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Abstract: Unmanned Aerial Vehicles (UAVs) or drones presently are enhanced with miniature sensors
that can provide information relative to their environment. As such, they can detect changes in
temperature, orientation, altitude, geographical location, electromagnetic fluctuations, lighting condi-
tions, and more. Combining this information properly can help produce advanced environmental
awareness; thus, the drone can navigate its environment autonomously. Wireless communications
can also aid in the creation of drone swarms that, combined with the proper algorithm, can be
coordinated towards area coverage for various missions, such as search and rescue. Coverage Path
Planning (CPP) is the field that studies how drones, independently or in swarms, can cover an area
of interest efficiently. In the current work, a CPP algorithm is proposed for a swarm of drones to
detect points of interest and collect information from them. The algorithm’s effectiveness is evaluated
under simulation results. A set of characteristics is defined to describe the coverage radius of each
drone, the speed of the swarm, and the coverage path followed by it. The results show that, for larger
swarm sizes, the missions require less time while more points of interest can be detected within the
area. Two coverage paths are examined here—parallel lines and spiral coverage. The results depict
that the parallel lines coverage is more time-efficient since the spiral increases the required time by an
average of 5% in all cases for the same number of detected points of interest.

Keywords: drones; coverage path planning; point-of-interest detection

1. Introduction

Drones presently are used for a variety of applications. Technological advances, mainly
in sensory devices and nanotechnology, provide the tools that enable the development
of miniature drones that can last for several minutes to hours per flight or even fly con-
tinuously. Historically, drones have been funded by the US military, with the first flights
dating to 1903 [1]. During the first demonstrations, drones had very limited features. They
were remotely operated by one person and wireless communications were used to transmit
basic commands. The most attractive aspect of this technology was the fact that it was
unmanned, which meant that no pilot risked his life on the battlefield.

Presently, drones have advanced to the point where no human operator is required to
complete a mission. They are being adopted by many industries since they can potentially
lower the cost of product delivery and minimize human casualties under states of emer-
gency. Drone technology can be applied to many aspects of human life. A few examples are
post-earthquake response for human detection and damage assessment [2], early detection
of forest fires [3], wildfire tracking [4], parcel or food delivery systems [5,6], structural
integrity [7] and power-line [8] inspection.

Ever since the miniaturization of computer components, sensory devices have become
much easier to include in a compact and easy-to-develop system with a basic operation
such as the collection of information from the surrounding environment and wireless data
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transmission. Such systems can be adjusted to operate on drones and even create swarms
that can be coordinated to complete tasks as a team. Although the traditional operation of a
single drone requires a pilot, this model cannot be employed for drone swarm applications
since a typical swarm can include tens of drones, hence the system is prone to failure due
to human error.

The swarm collects information in real time and decides the necessary actions towards
the completion of a mission. A major issue regarding drone swarms is navigating a natural
environment. Algorithmic steps can provide a path planning scheme that can be altered
in real time. The path a drone must follow is not predefined but is determined under an
algorithm that includes simple steps individually followed by the drones to produce the
necessary distributed behavior.

The role of an operator in drone swarms can be either absent or in the form of simple
commands [9] which coordinate the entire swarm towards task completion. During the last
decade, applications with multiple drones are headed towards full autonomy. Coverage
Path Planning (CPP) is the field that describes the algorithms which are employed for full
coverage of an Area of Interest (AoI).

Applications in open seas such as search and rescue (SaR) [10], oil-spill monitoring and
cleaning using underwater autonomous robotics [11], and real-time oil-spill mapping [12]
can also benefit from swarm algorithms and drone swarms in general. SaR missions and
oil-spill monitoring or mapping are time-critical applications. In the case of SaR missions,
multiple scenarios can be assumed, such as emergency plane landing at seas or boat sinking
events. Both cases require the full coverage of large open-sea areas a task well suited for a
swarm of areal [12], underwater [11] or even surface autonomous robotics [13] which can
sense environmental attributes such as thermal dissipation using special equipment.

Autonomous drone swarms can be applied to scenarios such as forest fire-fighting [14,15]
or early forest fire detection [16]. Both applications require a well-defined algorithm to cover
the area efficiently and provide low response times. The only initial input given to the
swarm is the geographical AoI. Please note that the swarm can operate with minimal to no
intervention by an operator.

The main contribution of the current work is the development of a CPP algorithm
that can be employed for either a single drone or a swarm of drones. The algorithm can
achieve full area coverage and Point-of-Interest (PoI) detection with no human intervention.
Two models are developed for PoI detection, the basic and the advanced. In the first case
when a drone detects several PoIs within its coverage radius it chooses its closest one. The
advanced model takes into consideration the amount of time each PoI remains within the
drone’s coverage radius and chooses the one with the smallest time. As such, there is
increased chance that the swarm might collect information from all PoIs it detects.

