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Abstract: In dynamic indoor environments and for a Visual Simultaneous Localization and Mapping
(vSLAM) system to operate, moving objects should be considered because they could affect the
system’s visual odometer stability and its position estimation accuracy. vSLAM can use feature
points or a sequence of images, as it is the only source of input that can perform localization while
simultaneously creating a map of the environment. A vSLAM system based on ORB-SLAM3 and
on YOLOR was proposed in this paper. The newly proposed system in combination with an object
detection model (YOLOX) applied on extracted feature points is capable of achieving 2–4% better
accuracy compared to VPS-SLAM and DS-SLAM. Static feature points such as signs and benches
were used to calculate the camera position, and dynamic moving objects were eliminated by using
the tracking thread. A specific custom personal dataset that includes indoor and outdoor RGB-D
pictures of train stations, including dynamic objects and high density of people, ground truth data,
sequence data, and video recordings of the train stations and X, Y, Z data was used to validate and
evaluate the proposed method. The results show that ORB-SLAM3 with YOLOR as object detection
achieves 89.54% of accuracy in dynamic indoor environments compared to previous systems such
as VPS-SLAM.

Keywords: visual SLAM; object detection; simultaneous localization and mapping (SLAM)

1. Introduction

Feature-based SLAM depends on feature points and keyframes in order to build a
map of an unknown environment, and vSLAM can achieve robust performance without
requiring any noticeable changes in a static or rigid environment [1]. Direct SLAM uses
all camera pixels to resolve the world around the sensor(s) based on principles from
photogrammetry. Instead of extracting pixels from the image and keeping them in 3D
space, direct methods track their constrained aspects (colour, brightness, intensity gradient)
over time [2]. Instead of geometric reprojection errors, this method minimizes photometric
errors [3]. While both the feature-based and direct SLAM algorithms can distinguish feature
types of stationary objects, neither of them can differentiate between different feature types
in dynamic environments, such as train stations. These dynamic environments will produce
data error associations when matching point pairs of dynamic feature points. Consequently,
the visual odometer can no longer accurately estimate the pose of the object and the camera
can no longer track the pose accurately. Recently, in order to overcome these difficulties,
research on vSLAM in dynamic environments has received much attention [4].

Currently, there are few ways to detect dynamic moving objects in an unknown
environment. The first method, which is based on geometry, is optical flow [5], which
includes temporal redundancy [6] and the background subtraction method (BSM) [7]. This
method works by analysing pixels in an image, which is more accurate for detecting moving
objects, but has problems with high computational consumption and poor performance in
real-time.
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In recent years, many researchers have begun applying computer vision and deep
learning technologies to vSLAM systems with the aim of creating semantic maps and
removing moving objects. It is important to note that deep learning techniques have
significant issues [8], but despite this, they are capable of greatly improving the performance
of SLAM by detecting and removing dynamic objects [9]. Firstly, semantic segmentation
networks such as R-CNN [10] are computationally expensive, making them impractical
for real-time or robotic applications. A second problem is that neural networks can only
detect objects that have been previously observed. Without prior knowledge, it is hard for
the network to detect and identify what the object is. Therefore, pretraining the model is
important. The third limitation is the lack of robustness in dynamic environments. If the
environment is large, with high density of people and objects, the accuracy of the object
detection model is low. As part of the vSLAM optimisation process, moving objects are
either detected and then treated as outliers, or tracked separately [11]. Humans, for example,
can be found in many real-life environments. Despite the fact that some dynamic objects
can be viewed as noise, the vast majority violate the static environment assumption, so
many existing methods of visual odometry are insufficient for real-world applications. The
fourth limitation is that some vSLAM algorithms do not always work indoors, especially if
the environment is large and the density of people is high. Train stations and airports are
the most common environments that vSLAM algorithms tend to fail.

This paper tries to solve the problems of low accuracy and poor real-time performance
of existing visual SLAM system ORB-SLAM3 [12] in dynamic environments. ORB-SLAM3
was used at the baseline for SLAM, YOLOX [13] and YOLOR [14] are combined as an object
detection models. The experiments were carried out using a custom dataset that includes
train station data. The overall system is specific for Monocular and Stereo-based vSLAM in
indoor dynamic environments with high density of people and objects.

