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Abstract: Dot-product attention is a powerful mechanism for capturing contextual information.
Models that build on top of it have acclaimed state-of-the-art performance in various domains,
ranging from sequence modelling to visual tasks. However, the main bottleneck is the construction
of the attention map, which is quadratic with respect to the number of tokens in the sequence.
Consequently, efficient alternatives have been developed in parallel, but it was only recently that their
performances were compared and contrasted. This study performs a comparative analysis between
some efficient attention mechanisms in the context of a purely attention-based spatio-temporal
forecasting model used for traffic prediction. Experiments show that these methods can reduce the
training times by up to 28% and the inference times by up to 31%, while the performance remains on
par with the baseline.

Keywords: artificial neural networks; deep learning; intelligent transportation systems

1. Introduction

Traffic forecasting is concerned with predicting future values of traffic-related vari-
ables such as speed, flow, or demand, based on past observations. Applications of traffic
forecasting include live route optimization, traffic simulation, or time of arrival estimation.

Tasks under the umbrella of traffic forecasting are inherently spatio-temporal. Accurate
forecasting methods rely on information from multiple spatial locations and past time steps
to make predictions. Consequently, state-of-the-art deep learning architectures for traffic
prediction consist of building blocks that learn spatial, temporal, or joint dependencies
between traffic events. The most common building blocks of these architectures are convo-
lutional and attention layers, which are used across both temporal and spatial dimensions,
and recurrent layers, which are used mostly for the temporal dimension.

Convolutional layers update the features of an element using the features of other ele-
ments within a receptive field, which is limited by the size of the learnable kernels. They are
efficient due to locality and parameter sharing. Graph convolutions [1,2] are a particular
class of convolutional layers that can be used to model spatial dependencies, which work
well on traffic data. This is because the locations in a traffic sensor network can be repre-
sented as a graph, such that the adjacency between two nodes, corresponding to real-world
locations, is proportional to their real-world distance. Models that use graph convoltuions
to model spatial dependencies, such as [3–5], have proven to be superior than those that use
regular convolutions, acclaiming state of the art on multiple datasets [6]. However these
method require a connectivity prior, and they have certain shortcomings when modeling
long distance dependencies.

An alternative to using graph convolutions to model spatial dependencies is to use
the dot-product attention [7]. Attention layers have an unlimited receptive field and
therefore can model interactions between elements regardless of their distance. This
mechanism allows for entirely data-driven learning of contextual spatial dependencies in an
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all-to-all manner. Methods that rely entirely on attention mechanisms, such as [8–10] have
also acclaimed state-of-the-art performance on various traffic forecasting tasks. Another
advantage presented in [10] is domain adaptation, which helps to learn in scenarios with
high scarcity. The main issue with the dot-product attention, when used to model spatial
dependencies, is its quadratic complexity with respect to the number of sensor locations in
the traffic network.

In real-world scenarios, performing accurate traffic forecasting requires the processing
of very large graphs, which is computationally demanding. In addition, computing the
spatial attention with quadratic complexity for very large graphs is prohibitive. The goal of
this work is to identify efficient, sub-quadratic, attention mechanisms which have limited
impact on the forecasting accuracy when replacing the dot-product attention. By using
efficient attention modules to capture spatial dependencies, the models become easier
to scale to traffic networks having thousands, or tens of thousands locations (nodes).
Consequently, the main contributions of this paper are:

• We perform the first fair comparison between efficient attention modules in the context
of a spatio-temporal forecasting model, by analyzing the performance-complexity
trade-off of these modules. To our best knowledge, this is the first analysis of this type
in the a spatio-temporal modeling context.

• We examine the results for two distinct datasets of different sizes to verify the rela-
tionship between the theoretical complexity of the attention modules and the effective
training and inference times.

• We open-source all the data and code used in the experiments to facilitate further
research in this direction.

One notes that, parallel to our work, another study [11] compares attention mecha-
nisms in a completely different context focusing on the application of pyramid transformers
for visual processing tasks. The results of this study indicate that the use of efficient atten-
tion modules only slightly impacts the performance of the baseline model, with significant
gain in resource utilization.