Two paths are examined, the parallel and the spiral. Comparison is conducted between
them to determine which is the most suitable for a CPP that also takes into consideration
the data collection process and the characteristics of the current algorithm.

The main strengths of the current algorithm ate the following: (i) The swarm employs
distributed actions which require information exchange between the drones during a CPP
mission, as such no human intervention is required to coordinate the swarm for full area
coverage; (ii) The algorithm allows for adaptive speed during a CPP mission based on
the current requirements which helps improve the PoI detection and limit data loss; and
(iii) The drones acquire linear formation with exact distances between them and avoid
overlapping coverage.

The weaknesses of the current algorithm are the following: (i) Obstacles and physical
collision avoidance as well as path rescheduling are not handled by the algorithm which
limits the potential applications that it can be used for; and (ii) The algorithm assumes a
full graph topology between the swarm which also limits the applications it can be used
for which must have an environment with line-of-sight communications.

The simulated results showcase that different swarm sizes can be employed and
operate under the current algorithm and, given the proper configuration, the swarm can
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complete missions of different requirements. For example, for search and rescue missions,
the swarm can be set to operate under the advanced model which requires more time, but
it is more efficient in terms of locating points of interest and collecting data from them.
The swarm’s speed can also be tweaked to account for time-critical missions where any
information collected in a short time frame can be useful.

The sections are organized as follows. In Section 2 an overview of related work is
included. Section 3 details relative to the developed algorithm are provided. In Section 4
the simulated experiments are detailed, and an analysis is conducted on the results. Finally,
in Section 5 conclusions are derived, and future work is provided.

2. Past Related Work

Many studies over the years have focused on drone swarm autonomy [17] and coordi-
nation using base stations [18]. The typical model of operation and coordination of drones
remotely by a human pilot is slowly becoming part of the past. The move towards auton-
omy is the natural next step since digital systems can provide higher levels of accuracy as
drones can be equipped with sensors [19] which provide increased navigation precision in
natural environments. Additionally, drones can be tethered to nearby smart devices [20]
which can provide location information effectively aiding towards the proper localization of
drone swarms. This localization scheme can help a swarm conserve energy resources since
this process does not require communication with satellites rather small-range, low-energy
transmissions which can reach nearby devices.

Point-of-interest detection during the area coverage is an important goal of many stud-
ies which employ various technologies such as image-based deep learning and computer
vision techniques [21,22]. Nature-inspired algorithms have been shown to provide very
accurate results. A study published in 2018 [23] suggests an algorithm that can be adopted
by a swarm of drones that use various environment-sensing techniques such as cameras or
wireless signal detection.

Many applications include area monitoring using WSN-based systems [20,24,25].
Wireless sensory devices can be deployed on a wide area and relay sensed information
back to a base station. Although this solution can provide accurate results, maintenance
cost and possible failure can be deterring factors. In addition, typical WSNs are comprised
of battery-powered nodes since the construction of a wired infrastructure requires large
investments [26].

Wireless Sensor Networks are much easier to deploy. Studies have shown that by
combining multiple algorithms such as the Particle Swarm Optimization (PSO) and Voronoi
diagram [27] efficient WSN deployment can be achieved. Yet, WSNs operate using batter-
ies, and wireless networking algorithms severely affected their active period since large
amounts of information must be exchanged from specific nodes for the network to remain
operational. This is known as the energy hole problem [28]. Drone swarms can potentially
eliminate the issues that arise from statically deployed WSNs since they provide mobility,
hence the system can be modified much easier.

Various Unmanned Aerial Vehicle (UAV) -based systems exist, all ranging in terms of
communication capabilities and sensory devices included on the drones. This is attributed
to the fact that different applications have unique requirements depending on which piece
of environmental information is considered important. For instance, early fire detection and
forest monitoring using drone swarms require cameras equipped with infrared and visible
light sensors [16,29], while a model for area monitoring using drone swarms as mobile sink
nodes which collect information from an installed WSN [30] might have requirements for
different wireless antennas.

Drone swarm architectures can also include drones with various characteristics within
the swarm [31] that can be used for crisis response applications such as major earthquake
events. The architecture can include drones that operate at different altitudes and can
serve a unique purpose. For instance, lower altitude Vertical Take-Off and Landing (VTOL)
drones can collect information on sites where buildings have collapsed by employing
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deep penetrating radars or infrared cameras to locate trapped people. Drones of higher
altitudes can provide real-time mapping of the area to assess the damage that has been
inflicted on the area. And blimps—high-altitude balloons—due to their size can serve as
the communications backbone for real-time collection of data from the swarm.

