The Impedance Analysis of a Viscoelastic Petalous Structured Stearic Acid Functional Layer Deposited on a QCM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation
2.2. Experimental Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fanget, S.; Hentz, S.; Puget, P.; Arcamone, J.; Matheron, M.; Colinet, E.; Andreucci, P.; Duraffourg, L.; Meyers, E.; Roukes, M.L. Gas Sensors Based on Gravimetric Detection—A Review. Sens. Actuators B Chem. 2011, 160, 804–821. [Google Scholar] [CrossRef]
- Ji, S.; Esmaeilzadeh, H.; Su, J.; Pagsuyoin, S.; Sun, H. Novel Analysis of a Micropillar Coupled Acoustic Wave Sensor. Sens. Actuators Rep. 2021, 3, 100034. [Google Scholar] [CrossRef]
- Liao, S.; Ye, P.; Chen, C.; Zhang, J.; Xu, L.; Tan, F. Comparing of Frequency Shift and Impedance Analysis Method Based on QCM Sensor for Measuring the Blood Viscosity. Sensors 2022, 22, 3804. [Google Scholar] [CrossRef]
- García-Martinez, G.; Bustabad, E.A.; Perrot, H.; Gabrielli, C.; Bucur, B.; Lazerges, M.; Rose, D.; Rodriguez-Pardo, L.; Fariña, J.; Compère, C.; et al. Development of a Mass Sensitive Quartz Crystal Microbalance (QCM)-Based DNA Biosensor Using a 50 MHz Electronic Oscillator Circuit. Sensors 2011, 11, 7656–7664. [Google Scholar] [CrossRef]
- Castro, P.; Resa, P.; Elvira, L. Apparent Negative Mass in QCM Sensors Due to Punctual Rigid Loading. IOP Conf. Ser. Mater. Sci. Eng. 2012, 42, 012046. [Google Scholar] [CrossRef]
- Lu, C. Theory and Practice of the Quartz Crystal Microbalance; Elsevier: Amsterdam, The Netherlands, 1984; pp. 19–61. [Google Scholar]
- Sauerbrey, G. Verwendung von Schwingquarzen Zur Wägung Dünner Schichten Und Zur Mikrowägung. Z. Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Alassi, A.; Benammar, M.; Brett, D. Quartz Crystal Microbalance Electronic Interfacing Systems: A Review. Sensors 2017, 17, 2799. [Google Scholar] [CrossRef] [Green Version]
- Boiadjiev, S. WO3 Thin Films Deposition on Quartz Crystal Resonators for Applications in Gas Sensors. J. Phys. Conf. Ser. 2008, 559, 1–5. [Google Scholar] [CrossRef]
- Rechendorff, K.; Hovgaard, M.B.; Foss, M.; Besenbacher, F. Influence of Surface Roughness on Quartz Crystal Microbalance Measurements in Liquids. J. Appl. Phys. 2007, 101, 5399. [Google Scholar] [CrossRef]
- Daikhin, L.; Urbakh, M. Effect of Surface Film Structure on the Quartz Crystal Microbalance Response in Liquids. Langmuir 1996, 12, 6354–6360. [Google Scholar] [CrossRef]
- Mahmood, H.; Mohammed, H.; Shinen, H. Study the Sensitivity of Quartz Crystal Microbalance (QCM ) Sensor Coated with Different Thickness of Polyaniline for Determination Vapours of Ethanol, Propanol, Hexane and Benzene. Chem. Mater. Res. 2013, 3, 61–65. [Google Scholar]
- Songkhla, S.N.; Nakamoto, T. Overview of Quartz Crystal Microbalance Behavior Analysis and Measurement. Chemosensors 2021, 9, 350. [Google Scholar] [CrossRef]
- Johannsmann, D.; Reviakine, I.; Richter, R.P. Dissipation in films of adsorbed nanospheres studied by quartz crystal microbalance (QCM). Anal. Chem. 2009, 81, 8167–8176. [Google Scholar] [CrossRef]
- Su, J.; Esmaeilzadeh, H.; Wang, P.; Ji, S.; Inalpolat, M.; Charmchi, M.; Sun, H. Effect of Wetting States on Frequency Response of a Micropillar-Based Quartz Crystal Microbalance. Sens. Actuators A Phys. 2019, 286, 115–122. [Google Scholar] [CrossRef]
- Su, J.; Esmaeilzadeh, H.; Sun, H. Study of Frequency Response of Quartz Crystal Microbalance to Different Wetting States of Micropillar Surfaces. In Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting, Waikoloa, HI, USA, 30 July–3 August 2017; pp. 1–6. [Google Scholar]
- Xie, X.; Xie, J.; Luo, W.; Wu, Z. Electromechanical Coupling and Frequency Characteristics of a Quartz Crystal Resonator Covered with Micropillars. J. Vib. Acoust. Trans. ASME 2019, 141, 2936. [Google Scholar] [CrossRef]
