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Abstract: Activity recognition using wearable sensors has become essential for a variety of applica-
tions. Tri-axial accelerometers are the most widely used sensor for activity recognition. Although
various features have been used to capture patterns and classify the accelerometer signals to recognise
activities, there is no consensus on the best features to choose. Reducing the number of features
can reduce the computational cost and complexity and enhance the performance of the classifiers.
This paper identifies the signal features that have significant discriminative power between different
human activities. It also investigates the effect of sensor placement location, the sampling frequency,
and activity complexity on the selected features. A comprehensive list of 193 signal features has
been extracted from accelerometer signals of four publicly available datasets, including features that
have never been used before for activity recognition. Feature significance was measured using the
Joint Mutual Information Maximisation (JMIM) method. Common significant features among all the
datasets were identified. The results show that the sensor placement location does not significantly
affect recognition performance, nor does it affect the significant sub-set of features. The results also
showed that with high sampling frequency, features related to signal repeatability and regularity
show high discriminative power.

Keywords: tri-axial accelerometer; human activity recognition; feature selection; activity of daily
living; Physical Activity; classification

1. Introduction

Increasing Physical Activity (PA) is a significant part of daily life, which can have
beneficial health effects [1]. Physical inactivity has been identified as one of the top four
risk factors for global mortality: inactive people are vulnerable to several health conditions
such as high blood pressure, diabetes, cardiovascular diseases and cancer [2]. Physical
inactivity is a significant concern amongst the globally ageing population. In 2017, there
were twice as many children under the age of 15 as the number of people aged 60+ in the
world, but by 2050, these numbers are expected to be equal [3].

Managing the expected demand in social and health services will need to harness
opportunities from new technologies. Ambient Assistive Living (AAL) technology has the
potential to relieve some pressure from both families and social services, and provide more
care in the home and community, which will reduce national health and care spending and
has the potential to improve wellbeing [4]. Monitoring the activities of older people during
their daily life can improve their safety, autonomy and quality of life [5].

In the past, a common way of assessing PA was the use of questionnaires, such as
the Physical Activity Scale for the Elderly [6]. Such questionnaires are limited as they
cannot provide accurate continuous data of lived experience, relying instead on individuals’
rationalization of their behavior.

This has led to a great deal of interest in the potential of wearable technologies for
monitoring PA. Currently, the accelerometer and gyroscope are the most widely used wear-
able sensors for PA monitoring. They have been used in a variety of applications, including
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heath monitoring, fall detection [7], human movement monitoring [8], gait analysis [9],
disease progression assessment [10], and activity recognition [11]. Accelerometers are a
popular choice of sensor due to their practicality, low cost and reliability, and have been
employed in many systems to classify Activities of Daily Living (ADL), also known as
Human Activity (HA) [5]. Wearable technology including smart phones is an ideal plat-
form for monitoring ADL, because it can be deployed outside the controlled environment
in free-living conditions, it has a relatively low cost and high acceptability/compliance.
However, computer algorithms are still needed to translate the acceleration signals into
different activities, this process is called activity recognition.

Activity recognition is also employed in industrial applications. According to the In-
dustry 4.0, monitoring and recognising human activities in manufacturing space is the most
important component to integrated into a cyber-physical system [12]. In manufacturing
space that is chaotic and full of moving objects, employing computer vision techniques to
recognise human activities is very challenging, especially for craft industrial scenarios. Ac-
celerometers are one of preferred choices for monitoring human activities within industrial
areas [13].

According to the literature, accelerometers have been placed on many positions on
the body, such as the waist (belt), wrist, upper arm, chest, pelvis, thigh, and ankle [14].
Several studies have been conducted to assess the effect of sensor placement on recognition
accuracy [15–17]. The wrist has shown the best performance for recognition compared with
other positions [14]. Furthermore, it has been reported that placing an accelerometer on the
wrist is the optimal placement position because it is most preferred by participants [14].

Most activities in real life situations consist of several complex motions, which means
that simple wearable sensors may not be enough to recognise these activities. However,
they are very effective for recognising simple activities [18].

In this paper, a comprehensive list of features is extracted from 3-axial signals, which
includes a set of features that never been used before for human activity recognition. Filter
feature selection method is used to investigate the significance of each feature for the
activity recognition. The comparison involves comparing the effects of sampling rate,
sensor placement, and complexity of activities on the significance of the features, and on
the classification performance.

1.1. ADL Recognition with Accelerometers: Background and Literature Review

Typical ADL recognition using an accelerometer is usually achieved by a task that
consists of several steps: signal pre-processing, feature extraction, dimensionality reduction
and classification [19]. The classification is not performed on every single data point in
the acceleration data; instead, the signal is segmented using a sliding window with some
degree of overlap. This minimises the effect of noise and reduces the computational cost
of the learning algorithm. There is no agreement about the window size, as each activity
has a different duration. Therefore, there should be a trade-off: a small window is not
enough for a long activity, while a large window may contain more than one activity. A
variety of window lengths have been used in the literature [20]. The feature extraction
step involves calculating attributes that are able to capture the patterns over a sliding
window. The features can be categorised into three: time domain, frequency domain, and
time-frequency domain. Various features have been used for the ADL recognition task in
the literature, starting from simple statistical methods (e.g., signal mean, signal standard
deviation, correlations, etc.) to frequency domain features. However, there is no consensus
on the best features that should be extracted and used for classification [21]. Using a large
number of features does not necessarily improve the classification. Moreover, using high
dimensional data will increase the computational burden and make the classifier model
complex. Therefore, dimensionality reduction techniques are usually used to reduce the
number of features. Feature selection is a dimensionality reduction used to identify the
informative features which are relevant to the classification task and eliminate redundant
and irrelevant features.
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It is well known that classification accuracy can be enhanced through reducing di-
mensionality [22]. In ADL recognition, using relevant high-quality features and excluding
irrelevant and redundant features is essential for improving classification accuracy and
reducing the computational cost. Therefore, in order to achieve the best performance, the
dimensionality (number of features) should be reduced as much as possible.