Decentralized algorithms can provide the necessary steps towards perimeter surveil-
lance using a swarm of drones [32]. The drones are required to operate with information
relative to nearby members of the swarm. No coordination is provided from outside the
swarm. The drones have a single goal, monitor the entire perimeter using simple behavior
by communicating with nearby drones. The drones occasionally require refueling since
their flight time is limited, hence the algorithm provides dynamic behavior for drone
removal and re-entrance in the area.

Applications that include area coverage where points of interest are known before
the mission begins, can be categorized as Traveling Salesman Problem (TSP) for single
pathfinding or Vehicular Routing Problem (VRP) where multiple routes are required [33,34].
Generally, combined behavior from multiple drones or a swarm of drones is referred to as
Swarm Intelligence. This can include the path scheduling for all drones as well as drone
response to unexpected events such as handling an obstacle and path rescheduling to
avoid it.

Problems such as the TSP and VRP are NP-Complete optimization problems. Algo-
rithms for team-based goal completion can also be found in nature. Bee colonies use simple
processes to achieve their main goal which is honey production [35]. Bee Colony Optimiza-
tion (BCO) has shown great potential towards solving optimization problems [20,36,37].
Agents which represent bees, follow simple steps and interactions which provide small
portions of the required solution and thus contribute to solving larger problems.

Ant intelligence [38,39] has been observed to provide successful results in ant colonies.
More specifically, ants can cooperate very efficiently without requiring complex behavior
and work as a team to build very intricate structures where they store their food. The ant
intelligence algorithm has shown potential for problems such as TSP [40] and VRP [41]. By
providing approximate solutions to such problems, drones swarm applications, where area
coverage with known points of interest is required, can greatly benefit [42].

Area coverage in environments with very little knowledge cannot be achieved with the
methods described above. Rather, approaches that define algorithmic processes that aim
towards the full area coverage and collection of information are required [43]. This problem
is also known as the Coverage Path Planning (CPP) problem and it can be separated
into three categories based on whether the AoI is split into subareas, which are covered
separately, or a grid is used and when a drone reached the center of a square this is
considered covered. The third category is called no decomposition where drones follow
a path that covers the entire area without separating it. In the first case, the method is
referred to as approximate cellular decomposition [44] while in the second, exact cellular
decomposition [45].

Drones with miniature sizes can form a swarm which is ideal for indoor environment
exploration. A study published in 2019 by McGuire et al. [46] describes an algorithm that
can be employed for indoor exploration. It is based on area coverage concepts. The drones
that form the swarm fly in multiple directions to cover the area more efficiently. Their
starting point is a small base station which is used to attract the drones back when required.
This is achieved using radio transmissions. When the drones receive the signal, they locate
the point it originated from and fly towards that direction. The navigation in the area is
achieved by tracking and following the walls.

The coverage path followed by the drones is an important aspect of area coverage and
information collection. Studies have shown the effects of more rounded shapes such as the
spiral and shapes with multiple edges [47]. This 2020 study has proven that coverage shape
is closely related to the shape of the examined area. Areas with more edges, which tend to
the circle, are being covered more efficiently from rounded coverage shapes, while shapes
with fewer edges that tend to the square are better covered from parallel lines. Applications
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that require data collection from WSN have increased efficiency using circular coverage
shapes [48].

Some studies focus on PoI detection during the area coverage, by employing various
technologies such as image-based deep learning and computer vision techniques [21].
Nature-inspired algorithms have been shown to provide very accurate results. The authors
in [23] propose an algorithm that can be adopted by a swarm of drones that use various
environment-sensing techniques such as cameras or wireless signal detection. Their algo-
rithm employs three nature-inspired processes, such as stigmergy, flocking, and evolution.

The coverage path followed by the drones is a key aspect of area coverage and infor-
mation collection. The authors in [47] prove that the coverage path is affected by the area’s
shape. Areas with more edges, which tend to the circle, are being covered more efficiently
from rounded coverage shapes, while shapes with fewer edges that tend to the square are
better covered from parallel lines. Applications that require data collection from Wireless
Sensor Networks have increased efficiency using circular coverage shapes [48].