2. Related Work
2.1. Visual Planar Semantic SLAM—VPS-SLAM—Geometric

The size and shape of semantic objects can be estimated using planar surfaces and
odometry applied to geometrical data representations. VPS-SLAM [15], is a visual planar
semantic SLAM framework developed using a graph-based approach to utilise previous
state-of-the-art visual internal and object detection algorithms.

However, the algorithm produces large errors in highly dynamic scenes. A dynamic
moving object in an environment can be located and identified with the depth data of a
sensor and the outer point data of a camera, according to [16]. There is only one limitation
to this approach: if the data contains uncertainties and errors, the accuracy decreases.

Pixels can be tracked in real-time without having to calculate feature descriptors, and
can be matched to features using an approached called optical flow. Previously, an optical
flow algorithm was proposed by Lucas et al., which was used to detect motion consistency
among dynamic feature points. Based on this method, the camera’s image changes over
time as K(t) increases. If a pixel has simple coordinates, such as x and y, its grayscale value
is K(x, y, t). Consider an image with a fixed point with horizontal and vertical coordinates x
and y, which change over time, at different times in the image. The optical flow method
predicts a 2D fixed point.

In a similar vein, [17] determining the difference between adjacent frames to detect
moving objects, Sun et al. stated that the algorithm fails in real time [18]. Combining
clustering information from a depth map and the depth map by itself, detecting dynamic
moving objects in an environment can be achieved by using only geometry and the match-
ing outer points from adjacent frames. The only limitation of this approach is that the
algorithm is dependent on the pose transformations between adjacent frames, which causes
the accuracy to decrease.
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2.2. Deep-Learning-Based vSLAM

Nowadays, researchers use deep learning with SLAM algorithms to handle dynamic
moving objects in indoor environments. DS-SLAM [19], which is based on the ORB-
SLAM2 framework [20], was proposed by Cao Yu et al. that uses the SegNet [21] network
for semantic detection in an environment. Feature point states are transformed by the
RANSAC algorithm [22], which is used to calculate the inter-frame transformation matrix
of the pole line geometry.

The basic matrix is calculated using all the feature points in the image. If there
are too many error points in the image, the basic matrix will show serious deviations.
The algorithm can be evaluated using the TUM dataset [23]. In a similar study conducted
by Berta Bescos et al. [11], the ORB-SLAM2 algorithm combined with deep learning was
used for the extraction of dynamic feature points in scenes. In a real-world environment,
mask-RCNN is limited by the fact that it is not able to be used in real-time, resulting in poor
results on the TUM dataset. Through a semantic mask derived from DUNet [24] and multi-
view geometry, DDL-SLAM [25] detects dynamic objects, reconstructing the background
obscured by dynamic objects using the image inpainting method. As pixel-level mask
computation occurs when handling dynamic objects, this method also does not take place
in real time.

A semantic SLAM system was proposed by Y. Fan et al. by utilising the BlitzNet [26]
to estimate a movable object’s bounding box and mask. By using epipolar constraints, static
matching points can be found in dynamic environments [27]. An epipolar constraint is a
point in the environment that matches depth. Due to the lack of prior knowledge of the
objects, this approach does not perform well, and it cannot work in real time.

3. System Overview

Next, we present an overview of the initial ORB-SLAM3 framework and its compo-
nents. An improved ORB-SLAM3 is presented here, along with the object detection models
YOLOX and YOLOR, as well as the prediction results.

3.1. ORB-SLAM3 Framework

For the first time, ORB-SLAM-VI presented a visual–inertial SLAM system that reuses
the associated short-medium and long-term data as input to a visual–inertial BA based
on preintegrated IMUs [28]. As a result of the slow initialization technique of the inertial
measurement unit, the robustness and accuracy of the system were adversely affected.

To improve the initialization process of the system, researchers have proposed a
solution that minimizes the 3D errors of points and not the reprojection errors in an
environment. The noise in the IMU process is ignored and the bias, velocity, and feature
depth [29] are retrieved.

ORB-SLAM3 is built on top of ORB-SLAM2 and ORB-SLAM-VI. The system operates
in visual or visual–inertial modes, using either monocular, stereo, or RGB-D sensors and a
variety of cameras such as pinhole and fisheye cameras. The system architecture is shown
in Figure 1.