2. Materials and Methods
2.1. Baseline Model

The baseline method considered in this work is the Attention Diffusion Network
(ADN) [10]. ADN is among the state-of-the-art methods for traffic forecasting, achieving
top-5 performance across multiple traffic prediction datasets such as PeMS-Bay and Metr-
LA [12], and top-1 on the PeMS-07 dataset. The architecture resembles the Transformer [7],
both architecturally and functionally. ADN is a stacked encoder-decoder model (Figure 1)
that contains multi-head self-attention (MHA) and feedforward (FFN) layers.

Figure 1. The architecture of ADN (from [10]).
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Similar to the positional embeddings in the Transformer, the model projects temporal
and spatial indicators into embeddings with the same hidden size as the model and adds
them to the input features in the ENC-INI and DEC-INI blocks. Temporal indicators provide
day-of-the-week and time-of-day encodings, while the spatial indicators attribute a unique
identifier to each location without carrying any structural information.

ADN uses MHA (Equations (1) and (2)) to model both spatial and temporal depen-
dencies. In this context, Q, K and V are linear projections of three input tensors. Q and K
are used to generate the attention map, which is in turn used to update the features of V.
In case of self-attention, all three are projections of the same tensor.

Normally, traffic data have three dimensions: the space, time and feature dimensions.
The model is adapted in order to accommodate the additional dimension compared to
regular sequential data. Unlike in other architectures such as [8,13], spatial and temporal
attention are sequentially applied without an explicit merging mechanism.

Attni(Q, K, V) = softmax(
Q× KT
√

dh
)V (1)

Attn(Q, K, V) = [Attn0(Q, K, V)||...||AttnK(Q, K, V)]WO (2)

The batched data tensor is manipulated so that the attention is applied to temporal
or spatial slices. The SPLIT and MERGE blocks are responsible for splitting and merging
respectively the dimensions of the data such that attention can be applied to the appropri-
ate dimensions.

The FFN layers (not depicted) are present after each of the MHA blocks, both in the
decoder and the encoder. Each FFN layer is composed of two fully-connected layers with
a ReLU activation between them. Following the scheme in the transformer, the hidden
internal size of the FFN layer is four times larger than the model’s hidden size. In addition
to the MHA and FFN layers, the model utilizes dropout [14] and layer normalisation [15],
following the regularisation scheme in the Transformer.

At training time, the model acts as an auto-encoder. The input to the encoder is a
sequence of traffic states in previous time steps P0, ..., PN . At training time, the information
about the future steps is available, as teacher forcing [16] is used. The input to the decoder
is composed of the last term in the past sequence and the first N − 1 terms in the future:
PN , F0, ..., FN−1. The model’s output is compared with the entire future sequence F0, ..., FN .

At inference time, the model acts as an auto-regressor. Similarly with the training
regime, the encoder uses P0, ..., P11 as input. The ground truth labels are no longer available,
so starting with just P11 in the decoder, the model iteratively predicts the values in the next
step and adds it to the input of the decoder. After 12 steps the sequence F0, ...F11 will be in
the output of the decoder.

One of the significant benefits of the model is that it does not require spatial priors
in the form of graph connectivity matrices, due to the all-to-all nature of self-attention.
This allows for a completely data-driven learning, which in turn allows for better domain
adaptation and more effortless transfer learning across datasets coming from different
sources [10].

The downside, however, also lies in the self-attention mechanism. As it scales quadrat-
ically with respect to the number of tokens, the higher the number of spatial locations in
the network, the more drastic is the effect on the training and inference time compared
to other mechanisms such as convolutions or graph-based convolutions. Simultaneously,
Ref. [10] introduces an alternative mechanism, which is in turn similar to the group attention
described in [8].

2.2. Efficient Attention Mechanisms

As models which employ dot-product attention have seen applications ranging from
natural language processing to computer vision and beyond, there has been a lot of recent
interest in reducing their time and memory complexity. On the one hand, lowering the
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time complexity should impact the training time, but—more importantly—it could reduce
the inference time, which is most often critical in real-time scenarios, while also benefiting
the user experience. On the other hand, reducing complexity may impact the forecasting
accuracy and the overall performance of the model. Studying this performance–complexity
trade-off is the goal of this work.