The two main techniques used for dimensionality reduction are feature extraction
and feature selection. Feature extraction involves the creation of a new feature space as
a combination of the original features. The most common methods are Principal Compo-
nent Analysis (PCA) [23], Linear Discriminant Analysis (LDA) [24] and Singular Value
Decomposition (SVD) [25]. Feature selection, on the other hand, involves the selection
of the best subset of the original features. It can be categorised in terms of its relation
to the classification algorithm, such as filter, wrapping and embedded methods. Wrap-
ping methods are classifier dependent and use classification accuracy as a measure of the
performance of the selected subset of features. These methods are very specific to the
classification algorithm used for the evaluation. Embedded methods are also classifier
dependent methods; they are part of the classifier. Unlike the previous methods, filter
methods are classifier independent. They measure the quality of selected features without
the involvement of a classifier algorithm [26].

Researchers usually collect their own data to train and validate their proposed system.
This makes it very difficult to compare the performance of the different proposed techniques
in an objective way [27].

Accelerometers have been used in many ADL recognition approaches in the literature.
However, each study focuses on different activities and extracts diverse features, which
makes it difficult to compare performance between studies. Many machine learning
techniques have been used for ADL recognition, such as Random Forest [28], Support
Vector Machine (SVM) [29], Decision Trees [30], Hidden Markov Models [31], and Bayesian
Networks [29]. Data can be collected at different sampling frequencies; however, a 20 Hz
sampling frequency is enough for capturing simple activities such as walking, standing,
and sitting which are fairly regular [32]. However, a low sampling frequency may hide
significant details about complex activities that have less regularity in the acceleration
signals [33].

Feature selection has also been employed for activity recognition applications. Preece
et al. (2009) [34] compared the classification accuracy of fourteen feature extraction methods
used in the literature. A specific dataset was collected for this study using three EBT tri-axial
accelerometers attached to the waist, the thigh and the ankle. The results showed that
Fast Fourier Transform (FFT) features perform the best. The authors studied the feature
sets individually.

Relief-F and Sequential Forward Floating Search (SFFS) wrapping methods were
applied to a range of features from the literature [35]. The authors collected the data using
one Freescale MMA 7260 tri-axial accelerometer attached to the waist using a custom-made
belt. Statistical features (mean, variance, maximum acceleration difference) and spectral
features were used. They employed two classifiers to evaluate the selected subset (K-
Nearest Neighbor (KNN) and Naïve Bayes). They identified a variance of the x,y,z axis,
entropy of x,y,z energy uncorrelated, window mean x,y,z, mean trend x,y,z and fluctuation
analysis coefficient as the most significant subset.

Capela et al. (2015) [19] used three filter feature selection methods: Relief-F, Correlation-
based Feature Selection (CFS) and Fast Correlation Based Filter (FCBF). The selected feature
sets were evaluated using several classification algorithms. In this research, gyroscope
data was included in the analysis, and 76 features were extracted. The authors used SVM,
J48 and Naïve Bayes classifiers to evaluate the performance of the selected subsets. The
selected subsets were a collection of accelerometer and gyroscope features.

Atallah et al. (2010) [36] used six tri-axial accelerometers to collect data. This number
was chosen, as it was considered appropriate to study the ideal location for the sensor. They
used a set of features consisting of statistical time domain features and features based on
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FFT. Relief-F, Simba and minimum Redundancy Maximum Relevance (mRMR) methods
were employed to assess the significance of each feature. The performance of the three
methods was very similar in terms of classification accuracy. They also agreed that the total
FFT energy was the most relevant feature.

Chernbumroong et al. (2011) [37] used an eZ430-chrons watch to collect data with a
sampling rate of 33 Hz. The study focused on five activities: sitting, standing, lying, walking
and running. The CFS method was used to select the features that highly correlated to the
class label. The C4,5 classifier and Artificial Neural Network were used for the classification.
The study did not specify which features were ranked as the most significant.

Suto et al. (2017) [38] used nine feature selection methods to rank the extracted features.
The authors focused on the most common features used by previous studies. Three classifi-
cation algorithms (artificial neural network, KNN, decision tree) were used to evaluate the
performance of the selected features, using the wearable action recognition database [39],
which is collected from 20 participants who were asked to perform 13 common activities.
The authors did not explain the evaluation criterion. The features have been investigated
for each participant individually which may make the findings subject to sensor placement
and orientation. The results were not consistent between the participants and the employed
methods and classification algorithms.

Rosati et al. (2018) [40], divided the time domain and frequency domain features into
two sets (FeatSet_A, and FeatSet_B), and evaluated the performance of each set on activity
recognition. The study employed a data set that was collected using IMUs from 61 healthy
participants as part of this study. A 5 s sliding window with overlap of 3 s was used to
segment all accelerometer and gyroscope signals. A genetic algorithm was employed to
perform feature selection and minimise each set. The SVM classifier was employed to
classify the achieved 97.1% accuracy; the results also showed FeatSet_B out performed
FeatSet_A, where FeatSet_B comprises a number of zero crossing, positive and negative
peaks, and mean value, standard deviation, maximum, minimum, and range of duration
for positive, negative, and total peaks.

Orlov et al. (2019) [41] employed the Relief-F algorithm to rank the features, where
54 features were extracted from the accelerometer signals. This study extracted only the
simple statistical time domain features such as mean, standard deviation, and skewness.
The authors reported improvement of about 1% on the classification accuracy after they
applied the feature selection and reduced the number of features. They also report a 4-fold
improvement in the processing time of the classifier.

Ahmed et al. (2020) [42] employed the SFFS method to study the significance of
the features. The study focused on statistical and frequency features only. The authors
employed one publicly available dataset to test their approach. Both accelerometer and
gyroscope data were used to extract 138 features. The reported results showed that the
optimal subset consists of 18 features which were extracted from the 3 axes. The common
features between the axes are mean, standard deviation, skewness, and kurtosis. The rest
of the features were different between the axes. The finding of this study is very specific to
the SVM classifier and cannot be generalized.

