | |
160 ng/mL | |||
COVID-19 neutralizing antibody | 186 pg/mL (with spectrometer) | [70] | |
Fluorescence | Chloramphenicol | 0.3 to 20 ng/mL | [21] |
0.2 ng/mL | |||
Iron (ferritin) | 10.9 ng/mL | [22] | |
Vitamin A (retinol-binding protein) | 2.2 ug/mL | ||
Inflammation status (C-reactive protein) | 0.092 ug/mL | ||
Human immunodeficiency virus antibody (HIV Ab) | 0.11 NCU/mL | [24] | |
Treponema pallidum antibody (TP Ab) | 0.62 IU/L | ||
Hepatitis C virus antibody (HCV Ab) | 0.14 NCU/mL | ||
Hepatitis B virus surface antigen (HBsAg) | 0.22 IU/mL | ||
Alpha-fetoprotein (AFP) | 0.01 ng/mL | [9] | |
Carcinoembryonic antigen (CEA) | |||
Prostate-specific antigen (PSA) | |||
Human chorionic gonadotropin (hCG) | 1.6 mIU/mL | [26] | |
Salinomycin | 39 pg/mL | [27] | |
Brucellosis | 1.6 to 100 IU/mL | [29] | |
0.3 IU/mL | |||
Mercury ions | 5 ppb | [30,31] | |
Ochratoxin A | 3 ng/mL | ||
Salmonella | 85 CFU/mL | ||
Yersinia pestis | 104 to 108 CFU/mL | [37] | |
104 CFU/mL | |||
RNA-dependent RNA polymerase (RdRp) | 10 copies/test | [61] | |
Open reading frame 3 accessory (ORF3a), Nucleocapsid (N) genes | |||
SARS-CoV-2 RNA | 1 to 105 copies/uL | [62] | |
0.38 copies/uL | |||
Nucleocapsid protein | Qualitative | [63] | |
Magnetic | Human chorionic gonadotropin (hCG) | 25 mIU/mL | [40] |
Lipopolysaccharide of Francisella tularensis | 0.1 ng/mL | [43,44] | |
F1 capsular antigen of Yersinia pestis | |||
Prostate-specific antigen (PSA) | 0.01 to 100 ng/mL | [45] | |
25 pg/mL | |||
Human chorionic gonadotropin (hCG) | 0.0098 mIU/mL | [46] | |
gastrin-17 (G17) | 9.1016 pg/mL | ||
Prostate-specific antigen (PSA) | 1 to 128 ng/mL | [47] | |
0.17 ng/mL | |||
Photothermal | E-coli O157:H7 | 5 × 105 to 5 × 107 CFU/mL | [5] |
5 × 105 CFU/mL | |||
Human chorionic gonadotropin (hCG) | 0 to 16 mIU/mL | [48] | |
0.2 mIU/mL | |||
Alpha-fetoprotein (AFP) | 0.25 ng/mL | [49] | |
Electrochemical | Cytokine interleukin-3 (IL-3) | 10 pg/mL | [50] |
8-hydroxy-2-deoxy guanosine (8-OHdG) | 0.1 to 100 ng/mL and 0.23 ng/mL (for 8-OHdG) | [51] | |
Prostate-specific antigen (PSA) | 1 to 100 ng/mL and 1.26 ng/mL (for PSA) | ||
Dual signal | Furazolidone | 1 ng/mL (for colorimetric) | [52] |
0.43 ng/mL (for photothermal) | |||
Sulfamethazine | 0.033 to 33 ng/mL and 0.026 ng/mL (for fluorescence) | [53] | |
1 to 100 ng/mL and 0.71 ng/mL (for colorimetric) | |||
8-hydroxy-2-deoxy guanosine (8-OHdG) | 2.07 ng/mL (for colorimetric) | [54] | |
3.11 ng/mL (for electrochemical) | |||
Human chorionic gonadotropin (hCG) | 2.3 mIU/mL | [55] | |
Carcinoembryonic antigen (CEA) | 0.037 ng/mL |
Product Name or Model No. | Manufacturer | Reader Type [Reference] | Remarks |
---|---|---|---|
Clearblue® | Swiss Precision Diagnostics GmbH | Colorimetric [19] | Optoelectronics (i.e., sensors, LEDs, battery, etc.) that measure the intensity of the test line are integrated into the assay device. |
AESE-Quant Portable and Benchtop Lateral Flow Reader | DCN Inc., Irvine, CA, USA | Colorimetric [20] | General-purpose commercial colorimetric reader |
AFS-1000 | Guangzhou Lanbo Biotechnology Co., Ltd., Guangzhou, China | Fluorescence [27] | General-purpose commercial fluorescence reader |
Triage® System | Alere Inc., Waltham, MA, USA | Fluorescence [33] | An immunoassay system for the quantitative analysis of multiple analytes in blood or urine. |
Portable magnetic reader | MagnaBioSciences, LLC, San Diego, CA, USA | Magnetic [47] | General-purpose magnetic reader |
BMT 1D Scanner | Biometrix Technology Inc., Chuncheon, South Korea | Fluorescence [61] | General-purpose commercial fluorescence reader |
An immunofluorescence analyzer | Bioeasy Biotechnology Co., Ltd., Shenzhen, China | Fluorescence [64] | General-purpose commercial fluorescence reader |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J. Lateral Flow Immunoassay Reader Technologies for Quantitative Point-of-Care Testing. Sensors 2022, 22, 7398. https://doi.org/10.3390/s22197398
Park J. Lateral Flow Immunoassay Reader Technologies for Quantitative Point-of-Care Testing. Sensors. 2022; 22(19):7398. https://doi.org/10.3390/s22197398
Chicago/Turabian StylePark, Jongwon. 2022. "Lateral Flow Immunoassay Reader Technologies for Quantitative Point-of-Care Testing" Sensors 22, no. 19: 7398. https://doi.org/10.3390/s22197398
APA StylePark, J. (2022). Lateral Flow Immunoassay Reader Technologies for Quantitative Point-of-Care Testing. Sensors, 22(19), 7398. https://doi.org/10.3390/s22197398