Table 1 presents some alternative attention methods from the recent literature. While
this study does not explicitly include a comprehensive review of sub-quadratic attention,
we have selected six alternatives based on different approaches used in our experiments.

Table 1. An overview of some sub-quadratic attention strategies.

Attention Type Complexity Strategy

Dot-product Attention (DA) [7] O(N2 ∗ d) All-to-all
Group Attention (GA) [8,10] O(M ∗ K2 ∗ d) Inter-group all-to-all
Reformer Attention (RA) [17] O(Nlog(N) ∗ d) Locality-sensitive hashing

Fast Linear Attention (FA) [18] O(N ∗ d2) Kernelization, associativity
Efficient Attention (EA) [19] O(N ∗ d2) Associativity

Linformer Attention (LA) [20] O(N ∗ d ∗ w) Low-Rank approximation
Performer Attention (FV) [21] O(N ∗ d ∗ c) Algebraic approximation

For all the methods in Table 1, N is the number of tokens in the sequence (number
of spatial locations in our case), and d is the dimension of the vector representation of the
tokens. For GA, M is the fixed number of partitions and K is the size of the partitions, such
that N = K×M. For LA and FV, w and c are the dimensions of the lower rank projection
matrices, such that c < d << N.

2.2.1. Group Attention

The group attention (GA) [10] is a form of random, local attention. The tokens are
randomly partitioned into M groups. Each spatial location then only interacts with the other
locations within the same partition. The partitions are randomly generated at each epoch.

2.2.2. Reformer Attention

The reformer attention (RA) [17] uses a locality-sensitive hashing to limit the attention
span. The idea behind it is that the results of the softmax in the dot-product attention are
influenced, in large part, only by the most similar keys to each query.

The input sequence is transformed using a single shared weight matrix. After a
hashing function is applied, the sequence is sorted by the result of the hash and chunked to
a pre-defined size. The attention is then applied only to the terms within the same chunk
and those with the same hash from the last bucket.

2.2.3. Fast Linear Attention

The fast linear attention (FA) [18] is an approximation to the dot-product attention.
Essentially, it replaces the so f tmax with an associative, kernel-based similarity function.

The softmax function can be generalised to any non-negative similarity function,
for which the authors concretely use a kernel Φ of shape k(x, y) : R2×F −→ R+. The i-th
row of the result is given by:

Attn(Q, K, V)i =
∑N

j=1 sim(Qi, Kj)Vj

∑N
j=1 sim(Qi, Kj)

(3)

As the so f tmax operation is not involved in this formulation, one can simply factor
out Φ(Qi) since the rest of the equation is associative with respect to multiplication. Φ(Qi)
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is computed only once, and the complexity of the multiplication between the keys and the
values is independent of the sequence length:

Attn(Q, K, V)i =
∑N

j=1 Φ(Qi)
TΦ(Kj)Vj

∑N
j=1 Φ(Qi)T , Φ(Kj)

=
Φ(Qi)

T ∑N
j=1 Φ(Kj)Vj

Φ(Qi)T ∑N
j=1 Φ(Kj)

(4)

2.2.4. Efficient Attention

The efficient attention (EA) [19] relies on the inversion of the order in which the three
tensors Q, K and V are multiplied. The process starts with multiplying KT and V and
applying so f tmax to obtain global context vectors.

C = softmaxcol(KTV) (5)

The shape of these vectors C is Rd×d. As opposed to the attention map in the original
model, this is independent of the number of terms in the sequence but linear with respect
to the number of features, which is in most cases significantly smaller than the number of
terms in the sequence and is constant with respect to the input.

To obtain the final representation, the global attention vectors are multiplied with Q,
with an additional so f tmax operation.

Attn(Q, K, V) =
softmaxrow(Q)C√

dh
(6)

Using only an additional softmax operation makes it possible to obtain an approximate
equivalent of the quadratic attention in linear space and time.

2.2.5. Linformer Attention

The linformer attention [20] proposes a low-rank approximation of the attention map,
which is denoted with P. The authors prove that P can be approximated by P̃ ∈ Rn×n,
and the error of this approximation is bounded.