Finally, Thakur et al. (2022) [43] employed Guided Regularized Random Forest (GRRF)
feature selection method to analyse the significance of the smart phone sensor feature for
HA recognition. 20 features were extracted from 3-axial signals. They include statistical,
time domain, and frequency domain features. In this work, Random Forest (RF) as a feature
selection algorithm. The results showed that reducing the set of features by removing the
irrelevant and redundant features improved the classification accuracy and allow SVM
classifier to outperform deep learning-based approach on the classification task. However,
the authors did not list the most significant subset of features that was used to generate
that accuracy.
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1.2. Contribution

Most of the previous studies extracted limited sets of features. Moreover, they used a
limited set of features, and most of them employed just one specific dataset, which was
collected as part of the study. The missing of the collected datasets and other key details
of those studies does not allow us to evaluate the proposed approach against some of
those studies.

In contrast, this paper extracts a comprehensive set of features from accelerometer raw
data, some of which has never been used for this application before. Then, a framework is
employed to measure the significance of the features from four publicly available datasets.
These datasets have different sampling frequencies and different sensor placement locations;
we have used them to comprehensively investigate the significance of the features for the
classification. The investigation was performed at the study level; the significance of the
features which were extracted from all the participants’ data have been analysed together.
This framework consists of several steps and employs a state-of-the-art feature selection
method: The Joint Mutual Information Maximisation (JMIM) method [22]. The paper also
investigates the influence of sampling frequency, sensor placement location, and complexity
of activities on the significance of the features. Another distinction from previous work,
where researchers collected their own data, is that publicly available datasets have been
used in this study to compare the features objectively and make the results reproducible.

The rest of the paper is organised as follows. Section 2.1 describes the datasets,
Section 2.2 explains the experimental setup, Section 3 presents the results, and Section 4
discusses the results and concludes the paper.

2. Materials and Methods
2.1. Datasets

To define the significant features for the activity recognition task using accelerometers,
an analysis was performed using four different datasets with various characteristics. Two
datasets are publicly available from the UCI machine learning repository [44], and the
other two from [45,46]. Table 1 lists the characteristics of each dataset. These datasets have
been previously used in activity recognition research [46–50]. They were selected to be able
to test the selected features with a variety of placement locations, sampling frequencies,
the overall performance of the activity recognition task and the inclusion of simple and
complex activities in the testing datasets.

Table 1. Datasets Used in the Experiment.

Dataset Number of
Instances Activities Sampling

Frequency (Hz)
Placement
Location Sensor

WISDM 1,098,207.00

Walking (38.6%)
Jogging (31.2%)
Upstairs (11.2%)

Downstairs (9.1%)
Sitting (5.5%)

Standing (4.4%)

20 Waist Smart phone

HARDS 1,048,576.00

Walking (18.10%)
Biking (20.33%)

Upstairs (13.03%)
Downstairs (13.70%)

Sitting (16.03%)
Standing (19.24%)

200, and 100 Wrist Smart-phone and
Smart-watch
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Table 1. Cont.

Dataset Number of
Instances Activities Sampling

Frequency (Hz)
Placement
Location Sensor

SBRHA 10,929.00

Walking (16.72%)
Upstairs (14.54%)

Downstairs (14.12%)
Sitting (18.51%)

Standing (17.24%)
Laying (18.87%)

50 Waist Smart phone

PAMAP2 3,850,505.00

Lying (6.7%)
Sitting (13.06%)
Walking (8.2%)
Running (3.3%)
Cycling (5.73%)

Nordic walking (6.48%)
Upstairs (4.08%)

Downstairs (3.65)
vacuum cleaning (6.13%)

Ironing (8.31%)
Rope jumping (1.92%)

Other (transient activities) (32.44%)

100 Wrist, Chest
and Ankle IMUs

2.1.1. Wireless Sensor Data Mining Dataset (WISDM)

This dataset was collected in a controlled laboratory environment using an accelerome-
ter sensor on a smartphone placed at the waist. The data was collected from 29 participants
at a sampling frequency of 20 Hz. The data consisted of six activities (walking, jogging,
ascending stairs, descending stairs, sitting and standing). No demographics about the
participants were provided.

2.1.2. Heterogeneity Activity Recognition Dataset (HARDS)

The HARDS dataset (also called HHAR) has been collected using a variety of smart-
phones and smart watches from nine participants (age range 25–30 years) in a controlled
setting using specific routes outside the laboratory. All of the participants were asked to
perform five minutes of each activity following a given script. Several sampling frequencies
were used to collect the data based on the device used. In this paper, only the part of
the data collected using Samsung and LG smart watches were used. The watches used
sampling rates of 100 and 200 Hz, respectively, to collect the data. Six activities were
monitored (walking, biking, sitting, ascending stairs, descending stairs and standing).

2.1.3. Smartphone-Based Recognition of Human Activities and Postural Transitions
Dataset (SBRHA)

A group of thirty participants (age range 19–48 years) were recruited to collect this
dataset in a controlled environment. They were asked to perform six activities (walking,
laying, sitting, climbing up the stairs, climbing down the stairs and standing). A smart-
phone placed on the waist was used to capture the activities at a sampling frequency of
50 Hz using the built-in tri-axial accelerometers and 3-axial gyroscopes. In this study, we
are focusing only on the data from accelerometers.

2.1.4. Physical Activity Monitoring for Aging People (PAMAP2)

This dataset contains 12 different activities. Nine participants (1/9 female, total age
range of 24–32 years) were recruited to collect this data using three Inertial Measurement
Units and heart rate monitoring in a controlled environment outside the laboratory.

One inertial measurement unit (IMU) was placed on the wrist on the dominant arm,
another on the chest, and the last one on the dominant side’s ankle. The IMU is a device
that consists of triaxial accelerometers, triaxial gyroscope, and triaxial magnetometer. The
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gyroscope is known for it is tendency to drift over time even when the sensor is not
rotating [51]. In this study, only data collected from the accelerometer was used in this
study; The data was collected at a frequency of 100 Hz. This dataset has been chosen to
study the effect of sensor placement location on the predictive power of the features.

