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Abstract: Nowadays, many old analog gauges still require the use of manual gauge reading. It is a
time-consuming, expensive, and error-prone process. A cost-effective solution for automatic gauge
reading has become a very important research topic. Traditionally, different types of gauges have
their own specific methods for gauge reading. This paper presents a systematized solution called
SGR (Scale-mark-based Gauge Reading) to automatically read gauge values from different types of
gauges. Since most gauges have scale marks (circular or in an arc), our SGR algorithm utilizes PCA
(principal components analysis) to find the primary eigenvector of each scale mark. The intersection
of these eigenvectors is extracted as the gauge center to ascertain the scale marks. Then, the endpoint
of the gauge pointer is found to calculate the corresponding angles to the gauge’s center. Using OCR
(optical character recognition), the corresponding dial values can be extracted to match with their
scale marks. Finally, the gauge reading value is obtained by using the linear interpolation of these
angles. Our experiments use four videos in real environments with light and perspective distortions.
The gauges in the video are first detected by YOLOv4 and the detected regions are clipped as the
input images. The obtained results show that SGR can automatically and successfully read gauge
values. The average error of SGR is nearly 0.1% for the normal environment. When the environment
becomes abnormal with respect to light and perspective distortions, the average error of SGR is still
less than 0.5%.

Keywords: principal components analysis (PCA); optical character recognition (OCR); gauge center
detection; gauge reading

1. Introduction

Industrial automation is an unstoppable trend because of its profitable benefits in
industrial evolution. However, many old analog gauges still exist in different sectors.
Those who engage in manual gauge reading must spend time travelling to the gauges to
read them and write down their current values. It is a time-consuming, expensive, and
error-prone process. Thus, automatic gauge reading has become a very important research
topic. It uses a camera to capture images of the analog gauge to cost-effectively read out the
gauge values via computer vision techniques. Although analog gauges may have different
shapes of their bezels, there are usually two categories of gauges in their charts: circular
and arc. As shown in Figure 1, they have five visible characteristics: a bezel, scale mark,
pointer, dial value, and gauge center.
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been converted from a circular shape to a linear one. Linear interpolation can also be used 
to calculate gauge values. In [9–11], the gauge value was determined by deep learning 
neural networks. For all the above research, the determination of the gauge center is the 
most critical process. 

 
Figure 1. Structures of a circular gauge and an arc gauge. 

To ascertain the gauge center, [1,2] employed the circular feature of the bezel for a 
circle-fitting algorithm. Consequently, the center of the bezel was the gauge center. In 
[3,4], the authors used the light circle feature on the pointer to find the gauge center. The 
center of the light circle was determined to be the gauge center. In [5], the authors used 
the fact that the background of a gauge usually has a specific color to find the gauge center. 
The center of the area with the specific color was defined as the gauge center. The authors 
of [6] used the center positions of the dial values to ascertain the gauge center using a 
circle-fitting algorithm since these center positions have the characteristics of co-circular-
ity. In [7,8], the authors used scale marks to obtain the gauge center. The authors of [7] 
used the extended lines of the scale marks and applied their intersection to find the gauge 
center. The authors of [8] used the centroid of the scale marks and main scale marks with 
co-circularity characteristics to find the gauge center. In [9–11], the authors use deep learn-
ing neural networks to obtain the gauge center. 

Figure 2 shows four common analog gauges. Based on shape of the gauge chart, Fig-
ure 2a–c are circular gauges. Figure 2d is an arc gauge. Note that, in Figure 2a, there is a 
shelter in the circular bezel to disturb the round characteristic of the bezel. In this paper, 
the shape of the bezel is unnecessary to be round or square. Note that the gauge center 
usually appears in the central area of the circular gauge. On the contrary, it appears in the 
bottom right area on the arc gauge, as shown in Figure 2d. Traditionally, the circular and 
arc gauges have their own specific methods for gauge reading, but the generality of these 
methods for different-type gauges is insufficient. Deep learning neural networks may be 
applicable to all types of gauges, but it is not easy to train deep neural networks with all 
types of gauges. Their performance may be poor. This paper presents a systematized so-
lution to automatically read the values for both analog circular and arc gauges. 
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Figure 2. Four common gauges. (a) Circular gauge. (b) Circular Gauge with negative dial value. (c) 
Circular Gauge with floating dial value. (d) Arc gauge. 

Figure 1. Structures of a circular gauge and an arc gauge.

Traditionally, there have been three main categories of research on gauge reading.
In [1–6], the gauge center was extracted, and then the angle between the pointer and the
gauge center was calculated. Based on the angle, the gauge value can be determined using
interpolation technology. In [7,8], the spatial domain information was converted to the
polar domain with the gauge center as the transform center; thus, the scale marks have
been converted from a circular shape to a linear one. Linear interpolation can also be used
to calculate gauge values. In [9–11], the gauge value was determined by deep learning
neural networks. For all the above research, the determination of the gauge center is the
most critical process.

To ascertain the gauge center, [1,2] employed the circular feature of the bezel for a
circle-fitting algorithm. Consequently, the center of the bezel was the gauge center. In [3,4],
the authors used the light circle feature on the pointer to find the gauge center. The center
of the light circle was determined to be the gauge center. In [5], the authors used the fact
that the background of a gauge usually has a specific color to find the gauge center. The
center of the area with the specific color was defined as the gauge center. The authors
of [6] used the center positions of the dial values to ascertain the gauge center using a
circle-fitting algorithm since these center positions have the characteristics of co-circularity.
In [7,8], the authors used scale marks to obtain the gauge center. The authors of [7] used the
extended lines of the scale marks and applied their intersection to find the gauge center. The
authors of [8] used the centroid of the scale marks and main scale marks with co-circularity
characteristics to find the gauge center. In [9–11], the authors use deep learning neural
networks to obtain the gauge center.