Before computing and applying the attention, K and V are projected into a lower
dimension using two projection matrices, Ei and Fi, corresponding to the i-th head in a
multi-head setting.

Attni(Q, K, V) = softmax(
QWQ

i (EiKWK
i )

T
√

dk
)× FiVWV

i (7)

Combining the heads through the regular mechanisms is equivalent to a low-rank
approximation of attention.

2.2.6. FAVOR+ Attention

The fast attention via positive orthogonal random features (FV+) attention [21] pro-
poses an approximation method similar with [18] to approximate the bottleneck so f tmax
in the dot-product attention.

The method uses random positive-definite kernels with specific trigonometric con-
straints to approximate the softmax and relies on the associativity property to first perform
the KT ×V computation.

Attn(Q, K, V) =
Φ(Q)(Φ(K)TV)

diag(Φ(Q)(Φ(K)TIN))
(8)

2.3. Evaluation Data

All the models were trained and evaluated on two datasets that measure traffic speed,
with a different number of spatial locations. The datasets provide continuous measurements
of average speeds over 5-minutes intervals, which are measured for a few months each.
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ADN constructs the dataset by splitting the data into intervals of 2 h (24 × 5-minutes
intervals), with an overlap of 12 between consecutive data points. The model learns to
predict the future interval (target) using the past interval (source).

The Metr-LA dataset contains average speed data from N = 207 sensors corresponding
to locations on the highway network of Los Angeles, which are reported between the 1
March and the 30 June 2012. With an overlap of 12, the number of data points that can be
constructed using this interval is 2855.

The PeMS-Bay dataset contains average speed data from N = 325 sensors correspond-
ing to locations within the Bay Area, California, which are reported between the 1 January
and the 31 May 2017. With an overlap of 12, the number of data points that can be con-
structed using this interval is 4342.

For both datasets, we follow a chronological 70/10/20 train-validation-test split. All
the features are normalised via standard scaling, using the mean and standard deviation of
the training set.

2.4. Experiment Methodology

The main goal of this study is to assess the impact of replacing dot-product attention
with other efficient alternatives in a spatio-temporal deep learning architecture. All spatial
attention blocks of the architecture are replaced, in turn, with one of the alternative atten-
tions. In total, we benchmark seven models across two datasets. To measure the impact,
we are interested in the performance of the models in terms of prediction performance and
resource usage.

2.4.1. Error Metrics

The error metrics below have been employed to measure the the performance of the
models; N indicates the number of spatial locations, H indicates the number of time steps,
and y and ŷ represent the ground truth and the predicted values, respectively.

• Mean Absolute Error (MAE)— 1
N

1
H ∑H

t=1 ∑N
i=1 |yt

i − ŷt
i |

• Root Mean Squared Error (RMSE)—
√

1
N

1
H ∑H

t=1 ∑N
i=1(y

t
i − ŷt

i)
2

• Mean Absolute Percentage Error (MAPE)— 1
N

1
H ∑H

t=1 ∑N
i=1

1
yt

i
∗ |yt

i − ŷt
i |

2.4.2. Resource Metrics

The following complexity metrics quantify the resources used by the models:

• Training time (sec./epoch)—The amount of time, in seconds, required for training the
model for a single epoch. This includes any epoch-level pre-processing, plus the times
needed for the forward and backward passes for all the batches.

• Inference time (ms./epoch)—The amount of time, in milliseconds, required for infer-
ence on a single sample. This is effectively the time required to produce the output
sequence for a single sample by repeatedly forward passing the data in an auto-
regressive manner.

• Maximum GPU utilisation during training (GB)—We measure the maximum GPU
utilization from a practical point of view. Knowing or approximating the maximum
GPU usage, one could select an appropriate machine with a large enough GPU.

To limit the impact of the randomly selected seeds, we run each experiment 10 times
and compute the mean and standard deviation of the performance metrics. To compare
the alternatives with the baseline, we run an unpaired t-test and highlight those scenarios
where the alternative attention mechanisms are not statistically worse than the baseline.
To avoid overcrowding the result tables, we only report the mean values of the metrics.