2.2. Evaluation Framework

The evaluation framework used in this study is shown in Figure 1; some of the steps
are described in more detail below.
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2.2.1. Pre-Processing

It has been reported in the literature that the best classification accuracy can be
achieved using a sliding window between 2.5–3.5 s [52]. Therefore, each acceleration
component (signal) is segmented using a 2.5 s sliding window. Each window is con-
sidered sequentially. Each observation (2.5 s) in the raw data is considered as an oc-
currence. For example, walking for five seconds is considered as two occurrences. An
Infinite Impulse Response (IIR) high-pass filter was employed on each window to remove
gravitational contributions.

2.2.2. Feature Extraction

Raw accelerometer data cannot be used directly by most ML algorithms. Features
that measure the characteristics of the signal windows are extracted to capture the patterns
among the data. Since this study investigates accelerometer signal features, the decision
was made to extract most of the features that were reported in the literature. Time domain
and frequency domain are commonly used measures as features for accelerometer data. In
addition to the common features, features across the domain boundaries were included,
which are not commonly used for activity recognition, such as:
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• Recurrence Quantification Analysis (RQA) [53]: Recurrence is an essential property of
any dynamical system. It is used to describe the behavior of the system in phase space.
Recurrence Plots (RPs) are a method used for visualizing the recurrence behavior
of dynamical systems [49]. Assume that a dynamical system is described in phase
space with a set of trajectories x→i , i = 1, 2, . . . , N, these vectors are used to describe a
quantity of parameters. The development of the system state is described by series of
the vectors. The dynamical system can be represented by recurrence matrix R(i, j):

R(i, j) = Θ(ε− ‖x→(i)− x→(j)‖) i, j = 1, 2, . . . ., N

where Θ : R→ (0, 1), N is the number of considered states, and ε are predefined
distance. E is essential as the system usually recurs exactly visiting the same states. A
periodic system is characterized by long and non-interrupted diagonals in RPs. The
vertical distance between these diagonal lines reflects the period of oscillation. While
in the chaotic system, diagonals are formed in RP, but shorter than periodic systems.
Uncorrelated stochastic signals generate RP with many single points. Therefore, the
shorter the diagonals in RP, the less predictable the system. Therefore, each activity is
expected to have its diagonal characteristics. In order to quantify the characteristics
of the recurrence plots and go beyond just visualizing them, RQA is used to produce
quantitative measures based on the recurrence point density, diagonal lines, and
vertical lines. Four variables for the quantification by RQA:

1. Recurrence Rate (RR): The percentage of recurrence points in a recurrence plot. It is
equivalent to the probability that a specific state will recur to its ε neighbourhood.

RR =
1

N2

N

∑
i,j=1

Ri,j

2. Determinism (DET): The percentage of recurrence points in a recurrence plot
that form the diagonal lines of minimal length lmin. Processes with chaotic be-
havior cause short or no diagonals, while deterministic processes lead to longer
diagonals. Therefore, to measure the chaotic behaviour, the ratio between the re-
currence points along the diagonal structures and the total all recurrence points.

DET =
∑N

i=lmin
l P(L)

∑N
i=1 l P(L)

where P(L) is the histogram of diagonal line of length L.
3. Entropy (ENTR): The Shannon information theory entropy of the probability

distribution of the diagonal line length.

ENTR = −
N

∑
l=lmin

p(l) ln(p(l))

where P(l) = P(l)
∑N

l=lmin
p(l)

which is the probability that the diagonal line has the

length L. ENTR reflects the complexity of RP in respect of the diagonal line. The
value of ENTR is small if the process is noisy.

4. The average length of the diagonal lines (L):

L =
∑N

l=lmin
l p(l)

∑N
l=lmin

p(l)

• Permutation Entropy (PE) [54]: PE is a non-parametric time series method which is
used to quantify the complexity level of a time series data. Assume a given time series
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data is denoted by X = {xi}, i = 1, . . . N. Common approaches in time series data
analysis do not take into consideration the effect of the temporal order of the values in
the successive xi. To address this issue, the time series can be encoded into sequences
of symbols, each one reflecting the rank order of successive xi in sequences of length n.
The PE method captures the probability distributions of patterns of symbol sequences,
termed permutations. Each activity has different level of complexity. Therefore,
measuring the complexity level can be very informative. PE quantifies the complexity
by measuring the entropy of sequences:

PE = −
N

∑
j=1

p′j ln
(

p′j
)

where p′j is the frequency of the possible sequences.
• Lyapunov Exponent (LE) [55]: LE quantifies the rate of divergence of nearby trajecto-

ries in the phase space of a dynamic system, which has been proven to be the most
useful method in diagnosing the chaos in a dynamical system. A positive value of LE
(λ) means that the orbits are chaotic, a zero value indicates that orbits retain in the
same position, while a negative value demonstrates that orbits retain their relative
positions. Lyapunov exponents quantify the exponential divergence of initially close
state-space trajectories and estimate the amount of chaos in a system. In this study a
small data quantity method is employed to calculate the largest Lyapunov exponent
(LLE) [55]. The algorithm is described as follows:

λ =
1

tM − t0

M

∑
k=1

log2
L′(tk)

L′(tk−1)

where L′(tk) denotes the distance between two points in the phase space at time tk. In
this study, a small data quantity method is employed to calculate the largest Lyapunov
exponent (LLE) [56]. The algorithm is described as follows: Suppose that the time
series acceleration data is X = {x1, x2, . . . ., xN}, the face space can be represented
using the following equation:

Y1 =
{

x1, x1+τ , x1+2τ , . . . . . . , x1+(m−1)τ

}
Y2 =

{
x2, x2+τ , x2+2τ , . . . . . . , x2+(m−1)τ

}
:
:

Yj =
{

xj, xj+τ , xj+2τ , . . . . . . , xj+(m−1)τ

}
where τ is the lag, and m is the embedding dimension. After the reconstruction of
the dynamics, the algorithm searches for the point that minimizes the distance to the
particular reference point. Then, L′(tk), and L′(tk−1) are calculated and used to find
the value of λ. The Lyapunov Exponent is calculated with the assumption that the
acceleration signal of each feature has a different level of chaos.