The literature review did reveal interesting algorithms for CPP, but full comparison is
prohibited since our work does not share similarities during the simulation analysis. For
example, in [49] the authors examine the coverage of public spaces for disinfection purposes
using areal systems. Although they do analyze the area coverage using the parallel coverage
path they only use a single drone to complete the coverage and there is no comparison with
other coverage paths in terms of simulation time. To the best of the authors’ knowledge the
analysis of the current work is original, and no other studies examine the current aspects of
CPP in terms of PoI detection and specific algorithm behaviors. As such, no comparison
with similar work is included in the sequel.

3. Autonomous Area Coverage Algorithm

Coverage of an area, hereafter referred to as the AoI, can be achieved using either single
or multiple drones, and a distributed algorithm. The human-driven operation of a swarm
is not efficient or effective enough since multiple drones can exist in it, thus, specifying
the main behavior for autonomous operation can augment the swarm’s capabilities. The
current section details the proposed algorithm that aims to tackle the full area coverage
problem and the information collection from detected points of interest, to be referred to
hereafter as PoI.

3.1. Swarm Formation

The drones consisting of the swarm are organized in a linear formation and their
movement is in a straight line perpendicular to the formation. Each drone follows a path
that is parallel to all the other paths in the swarm to prevent overlapping coverage paths.

The algorithm is designed with minimal requirements as initial information for each
drone. The drones’ main goal is to obtain all required information during operating,
including the one relative to the swarm and use it to achieve full area coverage based
on the predefined behavior. The basic information describes a mission and includes the
following: (i) Borders for the AoI with vertices bi that define a polygon; (ii) Movement
direction md = c for clockwise and r for counterclockwise; (iii) Area coverage path cp = p
for parallel and s for spiral path planning, respectively; (iv) Coverage radius, rc measured
in meters; and (v) Maximum navigation speed, sn, used as the default speed which can be
adjusted during missions based on current requirements.

It is assumed that a drone ui starts operating in a specific location without any prior
knowledge of the swarm. First, it transmits a detection signal and joins a swarm with
all detected drones. Then, all drones share their current location, l0, their closest border
vertex b0 and the distance db

i separating them from it, where i is the index of ui. This
process is depicted in Algorithm 1 as two function calls named receiveAllRemote()
and addLocal().



Sensors 2022, 22, 7551 6 of 18

Algorithm 1: Drone Swarm Border Align for Scanning.
Result: Initial and Final Points

1 l0, b0, d0 =euclideanDistance(l0, b0), md = {c, r}, cp = {p, s}, rc#l0: the initial
drone’s location, b0: the closest border vertex from the drone, d0: the distance
between l0 and b0;

2 n← locateAllActiveDrones(), state = BORDER_ALIGN# The state that the
swarm obtains the formation to begin the coverage;

3 transmit(l0, b0, d0);
4 li, bi, ui ← receiveAllRemote(l0, b0, d0) + addLocal(l0, b0);
5 bc, dc# bc the closest border vertex from a drone, dc current smallest distance;
6 bn = 4 #The number of border vertices;
7 foreach li, bi, ui do
8 # Find the closest border vertex from a drone;
9 if ui < dc then bc = bi;

10 end
11 while pa

0 notFound do
12 # pa

0 is the initial point currently examined qa, qc, pa
i , pc

i , i ∈ 0. . . bn # qa, qc the
polygon sides for the initial and final points;

13 if md = c then
14 # Clockwise movement;
15 qa ← qc

a, qc ← qc
c;

16 # The initial point is placed on the edge on the of the closest vertex;
17 pa

0 ← bc + rc ∈ qa, pc
0 ← bc+1 + rc ∈ qc;

18 else
19 qa ← qr

c, qc ← qr
a;

20 pa
0 ← bc + rc ∈ qa, pc

0 ← bc−1 + rc ∈ qc;
21 end
22 ul

i ← euclideanDistance(l0, pa
0) #Local distance from pa

0;
23 foreach li, ui do
24 ui ← euclideanDistance(li, pi);
25 if ul

i < ui then
26 updateFinalBorders();
27 moveTowards(pa

0);
28 end
29 end
30 end
31 foreach li, ui do
32 if md = c then
33 #Updating the border points;
34 bc ← bc + 2rc ∈ qa, bc+1 ← bc+1 + 2rc ∈ qc;
35 end
36 bc ← bc + 2rc ∈ qa, bc−1 ← bc−1 + 2rc ∈ qc;
37 end

All drones now have collected the information related to the distances each one has
from a vertex, and they can calculate the shortest distance. Then all drones move towards
the one that has the closest area vertex, and obtain a linear formation. To achieve this,
each drone calculates its initial point from which it starts covering the AoI. The Euclidean
distance for two-dimensional planes is employed to calculate the distance between any two
points in the area.