2.5. Experimental Setup

For a fair comparison, all the experiments were run on an Nvidia DGX V100 worksta-
tion, using a single Tesla V100 GPU (32 GB). We closely follow the values and procedures
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described in [10] for the hyperparameters and training regime. Batch size: 32, maximum
epochs: 100, learning rate: 0.02, learning rate decay: 15% at epochs 15, 30, 45, hidden
dimension: 32, feedforward dimension: 256, dropout: 0.3, gradient clipping: 0.1.

For the model, we use our own implementation which we also open-sourced (https:
//github.com/radandreicristian/adn, (accessed on 6 July 2022)). For the alternative attention
mechanisms, we use open-source packages and implementations (https://github.com/
lucidrains/linformer, (accessed on 7 September 2022)), (https://github.com/cmsflash/
efficient-attention, (accessed on 5 July 2022)), (https://github.com/idiap/fast-transformers,
(accessed on 2 July 2022)), (https://github.com/lucidrains/performer-pytorch, (accessed on
10 July 2022)), (https://github.com/lucidrains/reformer-pytorch, (accessed on 18 August 2022)).

3. Results

The tables in this section compare the baseline with modified versions that use alterna-
tive attention mechanisms to model spatial dependencies. The naming of the models in the
table follows the abbreviations in Table 1, by adding the name of the attention at the end.

3.1. Learning Curves

The training and validation losses for each dataset were plotted on the same chart to
compare the training status visually. Figures 2 and 3 show the loss curves for the Metr-LA
dataset, while Figures 4 and 5 show the curves for the PeMS-Bay dataset.

All the models with alternative attentions converge in the same range as the baseline.
This happens both during training and validation. The validation curves are more jittery
initially but then become more stable, indicating a good training regime and a robust
regularisation scheme.

3.2. Times and Resource Utilization

Below we compare the models in terms of the resource metrics previously described.
The number of parameters is consistent throughout almost all models. ADN-LSH uses
parameter sharing between WK and WQ within the same block (which does not impact the
performance, according to [17]), so there are fewer parameters than in the other models.
ADN-LFM has a higher number of parameters due to the projection size hyperparameter.
However, we consider this difference neglectable, as it accounts for no more than 3% of the
total number of parameters.

Figure 2. Training loss curves, log scale—ADN on Metr-LA.

https://github.com/radandreicristian/adn
https://github.com/radandreicristian/adn
https://github.com/lucidrains/linformer
https://github.com/lucidrains/linformer
https://github.com/cmsflash/efficient-attention
https://github.com/cmsflash/efficient-attention
https://github.com/idiap/fast-transformers
https://github.com/lucidrains/performer-pytorch
https://github.com/lucidrains/reformer-pytorch


Sensors 2022, 22, 7457 8 of 12

Figure 3. Validation loss curves—ADN on Metr-LA.

Figure 4. Training loss curves, log scale—ADN on PeMS-Bay.

Figure 5. Validation loss curves—ADN on PeMS-Bay.
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For the Metr-LA dataset, Table 2 shows that the training times are usually lower than
the baseline with full attention. From the training time point of view, the best alternatives
(FA, LA) lower the training time by up to 23%. From the inference point of view, EA is the
best alternative, outperforming the baseline with group attention by 11%. The peak GPU
usage is on par with the group attention proposed by the authors.

Table 2. Time and resource utilization of different attention types for ADN on Metr-LA.

Model No. Parameters Training Time
(s/epoch)

Inference Time
(ms/sample)

Peak GPU
Usage (GB)

ADN-DA 331 K 30 7.8 9.9
ADN-GA 331 K 46 1.9 4.7
ADN-RA 324 K 50 8.1 11
ADN-FA 331 K 23 2.4 4.5
ADN-EA 331 K 27 1.7 5.5
ADN-LA 341 K 23 2.1 4.5
ADN-FV 330 K 25 2.2 4.7

The bottleneck of ADN-GA at train time is the chunking and indexing of the tensors
to create random groups. While the complexity of this operation is linear with respect to
the number of spatial locations, it is more visible when the number of locations is smaller.
At inference time, this operation is only done once; consequently, the per-sample inference
time is much lower than that of ADN-DA.