Figure 2 shows four common analog gauges. Based on shape of the gauge chart,
Figure 2a–c are circular gauges. Figure 2d is an arc gauge. Note that, in Figure 2a, there is a
shelter in the circular bezel to disturb the round characteristic of the bezel. In this paper,
the shape of the bezel is unnecessary to be round or square. Note that the gauge center
usually appears in the central area of the circular gauge. On the contrary, it appears in
the bottom right area on the arc gauge, as shown in Figure 2d. Traditionally, the circular
and arc gauges have their own specific methods for gauge reading, but the generality of
these methods for different-type gauges is insufficient. Deep learning neural networks may
be applicable to all types of gauges, but it is not easy to train deep neural networks with
all types of gauges. Their performance may be poor. This paper presents a systematized
solution to automatically read the values for both analog circular and arc gauges.
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(c) Circular Gauge with floating dial value. (d) Arc gauge.
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Since most gauges have scale marks (circular or in an arc), a new gauge-reading
algorithm called SGR (Scale-mark-based Gauge Reading) is proposed. The main idea of
SGR is to regard the scale marks as connected components (CCs) and use said scale marks
to find the gauge center. Three features in CCs (the area, compactness, and ratio of CCs)
are used to extract the scale marks. The eigenvectors corresponding to the scale marks
are extracted by principal components analysis (PCA). Since the primary eigenvectors of
scale marks point to the gauge center, the intersection of these extended vectors can be
founded to be the gauge center. In this paper, SGR mainly operates on the spatial domain.
The main scale marks are obtained by the characteristic of area and angle of scale marks.
The dial values are extracted by an open optical character recognition (OCR) tool called
Keras-OCR [12]. The main scale marks and the dial values are bound together if their angles
are the same. The gauge value is obtained by a new interpolation method that can work
successfully even if one of the right bindings or left bindings are lost. Since Keras-OCR
is not specifically designed for the values on the gauges, it will mistakenly determine the
dial values with a negative or floating number. SGR uses the common difference feature to
automatically correct the error values of Keras-OCR.

As shown in Figure 3, our experiments use four videos in real environments with light
and perspective distortions to test different gauge-reading methods. Video 1, Video 2, and
Video 3 are taken from Internet. Video 4 is a video produced by us. The gauges in the video
are first detected by YOLOv4 (You only look once) [13] and the detected regions are clipped
as the input images for SGR. The obtained results show that SGR can successfully read the
gauge values. The average errors are nearly 0.1% for the normal environment. When the
environment becomes abnormal due to the light and perspective distortions, the average
errors are still less than 0.5%. The rest of this paper is organized as follows: Section 2
describes related works; Section 3 presents the SGR method; then, the experimental results
are shown in the next section; and finally, the conclusion and future works are given
in Section 5.
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2. Related Works

In 2015, Chi et al. used computer vision to detect the gauge value [5]. They assumed
that the center of the background was the gauge center. The background usually has
a specific color (a white color in [5]); therefore, the highest pixel value in the image is
automatically detected as the seed. Based on the seed, a region-growing scheme is then
used to obtain the background. The center of this background is set to be the gauge center.
Then, this image in the spatial domain is transformed to the polar domain by the found
gauge center as its circle center. The region of the scale marks is extracted by the feature
of the fixed black and white point scale. This region uses Otsu’s method to obtain the
binarization image. This image calculates its angle histogram, and the larger values are the
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main scale marks. Two lines of the pointer bezel are detected using the Hough transform
method. The intersection of these lines is the pointer peak. Then, a directed line from the
gauge center to this pointer peak can be generated as the pointer. Finally, the gauge value is
calculated by an interpolation between the angle of the main scale marks and pointer. The
biggest problem with this method is that the reflection of light will influence the detection
of the white background. Therefore, the gauge center is incorrect, resulting in the wrong
gauge value.

In 2016, Zheng et al. used computer vision to detect an arc gauge’s value [8]. They
used Multi-Scale Retinex with Color Restoration (MSRCR) [14] to reduce the effect of the
light source. The calibration of the gauge image is performed by perspective transform.
The binarized image is then obtained using the adaptive threshold [15]. The scale marks
are extracted by the Hough transform. These scale marks have the characteristics of co-
circularity. Therefore, the gauge center is obtained by the circle Hough transform (CHT)
method. The pointer and the pointer’s angle are extracted by a thinning algorithm [16]
and Hough transform, respectively. The image is then converted to a polar domain and
uses the connected-component-labeling (CCL) [17] method to obtain the minimum and
maximum scale mark positions. Finally, the gauge value is obtained by interpolation.

In 2017, Selvathai et al. analyzed the values of a vehicle gauge [2]. They used Canny
edge detection to extract its bezel. Then, CHT was utilized to find the center, which
is denoted as the gauge center. The gauge pointer is the longest line and then can be
determined by the Hough transform. The gauge value is obtained by interpolation between
the pointer peak and the gauge center. The biggest problem of the method in [2] is that an
ideal circular bezel is difficult to obtain.

In 2017, Yifan et al. proposed a specific solution for finding the gauge center [3].
This solution assumed that there is a light circle in the pointer and the center of the light
circle is identified as the gauge center. Then, it captured a rectangular area around the
center of the image that would include the light circle. The pointer is the largest CC in this
region of interest (ROI). A round-degree mechanism is then employed to fit the circle. The
obtained center is the gauge center. Considering this gauge center as circle center, the CC
of the pointer is then transformed to the polar domain after using the thinning method
and Hough transform. The pointer peak is extracted by the largest polar angle in the polar
angle frequency histogram. Then, an improved least squares method is applied to obtain
the pointer. It assumed that the zero-scale line appears in the lower left corner of the gauge
center. It uses the polar radius frequency histogram to remove the arc line. The largest
CC uses the least squares error method to find the corresponding straight-line equation.
This line is a zero-scale line. Finally, the gauge value is obtained by interpolation between
the angle of the pointer and its line. The biggest problem of [3]’s method is that the light
circle does not appear in each gauge. Thus, it cannot apply for all kinds of gauges and the
zero-scale line is not always shown on the bottom left of the gauge.

In 2019, Lauridsen et al. used image processing to a read circular gauge [1]. In their
method, it is necessary to first remove any noise. Then, use the characteristics of the round
bezel and the least squares-fitting method to obtain the gauge center. Then, use the five
features to identify the scale marks and the pointer using K-means clustering. The angle of
the pointer is obtained by PCA. The experimental result has a good performance in their
test videos. However, the biggest problem of [1]’s solution is that an ideal circular bezel is
difficult to be obtain. Since the appearance of the bezel is diverse and as this diversity will
interfere with circle fitting, the obtained gauge center will be incorrect. In the arc gauges,
there are no round bezels to ascertain the gauge center.

In 2019, Sheng et al. used a double Hough space voting scheme to ascertain the gauge
center [7]. It transfers the image of the gauge from the spatial domain to Hough space
via the Hough transform twice. The scale mark lines can be obtained by the first vote
of the Hough transform. The gauge center is then extracted by the second vote. In [6],
it was mentioned that the performance of the double Hough space voting algorithm is
not good because zigzag lines would appear when the scale marks were not vertical or
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horizontal. The corresponding line equations of the scale marks are deviated, resulting in
the inaccurate determination of the gauge center.