- Wang, P.; Su, J.; Su, C.F.; Dai, W.; Cernigliaro, G.; Sun, H. An Ultrasensitive Quartz Crystal Microbalance-Micropillars Based Sensor for Humidity Detection. J. Appl. Phys. 2014, 115, 316. [Google Scholar] [CrossRef]
- Lin, I.K.; Ou, K.S.; Liao, Y.M.; Liu, Y.; Chen, K.S.; Zhang, X. Viscoelastic Characterization and Modeling of Polymer Transducers for Biological Applications. J. Microelectromech. Syst. 2009, 18, 1087–1099. [Google Scholar] [CrossRef]
- Esmaeilzadeh, H.; Zheng, K.; Su, J.; Mead, J.; Sobkowicz, M.J.; Sun, H. Experimental Study of Drag Reduction on Superhydrophobic Surfaces Using Quartz Crystal Microbalance (QCM). ASME Int. Mech. Eng. Congr. Expo. Proc. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Kashan, M.A.M.; Leong, A.; Saha, T.; Kalavally, V.; Swamy, V.; Ramakrishnan, N. QCM-Micropillar-Based Coupled Resonators in the Detection of Gas Mass Flow Rates. IEEE Trans. Instrum. Meas. 2019, 68, 303–305. [Google Scholar] [CrossRef]
- Kashan, M.A.M.; Kalavally, V.; Lee, H.W.; Ramakrishnan, N. Resonant Characteristics and Sensitivity Dependency on the Contact Surface in QCM-Micropillar-Based System of Coupled Resonator Sensors. J. Phys. D Appl. Phys. 2016, 49, 195303. [Google Scholar] [CrossRef]
- Pelliccione, M.; Lu, T.M. Evolution of Thin Film Morphology: Modeling and Simulations; Springer: Berlin/Heidelberg, Germany, 2008; Volume 108, ISBN 9780387751085. [Google Scholar]
- Stewart, J.A.; Spearot, D.E. Phase-Field Models for Simulating Physical Vapor Deposition and Grain Evolution of Isotropic Single-Phase Polycrystalline Thin Films. Comput Mater. Sci. 2016, 123, 111–120. [Google Scholar] [CrossRef]
- Karabacak, T. Thin-Film Growth Dynamics with Shadowing and Re-Emission Effects. J. Nanophoton. 2011, 5, 052501. [Google Scholar] [CrossRef] [Green Version]
- Mattox, D.M. Atomistic Film Growth and Some Growth-Related Film Properties. In Handbook of Physical Vapor Deposition (PVD) Processing; William Andrew Publishing: London, UK, 2010; pp. 333–398. ISBN 9780815520375. [Google Scholar]
- Mattox, D.M. Adhesion and Deadhesion. In Handbook of Physical Vapor Deposition (PVD) Processing; William Andrew Publishing: London, UK, 2010; pp. 439–474. ISBN 9780815520375. [Google Scholar]
- Cho, J.; Terry, S.G.; LeSar, R.; Levi, C.G. A Kinetic Monte Carlo Simulation of Film Growth by Physical Vapor Deposition on Rotating Substrates. Mater. Sci. Eng. A 2005, 391, 390–401. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Gselman, P.; Čekada, M.; Panjan, M. Review of Growth Defects in Thin Films Prepared by PVD Techniques. Coatings 2020, 10, 447. [Google Scholar] [CrossRef]
- Swann, M.J. The Principles of QCM-I; Technical Note; QCM Sensors: London, UK, 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masruroh; Santjojo, D.J.D.H. The Impedance Analysis of a Viscoelastic Petalous Structured Stearic Acid Functional Layer Deposited on a QCM. Sensors 2022, 22, 7504. https://doi.org/10.3390/s22197504
Masruroh, Santjojo DJDH. The Impedance Analysis of a Viscoelastic Petalous Structured Stearic Acid Functional Layer Deposited on a QCM. Sensors. 2022; 22(19):7504. https://doi.org/10.3390/s22197504
Chicago/Turabian StyleMasruroh, and Dionysius J. D. H. Santjojo. 2022. "The Impedance Analysis of a Viscoelastic Petalous Structured Stearic Acid Functional Layer Deposited on a QCM" Sensors 22, no. 19: 7504. https://doi.org/10.3390/s22197504
APA StyleMasruroh, & Santjojo, D. J. D. H. (2022). The Impedance Analysis of a Viscoelastic Petalous Structured Stearic Acid Functional Layer Deposited on a QCM. Sensors, 22(19), 7504. https://doi.org/10.3390/s22197504