All initial points are located on a straight line that consists of the area’s borders and
connects two of its vertices. The distance of two neighboring drones is equal to 2× rc,
where rc is the coverage radius, or the radius of the circular area a drone can cover each
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time instance. The final points for each partial linear coverage are also calculated. More
details are provided in the sequel.

3.2. Partial Linear Area Coverage

Once the swarm obtains its formation and each drone reaches its location, they start
covering the AoI. During the coverage process, they maintain equal distances from neigh-
boring drones to avoid overlapping areas between them. The drones navigate from their
initial to their final point in a straight line, something that helps maintaining their formation
throughout the coverage process. Algorithm 2 details the process of the partial straight-line
coverage. Once a part of the area is covered, it is removed from the AoI, hence a new
area is assigned for the drones to cover that does not contain the already covered parts of
the initial area. To re-enter the new AoI the swarm employs Algorithm 1. As a result, it
alternates between the two algorithms until full area coverage is achieved.

Algorithm 2: Partial Area Coverage in Straight-Line Movement.
Result: Straight-Line Coverage of an Area’s Portion

1 nw = 0 #Number of drones waiting for alignment;
2 state = WAITING_FOR_ALIGNMENT;
3 transmit(state);
4 while nw < n do
5 remote_state =receive(state);
6 if remote_state = WAITING_FOR_ALIGNMENT then
7 nw ++
8 end
9 end

10 state = SCANNING;
11 scanUntilFinalPoint();
12 state = WAITING_FOR_ALIGNMENT;
13 transmit(state);
14 nw = 0;
15 while nw < n do
16 remote_state =receive(state);
17 if remote_state = WAITING_FOR_ALIGNMENT then
18 nw ++;
19 end
20 end
21 state = BORDER_ALIGN

3.3. Point-of-Interest Detection Models

The drones have a specific coverage radius rc which once configured remains un-
changed throughout a mission. When an amount of PoI is inside the rc the drone can
choose one point at a time to collect information from. Two models are developed for this
purpose, the basic and the advanced.

The drone estimates the time required for a PoI based on the amount of information
needed from it and the time that it remains within its rc. In the case where time is not
enough, it reduces its speed and inform the swarm to adjust accordingly.

Figure 1 depicts a drone which has detected two points l0 and l1. When the drone
detects the points, their location in the map is acquired and, based on the drone’s current
location, the distances d0

i and d1
i are calculated. In the basic model, l0 is chosen first due to

being closest to the drone and, as a result, l1 is lost since it has exited the drone’s rc when
information collection from l0 is finished.

The advanced model improves the drone’s choice of PoI in a way that less PoIs are lost
during the coverage. When it detects multiple PoIs the drone chooses the one that remains
within its rc for less time. In the example of Figure 1 the drone’s first choice is l1 since it
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remains within its rc for less time compared to l1 thus, the drone has increased probability
of not losing any PoI in the particular situation.

Direction

Figure 1. A drone with coverage radius rc, represented by the black dot in the middle, discovering
two points of interest PoI in different locations. The drone using the basic model chooses l0 since it
is closer compared to l1. Contrary to that, using the advanced model, it chooses l1 since it remains
within its rc for less time.

Although the swarm covers the AoI, the drones discover PoIs and collect information
from them. It is assumed that a single drone can collect information from one PoI at a time.
The drone estimates the amount of time required to completely collect the information
based on the distance for which the PoI remains within the coverage radius. In the case
where a PoI remains inside for less time than required, the drone reduces its speed and
informs the swarm which also reduces its speed. When a PoI enters the coverage radius at
its most remote point, the drone might have to drastically reduce its speed.

3.4. Coverage Paths

The drones use a partial linear coverage which helps split the AoI and cover it partially
until the full coverage. When the final point of each linear coverage is reached if the swarm
maintains its md then the final coverage path is a spiral. Otherwise, if it alternates between
clockwise and counterclockwise the coverage path is parallel lines. Figure 2 depicts the
parallel lines and spiral area coverage paths. The red line connecting the center of the drone
with the edges of the coverage circle represents its rc.
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(a) (b)

Figure 2. Area coverage paths of a single drone: (a) The parallel lines coverage path. The drone
alternates its movement direction between clockwise and counterclockwise to achieve the parallel
coverage path. (b) The spiral coverage path. The drone maintains a clockwise direction to achieve a
spiral path for the area coverage.

4. Simulation Results

To evaluate the algorithm’s effectiveness and efficiency, multiple simulation scenarios
are considered under the OMNeT++ simulator. The main goal is to evaluate the algorithm’s
ability to collect information from multiple PoIs within an AoI by employing a given
number of drones in a swarm.