In 2020, Li et al. proposed a technique [6] to automatically read gauges based on text
detection. It uses a Fast Oriented Text-Spotting (FOTS) [18] neural network to extract the
position and number of dial values. These positions can calibrate the gauge image. The
gauge center is obtained by least squares circle fitting because the positions of the dial value
have a co-circularity characteristic based on the gauge center. The image is transformed
to the polar domain. The locations of the dial values are obtained by using the bounding
box that can include all positions of dial values. Above this region of bounded box, there is
another region with the same area size, and this region is set as the first region of interest
(ROI). The pointer is obtained by the vertical projection method, whereby the maximum
value is the pointer. Based on the pointer, the dial values closest to the pointer to the left
and right are then found. These dial values’ bounding boxes are set as the second ROI. The
main scale marks are obtained by the vertical projection method. Finally, the gauge value is
obtained by interpolation.

In 2020, Cai et al. used deep learning technology to read a gauge’s value [10]. This
technique converts the gauge-reading problem into image classification and image regres-
sion problems. For each gauge, many gauge images with different effects can be produced
automatically. This operation is called Virtual Sample Generation (VSG). Each value is
treated as a category and as an input to a convolutional neural network (CNN) for training.
This network can classify the gauge and ascertain the corresponding gauge value, but the
error of this value is large. Therefore, an additional CNN network is needed for regression
after the previous network finishes the classification. The result is the gauge value. This
method uses a variety of techniques for the data’s augmentation, such as cropping, rotation,
flipping, occlusion, etc. However, they did not illustrate how to generate a large number of
virtual samples and they reported that this CNN regression network is difficult to train.

In 2020, Meng et al. used deep learning technology to detect gauge-related parame-
ters [9], the gauge center, and the positions of the minimum and maximum scale marks.
In contrast to the study of [10] (which predicted gauge values directly), this solution used
the heatmap method to represent the above three parameters. Each parameter has a cor-
responding position on the heatmap. These parameters are predicted by the Hourglass
network [19]. This would generate a virtual pointer from the gauge center to the maximum
scale mark. This virtual pointer is a mask, and it scans all the value positions from small
to large. During the virtual pointer’s rotational scan on the binarized gauge image, the
numbers of founded black points on this pointer mask are calculated. The angle of the black
point with the highest number is the angle of the pointer. The limitation of [9]’s method is
that it has to input the dial values of the minimum and maximum manually. The gauge
value is then calculated by the angle of the pointer and these dial values.

In 2021, Howells et al. applied deep learning technology to detect the gauge value
by using smartphones [11]. It uses the CenterNet network [20] to detect gauge-related
parameters. Different from the study of [9], only the gauge center and the positions of
the minimum and maximum scale marks were found. This network will output four
positions. In addition to the above-mentioned positions of the three points, the pointer is
also predicted. These positions are also predicted by a heatmap, which is the same as in [9].
The limitation of [11]’s method is that it has to input dial values manually too. The gauge
value is obtained by interpolation. Since the pointer’s position will appear unstable for
different the gauges applied, the gauge-reading performance is worse than in [9].

3. SGR (Scale-Mark-Based Gauge Reading) Algorithm

Figure 4 shows the SGR architecture diagram that is divided into two parts. The
first part entails gauge detection. The second part entails gauge reading with four phases,
including preprocessing, gauge center detection, binding (between scale marks and dial
values), and angle-based interpolation.
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SGR uses YOLOv4 to detect gauges. YOLOv4 [13] is a commonly used neural network
algorithm for object detection. It uses Mosaic’s data augmentation from the input side. Its
architecture is mainly divided into three parts: a backbone, neck and head. The backbone
is used to extract features. The neck is used to receive and combine the features obtained
from the backbone. The head will predict and classify the objects in the image based on
these characteristics.

SGR is similar to the current surveillance systems in which cameras are fixed to the
front of the gauges perpendicularly and read the gauge values continuously. For detecting
gauges with YOLOv4, two or more perpendicularly fixed images are uploaded for system
initialization. LabelImg [21], a type of labeling tool, is then employed to label the uploaded
images. Different data augmentation technologies including different image distortions
and lighting effects are utilized to increment the YOLOv4 dataset.

In SGR, the color gauge image is first converted into a grayscale image (as Figure 2).
Then, the adaptive threshold is used to binarize the image (as Figure 5 (P1)). Since scale
marks, dial values, and pointers are black on the gauge, these objects have inverted image
color with respect to the main objects in the CC (as Figure 5 (P2)). Erosion (as Figure 5 (P3))
and dilation (as Figure 5 (P4)) are then employed to remove noise.

3.1. Gauge Center Detection

SGR can be applied to both circular and arc gauges. In order to extract the gauge
center, SGR uses the characteristic wherein the primary eigenvectors of the scale marks
will intersect at the gauge center. There are many objects in a gauge, such as scale marks,
dial values, and a pointer. These objects will form CCs independently. The CCs belonging
to scale marks have many characteristics. Their corresponding areas are similar, their
corresponding locations are adjacent, etc. The proposed algorithm uses these features to
first find the CCs of the scale marks. PCA is then employed to find the eigenvectors of
these CCs. Finally, the intersection of these primary eigenvectors is obtained as the gauge
center. There are three steps: the CCs’ detection, the scale marks’ detection, and the gauge
center’s detection.

CCs’ detection: The findContours function of OpenCV is applied to find all the CCs
in the gauge region. This function uses the connecting characteristics of the boundaries
in the binary image to determine the outer border and hole border and their hierarchical
relationships. In this way, each boundary can be represented by a CC [22]. For all the CCs,
each component can find the corresponding rotated bounding box. Let an area variable of a
be the number of pixels in the component. Let w and h be the width and the height of the
rotated bounding box, respectively. The proposed method uses the CC’s compactness c
and ratio rwh to find the scale marks. The calculation formula of c and rwh is as follows.{

c = a/(w× h)
rwh = w/h

(1)

Scale marks’ detection: Most of the scale marks can be divided into two types: main and
minor. The main scale marks represent important information in a gauge, and they point
to the dial value, but they are limited in number. The minor scale marks are designed to
increase the precision between the main scale marks. The number of the minor scale marks
is greater than that of the main scale marks. Therefore, the proposed method focuses on the
minor scale marks. The lengths of the scale mark lines with the same types are the same in
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the image. Therefore, they can be utilized to select the same scale mark lines. We use three
steps to obtain minor scale marks. The first step is to find possible short scale marks (i.e.,
a minor scale mark) by compactness c. Since short scale marks are usually short straight
lines, their corresponding compactness c is limited to 1. We need to set a tolerance range
from TH1 to TH2 of the compactness values to detect the minor scale marks in the CCs.
This value in the range is greater than the threshold value TH1, and its value is less than
the threshold value TH2. The proposed method’s TH1 and TH2 are 0.8 and 1.2, respectively.
The second step is to calculate the largest rwh of the CCs obtained in the first step. The
results are then fed into the third step. The third step computes the majority of the CCs’
areas obtained in the second step. The CCs corresponding to this area a are the scale marks
that have been found. It is not necessary to detect all the minor scale marks in our proposed
scheme. However, if the undetected minor scale marks are too numerous to detect the
gauge center, an error signal will be generated as follows: “gauge center detection”.