Looking at the training times in Table 3, ADN-FV is the best model on PeMS-Bay,
taking 31% less time than the baseline. The inference time is up to 26% lower, with the best
model being EA. The GPU usage is, again, on par with the group attention proposed by the
authors. Larger relative differences are due to the number of spatial locations, with respect
to which the dot-product attention is quadratic.

Table 3. Time and resource utilization of different attention types for ADN on PeMS-Bay.

Model No. Parameters Training Time
(s/epoch)

Inference Time
(ms/sample)

Peak GPU
Usage (GB)

ADN-DA 334 K 69 8.4 14
ADN-GA 335 K 72 5.4 7.1
ADN-RA 328 K 103 8.3 17
ADN-FA 335 K 52 4.1 7.2
ADN-EA 334 K 50 4.0 8.5
ADN-LA 356 K 48 4.7 7.9
ADN-FV 334 K 43 5.0 8.1

ADN-RA was, in both cases, worse than the baseline in terms of training time and peak
GPU usage. This can be attributed to the additional tensor operations related to hashing
and sorting. Although, in theory, its complexity is O(Nlog(N)), the sub-par results can be
attributed to the practical implementation bottlenecks. As the relative difference in training
and inference times is smaller for PeMS-Bay, these results would likely be alleviated by a
higher number of spatial locations.

3.3. Prediction Performance

On Metr-LA, just a few of the alternatives achieve results that are on par with the
original quadratic attention mechanism. According to Table 4 the best overall performance
is achieved by the fast linear attention, which is on par with the baseline on all metrics
except the short-term MAPE. Overall, the least-performing models are ADN-RA and
AND-LA, which are almost always worse than the baseline.
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Table 4. Errors of models based on ADN with different attention mechanisms, on Metr-LA. Models
marked with * represent our own implementation of the baseline.

15-min 30-min 60-min

Model MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ADN-DA * 3.01 6.04 8.18% 3.57 7.40 10.28% 4.30 8.88 12.82%
ADN-GA * 3.06 6.14 8.37% 3.62 7.54 10.50% 4.37 9.04 12.98%
ADN-RA 3.04 6.10 8.25% 3.60 7.45 10.40% 4.32 8.91 12.99%
ADN-FA 3.02 6.01 8.20% 3.56 7.30 10.22% 4.31 8.70 12.61%
ADN-EA 3.06 6.11 8.33% 3.61 7.47 10.41% 4.36 8.93 13.08%
ADN-LA 3.05 6.14 8.20% 3.64 7.53 10.35% 4.42 9.16 13.03%
ADN-FV 3.02 6.05 8.20% 3.58 7.42 10.32% 4.38 8.94 13.75%

On PeMS-Bay, according to Table 5, more alternatives are on par with the baseline.
Once again, the model that is most consistently on par with the baseline is ADN-FA.
Interestingly, ADN-EA performs worse in the short term, while ADN-FV performs worse
in the long term.

Table 5. Errors of models based on ADN with different attention mechanisms, on PeMS-Bay. Models
marked with * represent our own implementation of the baseline.

15-min 30-min 60-min

Model MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ADN-DA * 1.48 3.04 3.04% 1.86 4.14 4.16% 2.34 5.28 5.74%
ADN-GA * 1.51 3.07 3.10% 1.89 4.18 4.22% 2.38 5.31 5.79%
ADN-RA 1.48 3.05 3.02% 1.87 4.15 4.10% 2.35 5.28 5.59%
ADN-FA 1.48 3.04 3.05% 1.87 4.12 4.16% 2.34 5.22 5.72%
ADN-EA 1.50 3.05 3.06% 1.88 4.14 4.15% 2.33 5.21 5.72%
ADN-LA 1.49 3.07 3.06% 1.90 4.20 4.20% 2.41 5.42 5.84%
ADN-FV 1.48 3.06 3.05% 1.90 4.18 4.17% 2.42 5.36 5.71%

Similarly, with Metr-LA, the short-term predictions are generally closer to the baseline.
Again, this can be attributed to the autoregressive nature of the model. This phenomenon
seems to manifest independently of the dataset.