4.1. Simulated Environment and Parameter Setup

A swarm is considered within a simulated environment in which the parameters that
determine its behavior are altered to evaluate the algorithm’s effectiveness. Different swarm
sizes and multiple parameters are considered to alter the swarm’s capabilities among the
simulation scenarios. The simulations conclude when the swarm has successfully covered
the AoI and the parameters are retained at this point. The swarm sizes are set to n = 1, 2, 4.
The drone’s coverage radius is rc = 25, 50, 100 m. The amount of PoI ranges between 25 and
300 and is incremented by 25 between simulated experiments. To produce more accurate
results the simulations are executed 20 times with variable PoI locations in the AoI.

The parameters that are retained for the analysis are the swarm’s mean speed s
measured in meters per second (m/s), the time t required for the coverage of the area
measured in seconds (s), the percentage of PoI detected depicted as zj(%), the number of
slowdowns w executed by the swarm, the mean travel distance di per drone in meters (m)
and the mean number of switched formations f until the full area coverage. Table 1 depicts
all parameters used for the current simulations.

Table 1. Main simulation parameters.

Name Symbol Potential Values

Swarm size n 1, 2, 4
Coverage radius rc 25, 50, 100
# of PoIs zj 25, 50, 75, . . ., 300
Movement direction md c, r
Swarm maximum speed s 4 m/s or 14.2 km/h
Swarm mean speed s -
Mean travel distance per drone di -
Distance outside borders d0 -
# of formation switches f -
Time for coverage t -
# of slowdowns w -
Mean # of formation switches r f -
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4.2. Results

In the sequel, a distance analysis is conducted to evaluate the performance of the
algorithm in terms of full area coverage, and more specifically the total distance traveled by
the swarm. In addition, a general performance analysis takes place to determine algorithm’s
effectiveness in collecting data from newly discovered PoIs using variable swarm sizes
and coverage paths. To properly demonstrate the simulation results, every experiment is
executed 20 times thus, acquiring mean values for all metrics is a prerequisite for the final
visualization of the swarm’s behavior.

4.2.1. Full Coverage Distance Analysis

Figure 3 depicts the total distance traveled by a drone with coverage radius rc = 25,
50, 100 m. The comparison between the two paths showcases that the spiral requires more
travel distance compared to the parallel path which are depicted with dashed and solid
lines, respectively. In both paths, when the number of drones is reduced by half, the travel
distance for the same rc is doubled, which is quite reasonable since the size of the area that
requires coverage remains the same.
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Figure 3. Mean distance a drone traveled during the simulations for a swarm size n = 1, 2, 4 based
on the coverage radius rc: (a) Mean distance per drone di while the rc is increased. (b) Mean number
of switched formations f for parallel and spiral coverage paths based on variable rc. The dashed
lines represent the spiral coverage path while the parallel is depicted with a solid line. The results are
derived using the basic PoI detection model. Identical results are depicted using the advanced model
since a similar AoI is used for both.

The area coverage path affects the required travel distance for the complete area
coverage. This is attributed to the fact that each path requires a different number of
switched formations for the same area size. For example, the travel distance when the
coverage radius is equal to 25 m for the parallel lines is 13,524 m while for the spiral is
13,918 m. A swarm must alternate between formation change and partial straight-line
coverage more times for the spiral path and this leads to excess travel distance since for
every formation switch, the drones must re-enter the AoI, hence for that time they fly
outside the new borders.

Each time the swarm switches its formation, if it maintains its md—the spiral path—
the next area side it aligns with is smaller. This behavior gradually reduces the area’s
sides and thus, the swarm must switch its formation more times compared to the parallel
path to completely cover the area. The results depict that the spiral path introduces an
average of 5% increase in the required time for the same area size compared to the parallel
path. The percentage of detected points of interest is hardly impacted between the two
coverage paths.

The distance outside the borders do can be estimated for both coverage paths. For the
parallel lines, this distance is:

dp
o = 2rc f pc

a, (1)
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where pc
a is the number of initial points to check until the closest one is found, and f is

the number of formation switches until the area is fully covered. The distance outside the
borders for a drone covering an area with a spiral coverage path is:

ds
o = f

√
(dl

b)
2 + (2rc(pc

a − 1) + rc)2. (2)

The dl
b is the distance from the closest border point. The first initial point that is calcu-

lated has a distance of rc from the drone while the rest of the initial points have a distance
rc(pc

a − 1) + rc. These distances constitute an orthogonal triangle, and its hypotenuse is do.
There are multiple initial points for each formation switch only when n > 1.