Sensors 2022, 22, 7490 6 of 18 
 

 

3. SGR (Scale-Mark-Based Gauge Reading) Algorithm 
Figure 4 shows the SGR architecture diagram that is divided into two parts. The first 

part entails gauge detection. The second part entails gauge reading with four phases, in-
cluding preprocessing, gauge center detection, binding (between scale marks and dial val-
ues), and angle-based interpolation. 

 
Figure 4. Diagram of SGR architecture. 

SGR uses YOLOv4 to detect gauges. YOLOv4 [13] is a commonly used neural net-
work algorithm for object detection. It uses Mosaic’s data augmentation from the input 
side. Its architecture is mainly divided into three parts: a backbone, neck and head. The 
backbone is used to extract features. The neck is used to receive and combine the features 
obtained from the backbone. The head will predict and classify the objects in the image 
based on these characteristics. 

SGR is similar to the current surveillance systems in which cameras are fixed to the 
front of the gauges perpendicularly and read the gauge values continuously. For detecting 
gauges with YOLOv4, two or more perpendicularly fixed images are uploaded for system 
initialization. LabelImg [21], a type of labeling tool, is then employed to label the uploaded 
images. Different data augmentation technologies including different image distortions 
and lighting effects are utilized to increment the YOLOv4 dataset. 

In SGR, the color gauge image is first converted into a grayscale image (as Figure 2). 
Then, the adaptive threshold is used to binarize the image (as Figure 5 (P1)). Since scale 
marks, dial values, and pointers are black on the gauge, these objects have inverted image 
color with respect to the main objects in the CC (as Figure 5 (P2)). Erosion (as Figure 5 
(P3)) and dilation (as Figure 5 (P4)) are then employed to remove noise. 

(P1) 

    

(P2) 

    
Sensors 2022, 22, 7490 7 of 18 
 

 

(P3) 

    

(P4) 

    

(a) (b) (c) (d) 

Figure 5. Results of preprocessing. (a) Circular gauge. (b) Circular Gauge with negative dial value. 
(c) Circular Gauge with floating dial value. (d) Arc gauge. 

3.1. Gauge Center Detection 
SGR can be applied to both circular and arc gauges. In order to extract the gauge 

center, SGR uses the characteristic wherein the primary eigenvectors of the scale marks 
will intersect at the gauge center. There are many objects in a gauge, such as scale marks, 
dial values, and a pointer. These objects will form CCs independently. The CCs belonging 
to scale marks have many characteristics. Their corresponding areas are similar, their cor-
responding locations are adjacent, etc. The proposed algorithm uses these features to first 
find the CCs of the scale marks. PCA is then employed to find the eigenvectors of these 
CCs. Finally, the intersection of these primary eigenvectors is obtained as the gauge cen-
ter. There are three steps: the CCs’ detection, the scale marks’ detection, and the gauge 
center’s detection. 

CCs’ detection: The findContours function of OpenCV is applied to find all the CCs in 
the gauge region. This function uses the connecting characteristics of the boundaries in 
the binary image to determine the outer border and hole border and their hierarchical 
relationships. In this way, each boundary can be represented by a CC [22]. For all the CCs, 
each component can find the corresponding rotated bounding box. Let an area variable of 
a be the number of pixels in the component. Let w and h be the width and the height of 
the rotated bounding box, respectively. The proposed method uses the CC’s compactness 
c and ratio rwh to find the scale marks. The calculation formula of c and rwh is as follows. ൜𝑐 = 𝑎/(𝑤 × ℎ)𝑟௪ = 𝑤/ℎ  (1)

Scale marks’ detection: Most of the scale marks can be divided into two types: main 
and minor. The main scale marks represent important information in a gauge, and they 
point to the dial value, but they are limited in number. The minor scale marks are designed 
to increase the precision between the main scale marks. The number of the minor scale 
marks is greater than that of the main scale marks. Therefore, the proposed method fo-
cuses on the minor scale marks. The lengths of the scale mark lines with the same types 
are the same in the image. Therefore, they can be utilized to select the same scale mark 
lines. We use three steps to obtain minor scale marks. The first step is to find possible short 
scale marks (i.e., a minor scale mark) by compactness c. Since short scale marks are usually 
short straight lines, their corresponding compactness c is limited to 1. We need to set a 

Figure 5. Results of preprocessing. (a) Circular gauge. (b) Circular Gauge with negative dial value.
(c) Circular Gauge with floating dial value. (d) Arc gauge.



Sensors 2022, 22, 7490 8 of 18

Gauge center detection: When the minor scale marks are obtained, each minor scale
mark can be considered as a line segment. The corresponding extended lines will intersect
at the gauge center. Double Hough space voting [7] utilizes this characteristic to extract
the gauge center. Zigzag lines will appear in Double Hough space voting. Figure 6 shows
the result of the applied Double Hough space voting. The effect of the deviation can be
easily seen. It is hard to extract the gauge center using Double Hough space voting. In SGR,
each minor scale mark is considered as a CC. The corresponding eigenvectors of minor
scale marks are extracted by PCA. Figure 7 shows the extracted eigenvectors, where the
primary eigenvectors of the minor scale marks intersect at the gauge center. This paper
uses this characteristic to obtain the gauge center. The following describes the basis of the
PCA. When the primary eigenvectors of the minor scale marks are obtained, every two
linear equations have an intersection point. The majority numbers of linear equations for
the intersection points are all computed. When the number of scale marks corresponding
to this majority is greater than half of the number of short scale marks, this majority is set
as the gauge center. Otherwise, SGR will generate the “Type I Error” message.
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3.2. Scale Marks and Dial Values Binding

The main purpose of SGR is to establish the relationship between the main scale
marks and dial values. Thus, there is no need to manually enter the dial values, and so the
automation of gauge reading for circular and arc gauges can be achieved. This subsection
has three steps: the detection of the main scale marks, the detection and inference of the
dial values, and the binding of the main scale marks and dial values.