4. Discussion
4.1. Theoretical Complexity vs. Training Time

Most of the alternative attention mechanisms are linear with respect to the number
of tokens. However, they also depend on other parameters, such as the hidden layer
dimension, and in some cases on other projection dimensions. When these other values are
closer to the number of tokens N, the complexity reductions brought by the subquadratic
attention mechanisms is reduced; for instance, when d ≈ N, the complexity becomes
O(N3), both for the baseline and two of the efficient attentions (EA and FA).

For cases when both N and d would be large, LA and FV attentions would be more
efficient due to the constant projection size hyperparameter. In practice, it is unlikely that d
has a magnitude larger than tens to hundreds, while the number of tokens, corresponding
to real-world sensor locations, is usually in the range of hundreds and even thousands and
more for large scale forecasting at country level.

From a theoretical point of view, the difference between the baseline and the efficient
alternatives should be more visible on datasets with more locations. This can be seen in
practice, as the relative decrease in training time is larger in case of PeMS-Bay (N = 325)
−28%, than in case of Metr-LA (N = 207) −23%. Similarly, the relative decrease in inference
time is larger on PeMS-Bay, 26%, than on Metr-LA, 11%.
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Comparing the performance of the model on the two datasets, it is clear that the
improvements in training and inference times are more significant on the larger dataset.
That is, the larger the number of location, the larger the effective difference between
computations with quadratic and linear complexity becomes.

4.2. Performance of Alternative Attention Mechanisms

One attention module (FA) stands out for both datasets. It performs on par with the
baseline in almost all metrics, while the required training and inference times are 23%,
respectively 24% less.

Another module (FV) is on par with the baseline on Metr-LA. On PeMS-Bay, its
performance is partially on par with the baseline, for short and medium-term predictions.
On long-term predictions, its performance degrades. This may indicate a limitation caused
by the combination of the approximate nature of the attention and the autoregressive
nature of the model. Most of the other alternative attentions have worse results due to
their approximate nature. Although the difference is statistically significant, the relative
difference is usually less than 5%.

4.3. Social Considerations

All stakeholders involved in designing and integrating large-scale AI systems, in-
cluding smart transportation systems, must always take into the account computational
complexity. An important consequence of training and deploying large models is their
carbon footprint. Reducing complexity has a direct impact on reducing the carbon footprint
of the employed models while maintaining forecasting performance.

By showing that sub-quadratic attention mechanisms can produce models that have
prediction performance on par with the baseline methods for traffic forecasting, we hope
to motivate further research and development to consider these as viable alternatives
in the context of attention-based spatio-temporal forecasting. Although the difference
in training time (and consequently the number of GPU-hours) is relatively small for the
reported experiments, it can dramatically increase for larger scale networks with many
more locations and/or time steps.

4.4. Limitations

The effect of the alternative attentions in spatio-temporal forecasting scenarios is
impacted both by the model and by the data. Although it is hard to generalize from one
model or dataset to another, this work demonstrates that sub-quadratic attention models
can be used in traffic forecasting as they bring substantial complexity reductions with
limited impact on overall forecasting performance.

5. Conclusions

This work conducts a comparative analysis of efficient alternatives to dot-product
attention for modeling spatial dependencies in a spatio-temporal architecture for traffic
forecasting. We focus on the ADN model, which originally employs dot-product attention
for spatial modeling, and replace the attention mechanism with five alternatives of sub-
quadratic complexity. To evaluate their performance, all the models were tested against
two datasets with different number of spatial locations. In order to have a fair comparison,
we use the same hardware and software settings for all experiments.

The experimental results show that some of the alternative attentions can achieve
results that are on par with, or slightly better than the baseline, using significantly less
computational resources. Specifically, for the architecture considered in our study, the best
performing model across the two datasets is ADN-FA, which produces results on par
with the baseline, while reducing the training and inference times by 25%. This makes
sub-quadratic attention mechanisms extremely attractive for scenarios having thousands,
or tens of thousands traffic sensors.
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