1. Tracking thread is responsible for real-time processing of all sensor information and
computing the position of the current frame in relation to the active map in order
to minimize the reprojection error of the matched map features. Additionally, it
determines whether the current frame becomes a keyframe. In visual–inertial mode,
it is possible to estimate the inertial residuals from the optimisation to determine the
body velocity and IMU biases. Tracking threads attempt to relocate the current frame
across multiple Atlas maps when tracking is lost. Upon relocalisation, tracking is
resumed, and the map is switched if necessary. After a certain period of time, if the
active map is not stored, it will be replaced with a new active map, and the active map
will no longer be active.
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2. Local mapping thread is responsible for removing points that are not used and adding
new points and keyframes to the map while improving it visually. MAP estimation is
also used to initialize and refine the IMU parameters in the case of inertial sensors.

3. Loop and map merging thread is responsible for creating a single map by combining
the two maps, and intently becomes the active one. A BA is then run in a separate
thread to improve the map without affecting the real-time performance of the system.

4. Atlas is a collection of disconnected maps, and each one is represented by a separate
map. The local mapping thread continuously optimises and grows the localised
map, while new keyframes are added to the tracking thread and stored in the database.
An inactive map in the Atlas is called a non-active map. A unique keyframe database is
used to store all the maps, loop closing and to reload the map for relocalisation purposes.

Figure 1. ORB-SLAM3 system architecture.

3.2. Algorithm Framework

ORB-SLAM3 suffers from reduced positioning accuracy and poor robustness in dy-
namic environments due to moving objects. There are four main modules in visual SLAM:
visual odometer, back-end optimisation, loop detection, and mapping. The visual odometer
mainly predicts the motion between images. The back-end optimisation optimises the
prediction of the visual odometer to obtain relatively accurate transformations between
image frames. Closed-loop detection detects whether the camera has been at the current
position before. It can reduce the motion error by optimising the posture again through
the back-end optimisation if it has already been in the current position. Based on the
estimated camera positions, a map is constructed to describe the environment. A visual
SLAM framework consists of the four modules listed above. To finalise the architecture
of the framework, an objected detection model was used to detect objects as well as the
optical flow method to check if the objects are moving and remove them. As a result, this
paper introduces an object detection thread that is built on top of the original ORB-SLAM3
algorithm Figure 2 to detect moving objects. To extract feature points from the input images,
the object detection models YOLOX and YOLOR are used. On the basis of the results and
semantic data in an image, a module has been introduced that can remove dynamic objects.

If some objects are not detected or are detected and blurred, feature point matching
may be necessary. Following the feature point matching process, the RANSAC algo-
rithm [30] can be used to extract the essential matrix between two images. Finally, the
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dynamic removal process is carried out by using the LK optical flow method [31] and the
pose between the adjusted frames is estimated with the remaining dynamic feature points.
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Figure 2. ORB-SLAM3 with YOLO system architecture.

3.3. YOLOR

YOLOR combines implicit and explicit knowledge to accomplish diverse tasks, such
as learning a general representation. This representation can also be used to complete
various tasks. With less than one in ten thousand additional parameters and computations,
the accuracy of the model is improved. The implicit learning process of YOLOR is effective
Figure 3 due to the fact that it uses multitask learning and not singular learning. it has a
module that is responsible for refining the predictions and another module that is respon-
sible for improving and making space on the kernel. A detailed explanation of YOLOR
system architecture is described below:

1. Explicit deep learning can be carried out in multiple ways. One of them is Trans-
former, which uses query, key, or value to gain self-attention. Another way to obtain
attention is through non-local networks, which mainly extract attention pairwise.
Using input data to automatically select the appropriate kernel is another common
method for explicit deep learning.

2. Implicit deep learning methods include implicit neural representations and deep
equilibrium models. In the former, discrete inputs are converted into parameterized
continuous mappings, while in the latter, implicit learning is converted into residual
form neural networks and equilibrium points are calculated.

Implicit knowledge can be applied in a single model when it comes to improving the
predictions for multi-task learning and preparing the model for object detection if the model
takes as an input a whole image such as YOLOR. Finally, to improve and organise the layers
in the model architecture (feature alignment), the hyperparameters were set to the default, the
same as YOLOv4; the baseline of the model was YOLOv4—CSP [32]; and the Leaky ReLU
activation function was used. On the MSCOCO dataset [33], 6.30% AP50 was obtained, making
the model more robust and accurate over previous existing object detection models. For this
study, YOLOR was used and tested on a custom dataset Figures 4 and 5.
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Figure 3. YOLOR system architecture.

Figure 4. Detection results on YOLOR on custom dataset.