3.2.1. Detection of Main Scale Marks

We used the short scale marks to find the gauge center in the previous subsection.
However, the main scale marks have not yet been found. Now, we introduce an algorithm
to detect the main scale marks. The algorithm is divided into two steps: find the candi-
dates of the main scale marks, and then extract and infer the main scale marks based on
these candidates.



Sensors 2022, 22, 7490 9 of 18

This proposed algorithm first calculates the distances from the gauge center to the
upper and lower boundaries of the short scale marks. They are denoted as d1 and d2,
respectively. d1 − d2 can be considered the length of a short scale mark. In general, the
main scale marks are longer than the short scale marks and the extra length usually occurs
near the gauge center. The proposed algorithm assumes that the length of a main scale
mark is double that of a short scale mark. Therefore, the proposed algorithm extracts a ring
with a radius ranging from d1 to 2 × d2 − d1 based on the gauge center.

After acquiring the possible region of main scale marks, the proposed algorithm first
binarizes the region with a threshold value of TH3, where TH3 is the average gray-level
value of the short scale marks obtained in the previous subsection. The CCs in the binarized
image are then extracted (as shown in Figure 8). Since the area of the main scale marks
is usually larger than that of the short scale marks and the first eigenvector of main scale
marks will point to the gauge center, the elements in the CCs become candidates for the
main scale marks if they meet the above criteria. For the criterion in using area to find
candidates of main scale marks, the threshold value TH4 is set to be 1.5 times the average
area of the short scale marks. The main scale mark candidates obtained by the above
scheme are denoted MSMC and Figure 9 shows the MSMC obtained from Figure 8. In this
paper, the set of these main scale mark candidates are abbreviated as MSMC.
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In Figure 9, most of the main scale marks can be correctly identified from the founded
MSMC, except one main scale mark in the lower left corner of Figure 9a. There are still
some main scale marks that could not be extracted from the MSMC. Figures 9b and 10a
shows some examples. There is a missing main scale mark in Figure 10a and there is an
additional main scale mark in Figure 10b. The additional main scale mark is the result of
the pointer overlapping with a short scale mark. Thus, another method is presented to
solve this problem, as follows.
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The angles formed by the main scale mark candidates and the gauge center are
calculated and sorted in ascending order. The differences between two successive angles
are then obtained. The majority number of these angle differences can be found and then
the angle difference in majority is the major angle difference among the main scale marks.
This major angle difference is denoted as θ in this paper.

Let MSM be the set of main scale marks that will be obtained by the proposed method.
When θ is obtained, the proposed method checks the angle difference between two succes-
sive members of the MSMC to determine whether it is equal to θ or not. If the answer is yes,
the above two main scale mark candidates are regarded as the main scale marks. They are
then appended to the MSM. Only part of the main scale marks can be obtained by the above
process. The missed main scale marks can also be inferred by θ. The proposed method
checks the angle difference between two successive members of the MSM to determine
whether it is larger than θ. If the answer is yes, the angle difference would be divided by
θ. Suppose the divided result is n; then, n − 1 main scale marks would be embedded in
the above two successive main scale marks. Figure 10 provides the obtained MSM. An
embedded main scale mark represented with a red rectangle is shown in Figure 10a and a
misjudged main scale mark is removed in Figure 10b.

3.2.2. Detection and Inference of Dial Values

For the detection of the dial values, a straightforward method is to use Keras-OCR [23].
Let the strings detected by Keras-OCR be the set Wstr and the corresponding regions
be the set Wreg. Some scale marks would interfere with Keras-OCR’s recognition. We
overcome this problem using a scheme to remove scale marks before applying Keras-OCR.
This scheme involves extracting a circle with a radius of d2 based on the gauge center for
Keras-OCR to detect the dial values. Figure 11a–d show the Wstr and Wreg of the proposed
scheme. Keras-OCR can detect most of the dial values, but some specific numbers can be
misjudged to be some letters. For example, ‘0’, ‘1’, and ‘2’ would be misjudged to be ‘o’,
‘t’, and ‘z’, respectively. The proposed algorithm corrects this problem using key-to-value
mapping, where the keys are the above specific letters, and the values are the corresponding
numbers. This proposed algorithm then replaces the letters of Wstr with corresponding
numbers. Consequently, all the elements of Wstr would be numerical. However, there are
still some problems reading gauges with negative dial values and floating dial values since
Keras-OCR is not designed for a gauge’s dial values.

When Keras-OCR encounters negative dial values, the minus sign cannot be recog-
nized correctly. Figure 11b shows that the ‘−1’ dial value detected by Keras-OCR becomes a
‘1’ whose minus sign is lost. In order to overcome this problem, the proposed algorithm uses
the ‘0’ obtained by Keras-OCR to further inference the negative numbers. The members of
Wstr are sorted in a clockwise order according to their angles. For members of Wstr located
before element ‘0’, they can be judged as negative and a minus sign can be applied to them.
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Moreover, when Keras-OCR encounters floating dial values, the dot cannot be detected
in most cases. Figure 11c shows that the ‘0.5’ dial value detected by Keras-OCR becomes
‘05’, for which the corresponding dot is lost. The inference scheme is introduced below.
For elements in Wstr whose length is larger than one, the connected components of the
corresponding Wreg are extracted. If the number of the connected components is equal
to the length of the element plus one, the element is inferred as a floating number. In
Figure 11c, the length of ‘05’ is two and the number of connected components of the
corresponding region in Wreg is three. This satisfies the above criteria. Therefore, ‘05’ is
inferred to be ‘0.5’. Let DV be the set of final results of the dial value detection and inference
algorithm. Figure 11 shows the DV of Figure 11a–d inferred by SGR.

3.2.3. Binding of Main Scale Marks and Dial Values

This subsection focuses on the issues of binding between the main scale marks and
dial values. After the binding process, every main scale mark has a corresponding dial
value. The main idea is to use the angles of MSM and DV. For every main scale mark in the
MSM, a dial value in DV can be binding to it if their angles are approximately equal. Most
of the main scale marks have corresponding dial values now, but some of the main scale
marks may not.