Based on the distance analysis, it is derived that the coverage time is also affected
by the coverage path independently of the rc size. A comparison between the figures
that depict the parallel and spiral coverage paths reveals that in all cases the spiral path
demands extended flight time from the swarm. Thus, a coverage path that requires fewer
formation switches can benefit the swarm in terms of flight required time.

The advanced and basic PoI detection models do not affect the travel distance required
for the same area size. The measured mean speed per drone is decreased as more drones
are added since the entire swarm adjusts its speed to retain the same formation. Though,
time is reduced overall since more drones cover the same area. Additionally, more time
is required for the advanced model to fully cover the AoI and, also, the mean speed per
drone is lower compared to the basic model.

4.2.2. General Performance Analysis

Each figure from Figures 4–9 is a set of four figures with a common x-axis value,
the amount of PoI in the AoI. More specifically, figure (a) depicts the time required to
completely cover the area, figure (b) depicts the number of times the swarm must reduce
its speed to collect information, figure (c) depicts the mean speed per drone during the
simulation, and figure (d) depicts the percentage of PoI from which information is collected.

Two models of PoI detection are examined, the basic and the advanced which are
represented with a dashed line and solid one, respectively. Figures 4, 6 and 8 depict the
results for the parallel coverage path while Figures 5, 7 and 9 depict the ones for spiral
coverage path for rc = 25, 50, 100 in both cases, respectively.

The advanced PoI detection model provides a more sophisticated selection process
compared to the basic one. Thus, the swarm can collect information from more PoI in the
AoI. This is observed for all rc values and both parallel and spiral coverage paths. Though,
for larger rc values the benefits are greater. Small rc values benefit the swarm since each
drone must calculate which PoI to select from a smaller area and thus, from a smaller
collection of PoIs. The swarm’s moving speed is between 0.5 m/s and 4 m/s and since a
drone collects information from a single PoI at a time smaller rc values help it focus more
on the area it is covering.

Increasing the swarm size has two effects on the overall performance. First, the
required time for full coverage is reduced, and second, the percentage of PoIs that it can
detect is increased. To better understand the second effect, it is important to consider the
algorithm functionality on PoI detection. For a swarm with n = 2 and rc = 100 m drone
u1 requests a speed reduction and drone u2 must follow to remain in the same formation.
Despite u2 not requiring the extra time, it benefits from the speed reduction since it remains
in the same area for a longer time which helps it collect information from more PoI before
they leave its radius. A point z1 can be ignored when a drone is collecting information from
another z0 while at a certain speed which results in z1 exiting the drone’s coverage radius.

In the case where rc = 100 and n = 4 both parallel and spiral coverage paths provide
similar results since the area has a size of 800× 800 and 2× rc × n = 800 thus, the area is
covered in both cases without any formation changes. It is important to note that while the
number of PoIs remains low, both the basic and advanced models have similar behavior
and can detect almost all PoIs but when their number is increased above 25, the advanced
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model has an obvious advantage. Additionally, in the first case, all metrics depicted in
Figures 7 and 8 have similar behavior to the one described above.
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Figure 4. Simulation results for a swarm with 1, 2 and 4 drones with rc = 25 m and parallel lines
coverage path. Two PoI detection models are depicted here, the basic with dashed lines and the
advanced with solid lines: (a) Cover time t in seconds by the initial number of PoI. (b) Number
of slowdowns w required for the information collection from the PoI. Depends on the number of
PoI that exist inside the map. (c) Mean speed s measured in meters per second (m/s) through-
out the simulation with a variable number of initial PoI. Depends on the number of slowdowns.
(d) Percentage of scanned PoI while their number increases, depicted as z(%). (Green color): Single
drone swarm; (Blue color): Two-drone swarm; (Orange color): Four-drone swarm.
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Figure 5. Simulation results for a swarm with 1, 2 and 4 drones with rc = 25 m and spiral lines
coverage path. Two PoI detection models are depicted here, the basic with dashed lines and the
advanced with solid lines: (a) Cover time t in seconds by the initial number of PoI. (b) Number
of slowdowns w required for the information collection from the PoI. Depends on the number of
PoI that exist inside the map. (c) Mean speed s measured in meters per second (m/s) through-
out the simulation with a variable number of initial PoI. Depends on the number of slowdowns.
(d) Percentage of scanned PoI while their number increases, depicted as z(%). (Green color): Single
drone swarm; (Blue color): Two-drone swarm; (Orange color): Four-drone swarm.
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Figure 6. Simulation results for a swarm with 1, 2 and 4 drones with rc = 50 m and parallel lines
coverage path. Two PoI detection models are depicted here, the basic with dashed lines and the
advanced with solid lines: (a) Cover time t in seconds by the initial number of PoI. (b) Number
of slowdowns w required for the information collection from the PoI. Depends on the number of
PoI that exist inside the map. (c) Mean speed s measured in meters per second (m/s) through-
out the simulation with a variable number of initial PoI. Depends on the number of slowdowns.
(d) Percentage of scanned PoI while their number increases, depicted as z(%). (Green color): Single
drone swarm; (Blue color): Two-drone swarm; (Orange color): Four-drone swarm.
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Figure 7. Simulation results for a swarm with 1, 2 and 4 drones with rc = 50 m and spiral lines
coverage path. Two PoI detection models are depicted here, the basic with dashed lines and the
advanced with solid lines: (a) Cover time t in seconds by the initial number of PoI. (b) Number
of slowdowns w required for the information collection from the PoI. Depends on the number of
PoI that exist inside the map. (c) Mean speed s measured in meters per second (m/s) through-
out the simulation with a variable number of initial PoI. Depends on the number of slowdowns.
(d) Percentage of scanned PoI while their number increases, depicted as z(%). (Green color): Single
drone swarm; (Blue color): Two-drone swarm; (Orange color): Four-drone swarm.