Figure 5. Detection results on YOLOR on custom dataset.
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3.4. YOLOX

YOLOX achieves a significant challenging performance by using an anchor-free ap-
proach over existing object detection models such us YOLOv3, YOLOv4, and YOLO5.
YOLOX runs on top of YOLOv3 with Darknet53 as baseline, and it uses a decoupled head,
which is essential for YOLO. It is proven that it increases accuracy. It may still be beneficial
to optimise those high-quality predictions in order to reduce the extreme imbalance caused
by positive/negative sampling during training.

In addition, to make the model respond to unexpected challenges, two new convo-
lution layers, one-to-one label assignments, and stop gradients were created. The only
limitation is that the performance of the model decreases. In addition to DarkNet53,
YOLOX was tested on a custom dataset with different batch sizes, which showed significant
improvement against unexpected challenges Figure 6.

Figure 6. YOLOX system architecture.

The hyperparameters were set to default, and stochastic gradient descent (SGD)
was used. YOLOX uses the same system architecture as DarkNet53 [34] and a pooling
layer YOLOv3-SPP [35] that is used to remove fixed size constraints. On the MSCOCO
dataset 65.4% AP50 was obtained with cosine learning rate, EMA added on the weights.
Figures 7 and 8 shows the object detection results of YOLOX on our custom dataset.

Figure 7. Object detection results of YOLOX on custom dataset.
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Figure 8. Object detection results of YOLOX on custom dataset.

4. Dynamic Moving Object Removal

The apparent movement of an object, edge, or surface in a visual scene is the result
of the relative motion of the viewer (eye or camera) and the scene. The LucasKanade
method [36] is one of the most popular computer vision and optical flow estimation
methods. To solve the basic optical flow equations for all pixels, the least squares criterion
is used, and since there is no information about the flow in homogeneous regions of an
image, it is a strictly local.

Bounding boxes for dynamic objects are generated during the object detection. Using
prior knowledge to determine the dynamic feature points, the elimination process is as
follows: The extracted feature points Xp of an image are denoted when the i-th happens to
be an input. With prior knowledge, Xp = {x1, x2, x3, . . . xn} are all the dynamic feature points
and can be expressed as Np when the input image is fed to the model. Np = {n1, n2, n3, . . . nn}
is the prediction bounding box Np. If xp belongs in Xp (j = 1, 2, 3, . . . n) then it is considered
as feature point and it is removed. The rest are denoted as Cp.

Lucas Kanade Optical Flow Method
If the brightness of the pixels in the image is the same and if the time difference

between frames is short, the greyscale is constant, and it can be determined by:

P(i, v, z) = P(i + di, v + dv, z + dz) (1)

where z, z + dz represent the reciprocal times of adjacent frames, P(i, v, z) and P(i + di, v +
dv, z + dz) represent the pixel points positions in the image. If there is only a small time
interval between adjacent image frames, Taylor series expansion to the right of Equation (1)
can be used to obtain:

P(i + di, v + dv, z + dz) ≈ P(i, v, z) +
∂P
∂x

δx +
∂P
∂y

δy +
∂P
∂t

δt (2)

By combining Equations (1) and (2) by δt and dividing them:

∂P
∂x

δx
δt

+
∂P
∂y

δy
δt

= −∂P
∂t

(3)
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δx
δt and δy

δt represent the velocity on the x,y axis and can be denoted as z and v. By denoting
∂P
∂x to Pi, ∂P

∂y to Pj and the change of greyscale with time as Pf , Equation (3) can be rewritten
more compactly in a matrix form as:

[Ii Ij][
z
v] = −I f (4)

After object detection, the optical flow size for static feature points is calculated. It is
possible to determine whether a feature point is dynamic in terms of its mean value and
standard deviation using Equations (5) and (6).

|Wi −Wavg| > 2Wstd (5)

|Wi −Wavg| > Wthr1(Wstd < Wthr2) (6)

where Wi represents the size of i-th feature point, Wavg, Wstd, Wthr1 and Wthr2 are the mean,
std, and the threshold values, respectively. From the experimental results of optical flow in
Figure 9, the difference between dynamic and static feature points is shown.

Figure 9. Experimental results of Lucas Kanade Optical flow method. Optical flow at high or normal
wavelength is represented by the green line, while optical flow at low wavelength is represented by
the green point.