To ensure that the proposed algorithm works correctly, there must be at least three
successful bindings between the main scale marks and dial values. This is a constraint
of this proposed algorithm. If three successful bindings cannot be generated, SGR will
generate a “Type II Error” message. The process to compensate for the lost dial values is
described below. For every two successive main scale marks, the compensated scheme
computes the dial value difference per θ. The majority of the above values are calculated
and set to be the value gap denoted as α in this paper. Then, lost dial values can be inferred
by α and the above successful bindings. The final binding results between the main scale
marks in Figure 9 and dial values in Figure 12 are shown in Figure 13.
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3.3. Angle-Based Gauge-Reading Algorithm

This subsection focuses on the issue of gauge reading with respect to the gauge pointer.
This proposed gauge-reading scheme is divided into two steps: the detection of the pointer
and the use of the linear interpolation of the angles to obtain the gauge value. To read
the gauge value, the position of the pointer needs to be detected. In a gauge, the CC
formed by the pointer is usually the largest, and this CC’s primary eigenvector will point
to gauge center. The appearance of the pointer is thin and long. The pointer is also closest
to the gauge center. The proposed scheme uses these characteristics to obtain the pointer.
Figure 14 shows the pointer extracted by the proposed scheme for Figure 5. The convex
hull of the pointer is first extracted. The distances between the points in the convex hull
and the gauge center are then calculated. The point with the longest distance is denoted as
the pointer peak. Let the angle of this pointer peak be θpointer.
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As mentioned regarding the binding of the main scale marks and dial values in the
previous subsection, the proposed algorithm must have at least three successful bindings
between the main scale marks and dial values to work correctly. Suppose the angles
of the successful bindings range from θmin to θmax. The gauge value can be interpo-
lated in the following three cases. For the first case where θpointer is between θmin and
θmax, the left nearest and the right nearest main scale marks for the pointer peak are ex-
tracted first. Let the corresponding angles of the extracted main scale marks be θl and θr
and their corresponding dial values be Vl and Vr. The gauge value Vpointer is calculated
by Equation (2).

Vpointer = Vl +
θpointer − θl

θr − θl
× (Vr −Vl) (2)

For the second case where θpointer is smaller than θmin, the right nearest two main scale
marks for the pointer peak are extracted. Let the corresponding angles of the extracted
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main scale marks be θr1 and θr2(θr2 > θr1) and their corresponding dial values be Vr1 and
Vr2. The gauge value Vpointer is calculated by Equation (3)

Vpointer = Vr1 +
θpointer − θr1

θr2 − θr1
× (Vr2 −Vr1) (3)

For the third case where θpointer is larger than θmax, the left nearest two main scale
marks for the pointer peak are extracted. Let the corresponding angles of the extracted
main scale marks be θl1 and θl2(θl2 > θl1) and their corresponding dial values be Vl1 and
Vl2. The gauge value Vpointer is calculated by Equation (4).

Vpointer = Vl2 +
θpointer − θl2

θl2 − θl1
× (Vl2 −Vl1) (4)

The values of Figure 2a–d are 1.11, 0.72, 0.31, and 0.57, respectively. SGR can correctly
obtain these gauge values.

3.4. Processing of Abnormal Environments

Applications for the automatic gauge reading method are divided into two scenarios.
The first involves a camera that is set on a robot that automatically moves to find gauges
and extract gauge values. The second is similar to the current surveillance systems in which
cameras, perpendicularly fixed in front of the gauges, read the gauge values continuously.
The proposed SGR belongs to the second category.

Due to human factors or natural factors (such as earthquakes), the perpendicular
gauge images captured by the camera cannot always be guaranteed. There are three
possible image deformation cases: image horizontal/vertical movements, image rotation,
and image perspective distortion.

YOLOv4 can overcome the problem of the image horizontal/vertical movements since
YOLOv4 can detect objects in different locations. In addition, the proposed SGR is not
affected by the problem of image rotation, since the image rotation will not destroy the
structure of the scale marks, and the gauge value is extracted by angle interpolation.

Finally, we discuss the problems caused by image perspective distortion. When image
perspective distortion occurs, the outlines of the scale marks are obscured. Figure 15a–c
show a circular gauge deformed by a rotation of 30 degrees on an X axis, Y axis, and X-Y
axis, respectively. Figure 15d–f show an arc gauge deformed by a rotation of 30 degrees on
X axis, Y axis and X-Y axis, respectively. The above deformation is so serious that SGR will
generate an alarm.
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A scheme to detect the image perspective distortion is presented as follows. For every
gauge, SGR utilizes the two main scale marks to read the value. When the angle between
the utilized two main scale marks is not almost equal to θ and the error exceeds a given
threshold TH, it indicates that the profiles of the scale marks are obscured. TH is the
threshold to specify the sensitivity to the image perspective distortion. The methods of
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detecting image perspective distortion can be divided into the following three cases. When
the angle interpolation method uses Equation (2), an alarm message will be generated
with Equation (5)

(θr − θl)/θ > TH (5)

When the angle interpolation method uses Equation (3), an alarm message will gener-
ate with Equation (6)

(θr2 − θr1)/θ > TH (6)

When the angle interpolation method uses Equation (4), an alarm message will gener-
ate with Equation (7)

(θl2 − θl1)/θ > TH (7)

Another abnormal environmental condition occurs when light changes. The proposed
algorithm uses Multi-Scale Retinex with color restoration (MSRCR), an image enhancement
technique, to handle the light change problem. In order to reduce the computational
complexity of SGR, MSRCR will not be enabled for every gauge image. MSRCR is only
launched when SGR generates a Type I or Type II error, and then SGR is processed again to
read the MSRCR-enabled gauge image.

4. Experimental Results

This paper uses a PC as the development and testing platform, and Python and
OpenCV are used as the development tools. There are four test videos in our experiments.
Video 1, Video 2, and Video 3 are videos with a circular gauge taken from the internet and
Video 4 is a video with an arc gauge taken by this study’s authors. Figure 16 shows the
gauges detected by YOLOv4. The detected regions of the gauges are clipped as the input
images in our experiments.
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4.1. The Performance of SGR

In the above four videos, each video captures three clip images as the test data. The
ground truth of each gauge center is obtained by manual marking. Let the position of the
manual gauge center be (xm, ym) and the gauge center obtained by the test algorithm be
(xa, ya). The ground truth of each gauge value is obtained by manual marking. Let the
manually labeled gauge value be vm, the gauge value obtained by the test algorithm be va,
and the range from the minimum dial value to the maximum dial value be vrange. The error
of the test algorithm can be calculated by Equation (8).(

|va − vm|
vrange

)
× 100% (8)

In Table 1, the experimental results show that the average reading-value error of [3,4]
is 0.79%. However, SGR has the best performance with an error of 0.13%. The reason is that
the angle range of the interpolation in [3,4] is from the angle of the main scale mark with
the minimum dial value to the main scale mark with the maximum dial value. However,
SGR constructs bindings of main scale marks and dial values. A smaller interpolation error
can be obtained by a smaller angle range. The performance of SGR is better than that of
these previous methods.
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Table 1. Average errors of gauge reading (N.A. is Not Available for the applied methods).