• Total Harmonic Distortion (THD) [57]: THD quantifies the distortion of a waveform
relative to a pure fundamental frequency. The THD present in a signal is the ratio
between square root of the sum of the powers of all harmonic components’ values to
the power of the fundamental frequency.

THD =

√
∑∞

n=2 V2
n

Vf und
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where V2
n is the Root mean square (RMS) amplitude of the nth harmonic, and Vf und

is the RMS of the fundamental frequency. In this study only the five first harmonics
are included.

Table 2 shows the full list of the extracted features. These features were extracted from
each acceleration component of each signal segment. They were also extracted from the
signal magnitude (MG =

√
x2 + y2 + z2). Each window is represented by 193 features in

the feature matrix, all of which are calculated for each segment of each axis.

Table 2. List of Extracted Features.

Feature
Number Feature Description

pi Mean of acceleration components (x,y,z) and MG
5–8 The standard deviation of each axis (x,y,z) and MG
9–12 Root Mean Square (RMS) value for each component (x,y,z) and MG

13–24 The autocorrelation of each signal, 3 for each component (x,y,z) and MG

25–72 Spectral peaks features, height and position of first 6 peaks of each component
(x,y,z), and MG

73–84 Total power in 3 adjacent and pre-defined frequency bands (x,y,z) and MG

85–100 The magnitude of first 3 Fast Fourier Transform (FFT) components and the FFT
entropy for each axis (x,y,z) and MG

101–136 The sum of absolute value of wavelet packet decomposition coefficients from
level 1 to 5, Energy, and entropy (x,y,z) and MG

137–139 The first principal component of PCA for each component (x,y,z) and MG
140–143 RQA features for X axis.

144 Lypaunov exponent for component x
145 Permutation entropy for component x

146–149 RQA features for Y axis.
150 Lypaunov exponent for component y
151 Permutation entropy for component y

152–155 RQA features for Z axis.
156 Lypaunov exponent for component z
157 Permutation entropy for component z

158–161 RQA features for MG signal
162 Lypaunov exponent for component MG signal
163 Permutation entropy for component MG signal

164–167 Total Harmonic Distortion of each component (x,y,z) and MG
168 Maximum Difference Dxyz =

√
(dx2 + dy2 + dz2)

169 Total acceleration signal magnitude area
170–193 Autoregressive coefficient of order 5 model for each component (x,y,z) and MG

In addition to the features discussed earlier, common features include mean, standard
deviation, root mean square value, autocorrelation of each signal, Fast Fourier Transform
(FFT), Wavelet Packet Decomposition (WPD), power peak features, and autocorrelation.
All the features were calculated after the filtration except the mean and standard deviation,
which were calculated using the raw data. Many FFT coefficients capture the high frequency
part of the signal, these coefficients are likely to have low amplitude which are unlikely to
carry significant information about the activity. Most of the information is contained below
the frequency of 17 Hz. Activities like walking are low frequency activities. Therefore,
WPD shown in Figure 2 is applied to the acceleration signal with decomposition at five
levels to capture the lower end of the signals that contain significant information about the
activities. A set of features extracted from the coefficients that are shown in Figure 2 are
used extract 36 features which include: the sum of absolute value of coefficients from level
1 to 5, energy, and entropy of each acceleration signal along each axis (x,y,z) and MG.
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To simplify the presentation of the results, the features are divided into five groups,
denoted by giving each group a different colour in Table 2. These groups include simple
time domain features, frequency domain features, time-frequency domain features (WPD),
repeatability and regularity-based features, and autorepression-based features.

All the features were normalized in order to minimize the effect of any abnormal
sensor readings. This can reduce the weight of abnormally high values among the data.
Normalization was performed using the following equation:

fi =
fi −mean( f )

standard deviation( f )
(1)

Continuous features in the data were discretised using the Equal Width Discretisation
(EWD) method [50] to avoid any bias during the feature selection task.

2.2.3. Feature Selection

Feature selection is a dimensionality reduction technique. The current study employs
a subset of this technique for two reasons. First, it helps to reduce dimensionality and
improves the performance of the learning algorithm by removing the redundant and
irrelevant features that may confuse the learning algorithm. Second, it measures the
discriminative power of each feature and selects the most informative that produces the
highest classification accuracy. The JMIM method was also employed in this research to
select the significant feature subset for the discrimination task. This method was chosen, as
it was proved that the method outperformed other state-of-the-art methods in the literature,
and because it is computationally inexpensive.

JMIM is based on the use of mutual information and the ‘maximum of the minimum’
criterion. The method starts with the most significant feature, then it begins to select
features one by one and add them into the selected subset. The feature is selected when it
maximises the goal function:

f JMIM = arg max fi∈F−S(min fs∈S(I( fi, fs; C))) (2)

where F is the original feature set, S is the selected subset feature, f I is the candidate feature
and fs is the selected feature.

The method selects the features that share the highest information with the class label
in the context of the features that have already been selected. The method employs the
following forward greedy search algorithm:

1. (Initialisation) Set F ← “initial set of n features”; S← “empty set.”
2. (Computation of the MI with the output class) For ∀ fi ε F compute I(C; fi).
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3. (Choice of the first feature) Find a feature fi that maximises I(C; fi); set F ← F\{ fi};
set S ← { fi} .

4. (Greedy selection) Repeat until|S| = k: (Selection of the next feature) Choose the
feature fi = arg max fi∈F−S(min fs∈S(I( fi, fs; C))); set F ← F \ { fi}; set S ← S ∪ { fi} .

5. (Output) Output the set S with the selected features.