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200 250 300

t(
s)

zj

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300

w

zj

(a) (b)

Figure 8. Cont.



Sensors 2022, 22, 7551 15 of 18

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300

s(
m

/
s)

zj

0

20

40

60

80

100

0 50 100 150 200 250 300

z(
%
)

zj

n = 1, advanced
n = 1, basic

n = 2, advanced
n = 2, basic

n = 4, advanced
n = 4, basic

(c) (d)

Figure 8. Simulation results for a swarm with 1, 2 and 4 drones with rc = 100 m and parallel lines
coverage path. Two PoI detection models are depicted here, the basic with dashed lines and the
advanced with solid lines: (a) Cover time t in seconds by the initial number of PoI. (b) Number
of slowdowns w required for the information collection from the PoI. Depends on the number of
PoI that exist inside the map. (c) Mean speed s measured in meters per second (m/s) through-
out the simulation with a variable number of initial PoI. Depends on the number of slowdowns.
(d) Percentage of scanned PoI while their number increases, depicted as z(%). (Green color): Single
drone swarm; (Blue color): Two-drone swarm; (Orange color): Four-drone swarm.
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Figure 9. Simulation results for a swarm with 1, 2 and 4 drones with rc = 100 m and spiral
coverage path. Two PoI detection models are depicted here, the basic with dashed lines and the
advanced with solid lines: (a) Cover time t in seconds by the initial number of PoI. (b) Number
of slowdowns w required for the information collection from the PoI. Depends on the number of
PoI that exist inside the map. (c) Mean speed s measured in meters per second (m/s) through-
out the simulation with a variable number of initial PoI. Depends on the number of slowdowns.
(d) Percentage of scanned PoI while their number increases, depicted as z(%). (Green color): Single
drone swarm; (Blue color): Two-drone swarm; (Orange color): Four-drone swarm.
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5. Conclusions and Future Work

In conclusion, path planning for a defined AoI can be achieved with multiple au-
tonomous drones organized as a swarm. Point-of-interest detection is affected by the
coverage path followed by the drones. Based on the simulated results, a path is considered
more efficient when the drones do not need to switch their formation an excessive number
of times to fully cover the area. Two coverage paths are examined in the current work,
parallel and spiral. The latter requires more formation switches compared to the former
thus, it introduces an extra 5% time increase for the same area size. Two models for PoI
detection are proposed, the basic where the closest point is selected and the advanced
which calculates the amount of time all PoIs remain within the coverage radius and selects
the one that leaves it first. The advanced model introduces a small increase in the required
time for the coverage of the area but while the number of points of interest is increased, it
helps the swarm detect more of them compared to the basic model.

Future work will include further simulations which will help determine how the
PoI distribution in the area affects the swarm’s ability to collect information from them.
Additionally, an analysis will be introduced for the effects of different movement directions
for the same distributions of points of interest. An extension to the drones will be applied
to allow for data collection from multiple PoIs at the same time with variable connection
and disconnection times. Additionally, the algorithm will be improved to allow the drones
to ask for assistance from neighboring ones which might will limit data loss from PoIs.
Additionally, an extensive analysis relative to the computational and time complexity will
be included as well as real-world application will be implemented to provide insight for
the algorithm’s effectiveness in more complex environments. Finally, simulations with
an increased number of drones will be conducted and more complex area shapes will
be examined.
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