Clip/Method
Video 1 Video 2 Video 3 Video 4 Average

Error1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3

[1,2] 1.17% 1.33% 0.67% 0.25% 0.75% 3.50% 0.80% 0.80% 1.20% N.A. N.A. N.A. 1.16%

[3,4] 0.17% 0.33% 0.33% 0.00% 1.25% 4.25% 0.40% 0.40% 0.00% N.A. N.A. N.A. 0.79%

[5] 0.33% 0.67% 0.17% 0.75% 0.75% 3.25% 0.40% 0.40% 0.00% N.A. N.A. N.A. 0.75%

[6] 1.00% 0.67% 1.17% 0.75% 3.50% 0.75% 0.80% 1.20% 1.20% 0.34% 0.64% 0.28% 1.02%

[7] 0.17% 0.17% 0.50% 0.25% 1.50% 4.25% 0.40% 0.40% 0.80% N.A. N.A. N.A. 0.94%

[8] 0.83% 0.50% 1.00% 0.50% 2.75% 4.25% 0.00% 0.00% 0.00% 0.38% 0.60% 0.12% 0.91%

SGR 0.00% 0.17% 0.17% 0.25% 0.00% 0.25% 0.00% 0.00% 0.00% 0.00% 0.04% 0.74% 0.13%

4.2. Performance Evaluations of Abnormal Environments

This paragraph discusses the influence of image perspective distortion on SGR. Re-
garding the perspective distortion effect on the circular gauge with an X-axis rotation with
various angles ranging from −30 degrees to 30 degrees and TH = 0.04, the perspective
distortion can be tolerated by the SGR method for the rotation angle between −15 de-
grees and 15 degrees. The error is less than 1.5%. When the rotation angle is greater than
15 degrees and less than −15 degrees, the SGR method will generate an alarm message.
When TH = 0.06, SGR can tolerate a relatively larger perspective distortion for the ro-
tation angle between −21 degrees and 21 degrees. When the rotation angle is between
−21 degrees to 21 degrees, the error is less than 2%. This indicates a larger TH, a larger
tolerance, and a larger error. The error can be less than 0.5% when the rotation angle is
between −10 degrees to 10 degrees.

When the rotation axis is the Y-axis, the performance of SGR is similar to that of the
above. For TH = 0.06, the rotation from −24 degrees to 24 degrees can be tolerated. The
error is less than 2%. When the X-axis and Y-axis rotate at the same time, the tolerable
rotation angle is reduced, in which the range is from−12 degrees to 12 degrees. Once again,
the error is less than 2%.

Regarding the perspective distortion effects on the arc gauge by rotation cases of X-axis
only, Y-axis only, and X-axis and Y-axis at the same time, their tolerable rotation angle range
is smaller than that of the circular gauges. When TH = 0.06, the tolerable rotation angle
ranges from −12 degrees to 12 degrees for X-axis or Y-axis rotations. The error is less than
2%. The error can be less than 0.5% when the rotation angle is between −6 degrees to
6 degrees.

However, when the X-axis and Y-axis rotate at the same time, the tolerated rotation
angle (from −9 degrees to 9 degrees) is reduced. This phenomenon occurs because the
rotation center of the arc gauge is located at the bottom right corner of the gauge, while the
rotation center of the perspective distortion is located at the center of the gauge.

The influence of different light changes on SGR is illustrated as follows. Table 2 shows
the results of SGR with and without MSRCR for bright and dark environments in different
light changes. There are some cases generating alarms for the original SGR algorithm.
However, their gauge values can be extracted when MSRCR is utilized. Next, the influence
of a single light source illuminating different locations on a gauge is explored. Table 3
provides the corresponding results. There are 45 cases generating alarms for the original
SGR algorithm. However, their gauge values are extracted when MSRCR is utilized. SGR
demonstrates the improved performance in this environment. Figures 17 and 18 show
some examples of the above experiment.
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Table 2. Results of SGR with and without MSRCR for bright or dark environments, where the alpha
is the contrast, and the beta is brightness. (a) where alpha = 1 and beta = −100. (b) where alpha = 1
and beta = −150. (c) where alpha = 1 and beta = 75. (d) where alpha = 1 and beta = 100.

Clips/Settings
Video 1 Video 2 Video 3 Video 4

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3

(a) Original 0.00% 0.00% 0.17% 0.50% 0.50% 0.00% 0.40% 0.40% 0.40% 1.12% 1.10% 1.40%
MSRCR 0.33% 0.00% 0.17% 0.50% 0.75% 0.00% 0.00% 0.40% 0.40% 0.00% 0.00% 1.40%

(b) Original 0.00% 0.00% alarm 0.50% 0.75% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.40%
MSRCR 0.00% 1.17% 0.83% 0.00% 0.75% 0.00% 0.00% 0.00% 0.40% 0.00% 1.10% 1.40%

(c) Original 0.00% 0.33% 0.17% 0.00% 0.50% 0.00% 0.00% 0.00% 0.00% alarm alarm alarm
MSRCR 0.00% 0.00% 0.17% 0.00% 0.75% 0.00% 0.00% 0.40% 0.00% 0.00% alarm 1.40%

(d) Original 0.00% 0.00% 1.17% alarm 0.50% alarm 1.20% 0.40% 0.40% alarm alarm alarm
MSRCR 0.00% 0.00% 0.50% 0.00% 1.25% alarm 0.80% 0.40% 0.40% 0.00% alarm alarm

Table 3. Results of SGR with and without MSRCR for a single light source environment, where the
sigma is the adjustment of the exposure range. (a), (b), and (c) are a single light source illuminated
at the center of image, and their sigma values are 100, 75, and 50, respectively. (d), (e), and (f) are a
single light source illuminated at the left top of image, and their sigma values are 300, 200, and 100,
respectively.