The greedy algorithms may not find the optimal solution for some of the heuristic
problems when each node in the problem has a fixed value. However, that is not the
case for mutual information-based feature selections methods. Although the amount of
information between each feature and the class label is theoretically fixed, when the feature
is within a subset then this amount of information is no longer fixed, as there is factor
called information interaction between the features that can reduce or increase this amount
of information. Moreover, the feature may share redundant information that is covered
by other features. In addition, the used goal function does not include any summation, it
employs maximum of the minimum criterion. Therefore, the search for the features is not
as simple as the common heuristic problems.

The traditional understanding of local minima problem does not apply here because
of the information redundancy and information interaction between features which makes
everything dynamic with the searched features.

2.2.4. Classification

The key point of this work is to investigate the significance of the accelerometer signal
features. Classification accuracy is used to evaluate the significance of the selected subset of
features. For this reason, two classification algorithms have been used; K-nearest neighbour
classifier (KNN) (k = 3), and the Support Vector Machine (SVM) classifier with linear
kernel; these classifiers have been chosen because they make few (if any) assumptions
about the data. Therefore, the performance will be mainly due to the feature selection not
the classifier’s ability to handle the data. They were also chosen because they have been
used in similar studies [58].

We used the Matlab Statistics Toolbox for SVM and KNN classifiers. Five-fold cross
validation was used for the feature’s significance evaluation. Each fold of the dataset
(20%) was used for the validation once, while the rest of the data (80%) were used for the
classifiers. This process was repeated five times, which means that the whole dataset was
used for the validation.

The selected subset of features was evaluated after adding each new feature, starting
with only the most significant feature in the selected subset. This continued until all
193 features were used together for the training and testing. The classification accuracy
produced reflected the discriminative power of the whole subset after adding the new
selected feature and was not based on the newly selected feature only.

3. Results

This section describes the results of applying the proposed framework to define the
significant feature selection for each dataset.

3.1. Significant Features

The JMIM method has been used to define the most significant features when classi-
fying the activity within the datasets. This method is classifier independent: it measures
the shared information between the class label and the subset of features. Therefore, the
features are ranked based on the amount of information that they add about the class, as
the selected features add more information when classification accuracy improves.

The results of the WISDM dataset show that the Root Mean Square (RMS) features
shared the highest information with class. Mean, FFT, autocorrelation and wavelet decom-
position were among the most significant as well. These five features make up 29 out of the
most significant 30 features.
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The RMS feature is shown as the most significant feature in the results of SBRHA
dataset. The results also showed that Mean, FFT, autocorrelation and wavelet decomposi-
tion are also among the most significant features. The 30 most significant features comprise
28 features from these four feature groups.

The results of both datasets show that uncommon features, such as RQA, permuta-
tion entropy, Lyapunov exponent and total harmonic disorder were not among the most
significant features for these two datasets.

The results of the LG watch and Samsung watch datasets (HARDS) are slightly dif-
ferent. Features that measure the recurrence, regularity and degree of chaos were shown
to be among the ten most significant features. These two datasets use relatively high
sampling frequencies, which provide more values and more information about the details
of the movement. Therefore, features related to repeatability, regularity and level of chaos
appeared in the ten most significant features especially for the LG watch data which has a
higher sampling frequency, 18 of the 30 most significant features belong to RQA, Permuta-
tion entropy, and Lyapunov exponent. Wavelet features also appeared within this list five
times. While for the Samsung watch 11 of the 30 most significant features were wavelet
features; repeatability related features appeared 10 times in this list. The most significant
features were the standard deviation features for both datasets. Many of the twenty most
significant features belong to wavelet decomposition features.

Due to the unique characteristics of PAMAP2 dataset in terms of the number of ac-
tivities and the level of movement complexity of these activities, the order of the ranked
features is different. Features related to Recurrence rate in the signal, WPD, permutation
entropy, and autorepression make up most of the features that produce the highest classifi-
cation accuracy. On the other hand, the results were different when the ankle dataset was
down sampled to 20 Hz. The results showed the simple time domain features such mean,
and frequency domain features such FFT, WPD, and autorepression features are among the
most significant features. Features related to recurrence rate in the signal and permutation
entropy appeared less significant when the sampling frequency was reduced. Therefore,
features related to Recurrence rate in the signal, wavelet decompensation, permutation
entropy can be important for discriminating the activities if the sampling frequency is high
and more samples are available for each window. The results also showed that there is no
major effect of the sensor placement location on the order of the selected features.

3.2. Classification

Two classifiers were used to evaluate the significance of the ranked selected subset of
features for the classification accuracy. As mentioned earlier, each classifier was trained and
tested after adding every single feature to the subset. Five-folds cross validation was used
for every training and testing iteration. Classification accuracy and F-measure are used
to measure the performance of the selected subset of features. In the binary classification,
classes are named positive and negative. The confusion matrix describes the ways in which
the classifier is confused when making predictions. The confusion matrix has four values
representing the relation between real and predicted classes: namely:

TP (true positives): the number of positive elements classified correctly.
FP (false positives): the number of negative elements misclassified as positive.
FN (false negatives): the number of positive elements misclassified as negative.
TN (true negatives): the number of negative elements misclassified as negative.

Classi f ication accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN
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F−measure = 2× Precision× Recall
Precision + Recall

Extending these classification metrics to multi-class problems can be achieved by
considering one of the classes as a positive class and the remaining ones as negative
class [59]:

Classi f ication accuracy =
1
M

M

∑
i=1

TPi + TNi
TPi + TNi + FP + FNi i

Precision =
1
M

M

∑
i=1

TPi
TPi + FPi

Recall =
1
M

M

∑
i=1

TPi
TPi + FNi

where M is the number of distinct classes in the datasets.
Figure 3 shows the classification accuracy and f-measures figures of the WISDM

dataset using SVM and KNN classifiers. It is clear that SVM outperformed KNN and
achieved 93% accuracy, while KNN achieved 90.65%. Table 3 shows the classification
accuracy using 1, 10, 30, 60, 120 and 193 ranked features. The table shows that the most
significant feature on its own is able to produce more than 74% accuracy, which is about
80% of the classification accuracy achieved using all 193 features. With just 30 features, the
classification accuracy of the SVM classifier was more than 94% of the accuracy of the total
features. The achieved accuracy outperforms the accuracy of the original study, which used
the same dataset [60], which was 91.7%.
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Figure 3. The performance of the classifiers with the WISDM Dataset: (a) Classification accuracy;
(b) F-measure.