Clips/Settings
Video 1 Video 2 Video 3 Video 4

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3

(a) Original alarm alarm alarm alarm 1.25% 0.00% 0.40% 0.40% 0.40% 1.12% 0.00% 1.40%
MSRCR 0.00% 0.00% 0.17% 0.00% 0.50% 0.25% 0.40% 0.40% 0.40% 0.00% 1.10% 1.40%

(b) Original alarm alarm alarm alarm alarm 1.50% 2.00% alarm alarm alarm alarm alarm
MSRCR 0.67% alarm alarm 0.75% 0.50% 0.25% 0.40% 0.40% 0.40% 1.12% 0.00% 1.40%

(c) Original alarm alarm alarm alarm alarm alarm alarm alarm alarm alarm alarm alarm
MSRCR alarm alarm alarm alarm alarm alarm 1.20% 1.60% alarm alarm alarm alarm

(d) Original 0.00% 0.33% alarm 0.50% 0.50% 0.25% 0.40% 0.40% 0.00% 0.00% 0.00% 1.40%
MSRCR 0.33% 0.00% 0.17% 0.50% 0.50% 0.00% 0.40% 0.40% 0.40% 0.00% 0.00% 1.40%

(e) Original alarm alarm alarm 1.75% 0.50% 0.25% 0.00% 0.00% 0.00% alarm alarm alarm
MSRCR 0.00% 0.00% 0.50% 1.75% 0.75% 0.00% 0.00% 0.80% 0.00% 1.12% 1.10% 1.40%

(f) Original alarm alarm alarm alarm alarm alarm alarm alarm alarm alarm alarm alarm
MSRCR alarm alarm alarm alarm alarm alarm alarm 0.00% 1.20% alarm alarm alarm
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different light changes. There are some cases generating alarms for the original SGR algo-
rithm. However, their gauge values can be extracted when MSRCR is utilized. Next, the 
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Figure 17. Test images in dark conditions and with bright light sources. (a) Original image; beta = 
−100. (b) Original image; beta = −100. (c) Original image; beta = 75. (d) Original image; beta = 75. (e) 
MSRCR result; beta = −100. (f) MSRCR result; beta = −100. (g) MSRCR result; beta = 75. (h) MSRCR 
result; beta = 75. 

Table 2. Results of SGR with and without MSRCR for bright or dark environments, where the alpha 
is the contrast, and the beta is brightness. (a) where alpha = 1 and beta = −100. (b) where alpha = 1 
and beta = −150. (c) where alpha = 1 and beta = 75. (d) where alpha = 1 and beta = 100. 

Clips/Settings 
Video 1 Video 2 Video 3 Video 4 

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3 

(a) 
Original 0.00% 0.00% 0.17% 0.50% 0.50% 0.00% 0.40% 0.40% 0.40% 1.12% 1.10% 1.40% 
MSRCR 0.33% 0.00% 0.17% 0.50% 0.75% 0.00% 0.00% 0.40% 0.40% 0.00% 0.00% 1.40% 

(b) 
Original 0.00% 0.00% alarm 0.50% 0.75% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.40% 
MSRCR 0.00% 1.17% 0.83% 0.00% 0.75% 0.00% 0.00% 0.00% 0.40% 0.00% 1.10% 1.40% 

(c) 
Original 0.00% 0.33% 0.17% 0.00% 0.50% 0.00% 0.00% 0.00% 0.00% alarm alarm alarm 
MSRCR 0.00% 0.00% 0.17% 0.00% 0.75% 0.00% 0.00% 0.40% 0.00% 0.00% alarm 1.40% 

(d) 
Original 0.00% 0.00% 1.17% alarm 0.50% alarm 1.20% 0.40% 0.40% alarm alarm alarm 
MSRCR 0.00% 0.00% 0.50% 0.00% 1.25% alarm 0.80% 0.40% 0.40% 0.00% alarm alarm 

Table 3. Results of SGR with and without MSRCR for a single light source environment, where the 
sigma is the adjustment of the exposure range. (a), (b), and (c) are a single light source illuminated 
at the center of image, and their sigma values are 100, 75, and 50, respectively. (d), (e), and (f) are a 
single light source illuminated at the left top of image, and their sigma values are 300, 200, and 100, 
respectively. 

Clips/Settings 
Video 1 Video 2 Video 3 Video 4 

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3 

(a) Original alarm alarm alarm alarm 1.25% 0.00% 0.40% 0.40% 0.40% 1.12% 0.00% 1.40% 
MSRCR 0.00% 0.00% 0.17% 0.00% 0.50% 0.25% 0.40% 0.40% 0.40% 0.00% 1.10% 1.40% 

(b) Original alarm alarm alarm alarm alarm 1.50% 2.00% alarm alarm alarm alarm alarm 

Figure 17. Test images in dark conditions and with bright light sources. (a) Original image;
beta = −100. (b) Original image; beta = −100. (c) Original image; beta = 75. (d) Original im-
age; beta = 75. (e) MSRCR result; beta = −100. (f) MSRCR result; beta = −100. (g) MSRCR result;
beta = 75. (h) MSRCR result; beta = 75.
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MSRCR 0.00% 0.00% 0.50% 1.75% 0.75% 0.00% 0.00% 0.80% 0.00% 1.12% 1.10% 1.40% 

(f) Original alarm alarm alarm alarm alarm alarm alarm alarm alarm alarm alarm alarm 
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Figure 18. Test images of a single light source illuminating different positions on the gauge. (a) 
Original image; sigma = 100. (b) Original image; sigma = 100. (c) Original image; sigma = 300. (d) 
Original image; sigma = 300. (e) MSRCR result; sigma = 100. (f) MSRCR result; sigma = 100. (g) 
MSRCR result; sigma = 300. (h) MSRCR result; sigma = 300. 

5. Conclusions and Future Works 
This paper mainly proposes a general automatic gauge-reading algorithm. This algo-

rithm can obtain the central position of circular gauges and arc gauges using PCA. Con-
sequently, the main scale marks and dial values will be extracted and then bound together. 
Our method has resolved the problem involving dial values that are negative or floating 
point. Therefore, it does not require manually inputting relevant parameters and further 
automates the system. The experimental results demonstrate that the proposed algorithm 
has good performance in automatic gauge reading for both circular and arc gauges. In the 
future, we plan to conduct more experiments on different types of gauges to detect even 
more information such as the measuring units appearing in the gauges and to verify the 
performance of the proposed algorithm. 
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Figure 18. Test images of a single light source illuminating different positions on the gauge.
(a) Original image; sigma = 100. (b) Original image; sigma = 100. (c) Original image; sigma = 300.
(d) Original image; sigma = 300. (e) MSRCR result; sigma = 100. (f) MSRCR result; sigma = 100.
(g) MSRCR result; sigma = 300. (h) MSRCR result; sigma = 300.

5. Conclusions and Future Works

This paper mainly proposes a general automatic gauge-reading algorithm. This
algorithm can obtain the central position of circular gauges and arc gauges using PCA.
Consequently, the main scale marks and dial values will be extracted and then bound
together. Our method has resolved the problem involving dial values that are negative
or floating point. Therefore, it does not require manually inputting relevant parameters
and further automates the system. The experimental results demonstrate that the proposed
algorithm has good performance in automatic gauge reading for both circular and arc
gauges. In the future, we plan to conduct more experiments on different types of gauges to
detect even more information such as the measuring units appearing in the gauges and to
verify the performance of the proposed algorithm.
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