Table 3. Classification Accuracy with 1, 10, 30, 60, 120 and 193 Ranked Features.

Number of
Ranked
Features

SVM KNN

WISDM SBRHA
HARDS PAMAP2

WISDM SBRHA
HARDS PAMAP2

LG
Watch

Samung
Watch Ankle Chest Hand LG

Watch
Samsung

Watch Ankle Chest Hand

1 74.33 68.66 73.31 74.30 34.77 34.80 34.83 66.74 51.70 71.45 73.53 32.44 32.45 32.47
10 83.78 90.29 85.14 82.41 56.38 52.06 52.29 77.68 82.06 83.84 81.27 48.81 46.12 46.20
30 88.20 94.84 89.89 86.94 69.90 67.46 67.54 84.76 91.49 89.35 85.72 66.16 64.18 64.17
60 90.49 96.93 91.79 87.65 74.42 72.89 72.97 87.63 95.00 91.00 86.98 72.16 71.03 71.09

120 92.40 98.26 93.03 88.01 76.70 75.85 75.89 89.82 97.15 91.93 86.45 74.77 74.18 74.28
193 93.24 98.81 93.45 87.80 76.85 76.23 76.20 90.65 97.94 91.74 85.09 73.87 73.54 73.64

The results of the SBRHA dataset showed that with only the most significant feature,
the SVM classifier was able to classify the activities with the different accuracy; jogging
(93.8%), walking (67.89%), sitting (95%), standing (89.46%), while the classifier missed
classifying all the walking upstairs and downstairs activities. The results of using the
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subset of 30 features showed that walking upstairs and downstairs are also the most
misclassified, as walking and jogging have an accuracy of (57.55%), while standing is with
the highest accuracy (99%), then jogging (97.02%), walking (92.92%) and sitting (95%).

Although the dataset is not balanced, Figure 4 shows that f-measure is relatively high
for both classifiers, the value of f-measure when the most significant 30 features have used
to train the classifiers was 0.91, and 0.90 for SVM and KNN respectively.
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Figure 4. The performance of the classifiers with the SBRHA Dataset: (a) Classification accuracy;
(b) F-measure.

As noted earlier, only the data collected by the smart watches from HARDS dataset
was used in this study, the rest of HARDS dataset was not included. Figure 5 shows
the results of the classification accuracy of the LG watch with the most significant subset
of 30 features was 89.87%, and 89.01% for SVM and KNN classifiers respectively. The
f-measure with the same number of significant features was 0.92 for both classifiers. Laying
down is the activity that was classified least correctly with a recognition rate of 80.68%;
it was misclassified as standing and sitting. This accuracy stayed almost steady after the
feature subset reached 120 features, which means the rest of the features were redundant,
the accuracy for SVM, and KNN were 93.05%, and 91.84% respectively.
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Figure 5. The performance of the classifiers with the HARDS Dataset (LG): (a) Classification accuracy;
(b) F-measure.

In terms of classification rate of each activity when the most 120 significant features
are used, biking scored the highest classification (98.74%) followed by sitting (98.73%),
standing (92.91%), walking (88.18%), and walking up and down (84.06%). This order stays
almost the same when the most 30 significant features were used, the only difference is
swapping the order between walking and walking up the stairs.

The results of the Samsung watch dataset are shown in Figure 6. They show that
the classification accuracy and f-measures of were lower than the LG watch. The highest
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classification accuracy was 88% and 86% for SVM, and KNN, respectively, which was
achieved using the 120 most significant features. At the same time the f-measure using this
subset of features was 0.88, and 0.85 for the SVM, and KNN classifiers. The figures of this
dataset agree with the previous dataset about the redundancy of the 70 least significant
features. The walking up the stairs activity had the lowest recognition rate of 58.70%, it
was again misclassified also as standing and walking.
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Figure 6. The performance of the classifiers with the HARDS Dataset (Samsung Watch): (a) Classifi-
cation accuracy; (b) F-measure.

The results for the PAMAP2 datasets for different sensor placement locations are
shown in Figures 7–9. The results shows that there is no significant influence of the sensor
placement on the classification accuracy. However, there is a slight advantage when sensors
are placed on the ankle. Due to the high number of activities in the PAMAP2 datasets, some
of which consist of complex movements, the classification accuracy for PAMAP2 datasets is
slightly lower than the other datasets used in this study. For the ankle dataset, walking up
and down the stairs were the most misclassified activities with a recognition rate of 40.71%,
and 57.64%. They were misclassified as walking, running, and ironing activities.
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Figure 7. The performance of the classifiers with the PAMAP2 Dataset (Ankle): (a) Classification
accuracy; (b) F-measure.



Sensors 2022, 22, 7482 17 of 21

Sensors 2022, 22, x FOR PEER REVIEW 17 of 22 
 

 

significant features. The walking up the stairs activity had the lowest recognition rate of 
58.70%, it was again misclassified also as standing and walking. 

  
(a)  (b)  

Figure 6. The performance of the classifiers with the HARDS Dataset (Samsung Watch): (a) Classi-
fication accuracy; (b) F-measure. 

The results for the PAMAP2 datasets for different sensor placement locations are 
shown in Figures 7–9. The results shows that there is no significant influence of the sensor 
placement on the classification accuracy. However, there is a slight advantage when sen-
sors are placed on the ankle. Due to the high number of activities in the PAMAP2 datasets, 
some of which consist of complex movements, the classification accuracy for PAMAP2 
datasets is slightly lower than the other datasets used in this study. For the ankle dataset, 
walking up and down the stairs were the most misclassified activities with a recognition 
rate of 40.71%, and 57.64%. They were misclassified as walking, running, and ironing ac-
tivities. 

  
(a)  (b)  

Figure 7. The performance of the classifiers with the PAMAP2 Dataset (Ankle): (a) Classification 
accuracy; (b) F-measure. 

  
(a)  (b)  

Figure 8. The performance of the classifiers with the PAMAP2 Dataset (Chest): (a) Classification 
accuracy; (b) F-measure. 

20 40 60 80 100 120 140 160 180 200
Number of features 

50

60

70

80

90

100

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

SVM
KNN

0 20 40 60 80 100 120 140 160 180 200
Number of features 

0.5

0.6

0.7

0.8

0.9

1

F-
m

ea
su

re

SVM
KNN

0 20 40 60 80 100 120 140 160 180 200
Number of features 

30

40

50

60

70

80

90

100

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

SVM
KNN

0 20 40 60 80 100 120 140 160 180 200
Number of features 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F-
m

ea
su

re

SVM
KNN

0 20 40 60 80 100 120 140 160 180 200
Number of features 

30

40

50

60

70

80

90

100

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

SVM
KNN

0 20 40 60 80 100 120 140 160 180 200
Number of features 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F-
m

ea
su

re

SVM
KNN

Figure 8. The performance of the classifiers with the PAMAP2 Dataset (Chest): (a) Classification
accuracy; (b) F-measure.
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Figure 9. The performance of the classifiers with the PAMAP2 Dataset (Hand): (a) Classification
accuracy; (b) F-measure.

To evaluate the discriminative power of the uncommon features, which are the features
related to RQA, PE, LE, and THE, the classification algorithms were trained without using
the uncommon features. The drop of the classification accuracy is used as indication of the
discriminative power of these features. Table 4 illustrate the results of this experiment,

Table 4. Classification Accuracy without, and with uncommon features using SVM classifier.

HARDS WISDM
HARDS PAMAP2

LG Samsung Ankle Chest Hand

Without With Without With Without With Without With Without With Without With Without With

90.2% 98.8% 88.9% 93.2% 90.8% 93.4% 85.4% 87.8% 70.51% 76.8% 72.9% 76.2% 70.5% 76.2%

Adding the uncommon features to the dataset enhanced the classification accuracy by
2.3–8.6%. The results showed that the enhancement is larger when the sampling frequency
is higher, which means the uncommon features are able to extract more patterns when the
sampling frequency is high.

4. Discussion

The significance of accelerometer features was successfully identified using the state-
of-the-art JMIM feature selection method. The evaluation of the selected subset was carried
out using SVM and KNN classifiers. Four publicly available datasets were used in this
study because they have been previously used in activity recognition research and also to
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study the effect of sampling frequency as well as on body placement location on the feature
significance for classification accuracy. The sampling frequency of the datasets is between
20 and 200 Hz. Wearables are placed at the waist, wrist, chest, and ankle. The number of
activities also vary, with most of the datasets including only simple activities, and one of
them including complex activities.

This study focused on the type of the features rather than the acceleration axis to
which the signal belongs. The features are divided into five groups: (simple time domain),
(frequency domain which includes FFT, and spectral features), (repeatability and regularity
which includes RQA, permutation entropy, and Lyapunov exponent), (time-frequency
which includes WPD), and finally (autorepression features).

The results showed that the Root Mean Square (RMS) features produced 74% accu-
racy on their own for the WISDM and SBRHA datasets. FFT, Root Mean Square (RMS),
mean, autocorrelation and wavelet were among the most significant features for human
activity recognition for these two datasets. This result agreed with the results in previous
literature [14].

On the other hand, when the sampling frequency is raised, features related to signal
repeatability, regularity and level of chaos (RQA, Permutation Entropy, Lyapunov expo-
nent), and WPD were shown among the most significant. The sampling rate was 100 and
200 Hz, which meant that each contained more data points. This high number of data
points provided more detailed information about the movement. That is why these features
appeared among the most significant in the subset. Wavelet decomposition features were
also among the most significant features for this dataset. This has been shown in the results
from the PAMAP2 and HARDS datasets.

Even though many participants were recruited to perform the activities during the
data collection, which meant that the activities were performed at different speeds and
styles, the achieved classification accuracy was very high, especially for SBRHA (more than
98%). The results also showed that SVM worked better than KNN.

In conclusion, simple time domain features can be very predictive for recognising
simple activities, as the sampling frequency becomes high WPD, and repeatability and
regularity features can be very predictive, especially when the recognised activities include
complex activities. WPD features can have significant discriminative power for recognising
both simple and complex activities.

It would be interesting in the future to study the influence of window size and
overlapping on the selected feature subset, as well as the effect of applying invariant
orientation techniques on the feature significance. Further improvements are needed for
the selection method to be able to produce scores for significance degrees.

Future research could also be conducted using new collected data with more activities,
and more participants could be included. In particular, datasets should report full demo-
graphic statistics for participants including at least age, gender, ethnicity, and body mass
index. The public datasets have poor descriptions of their participant demographics with
only one reporting the number of females (1/9), thus it is likely that the datasets are heavily
biased towards young white men. Future public datasets should reflect the variation in real
world, including additional participants from diverse age groups and with different ranges
of movement capabilities in order to study the feature significance for data collected from a
variety of populations, and different patients with movement impairments. A future study
can be expanded to include all IMU sensors, which will require studying the gyroscope
drift problem, and comparing various compensation approaches. The methodology of this
study can also be employed to study controlling powered exoskeletons through developing
machine learning-based algorithms to recognise the movement.
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DET Determinism
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FFT Fast Fourier Transform
GRRF Guided Regularized Random Forest
HA Human Activity
HARDS Heterogeneity Activity Recognition Dataset
IMU Inertial Measurement Unit
JMIM Joint Mutual Information Maximisation
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LDA Discriminant Analysis
LE Lyapunov Exponent
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RQA Recurrence Quantification Analysis
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SBRHA Smartphone-Based Recognition of Human Activities and Postural Transitions Dataset
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