5. Experiments and Results
5.1. Dataset

In this experiment, a custom dataset that includes RGB-D dynamic indoor images of
train stations such as Birmingham, Cardiff Central, Cardiff Queen Street, Chester, Newport,
Pontypridd, Shrewsbury, Jewellery Quarter, Smethwick Galton Bridge, The Hawthorns,
Wolverhampton Bus station, and Wolverhampton train station, 360◦ images, videos of the
train stations (Outdoors and Indoors), x, y, z data, ground truth data and sequence data
was constructed to evaluate the performance of the proposed algorithm.

The data were collected by the author for the purpose of several different projects of
Briteyellow company. All the data were then preprocessed and merged together to create a
custom dataset for this experiment that includes 16,139 images and 12 video recordings.
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The data were split into low and high dynamic scene data. The collection of the data
was performed using high-quality 360◦ cameras. The original size of the image data is
1920 × 1080, but it was later resized to 416 × 416. The video duration of each rail station is
roughly 2 min and 15 s.

The specific model of the camera used was Ricoh Theta Z1. A mobile app was then
used to process and export all the images. The equipment used for this experiment was a
MacBook Pro with a 2.6 GHz 6-Core Intel Cor i7 processor, 32 GB RAM, Intel UHD graphics
630 1536 MB and Ubuntu 22.04 LTS as system environment running on Virtual Box.

5.2. Analysis

In this paper, the high dynamic scene data Fr2/xyz_walking, Fr2/rpy_walking,
Fr2/train_station_walking, Fr2/signs_walking and low dynamic scene data Fr2/xyz_static,
Fr2/rpy_static, Fr2/train_station_static, Fr2/signs_static were used for experimental veri-
fication. The evaluation metrics that was used is Absolute Pose Error (APE), Root Mean
Square Error (RMSE), Median and Mean. For vSLAM systems, the absolute distance
between the estimated and the ground truth trajectory is another important metric that
can be used to assess the global consistency of the estimated trajectory. Due to the fact
that both trajectories can be specified in any coordinate frame, they must be aligned first.
RMSE reflects the difference between the real value and the observed value. It is important
to observe the mean and median error values in order to determine the pose estimation
accuracy. The proposed algorithm was compared with VPS-SLAM. The same proposed
algorithm was tested with YOLOR instead of YOLOX using the same custom dataset.

Figure 10 shows the trajectory comparison of the camera of ORB-SLAM3 compared
to the proposed algorithm applied on xyz_walking and rpy_walking sequence from the
proposed custom dataset. Compared to the actual trajectory of the camera, the trajectory
estimated by the proposed algorithm is more accurate and closer to the actual trajectory.

Figure 10. Absolute Trajectory Error (RMSE) of ORB-SLAM3 / YOLOR.

Figures 11–15 shows how ORB-SLAM results are distributed in terms of errors com-
bined with YOLOR and YOLOX when applied on xyz_walking.
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Figure 11. Absolute Trajectory Error (RMSE) distribution of VPS-SLAM and ORB-SLAM3/YOLOR.

Figure 12. Absolute Trajectory Error (RMSE) distribution of VPS-SLAM and ORB-SLAM3/YOLOR.

Figure 13. Absolute Trajectory Error (RMSE) distribution of ORB-SLAM3/YOLOR—ORB-
SLAM3/YOLOX.
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Figure 14. Overall Absolute Trajectory Error (RMSE) distribution.

Figure 15. Accuracy improvements of ORB-SLAM3/YOLOR.

Table 1 shows that in a complex dynamic environment with high density of people, the
proposed algorithm achieved 88.76% improvement in the RMSE compared to ORB-SLAM3.
Nevertheless, while experimenting in low dynamic environments VPS-SLAM achieved
better results without interference from dynamic objects. The pose estimation interference
problem caused by dynamic moving objects was overcome by combining object detection
with ORB-SLAM3.

Table 1. YOLOX and YOLOR absolute pose error comparison with VPS-SLAM and ORB-SLAM3.

Sequences
VPS-SLAM ORB-SLAM3/YOLOR ORB-SLAM3/YOLOX Improvements

Mean RMSE Mean Median RMSE % Mean Median RMSE % Mean RMSE

Fr2/xyz_walking 0.6479 0.8298 0.0071 0.0065 0.0088 86.12% 0.0085 0.0153 0.0091 73.08% 87.43% 88.76%
Fr2/rpy_walking 0.5391 0.7302 0.0143 0.0151 0.0152 89.85% 0.0453 0.0521 0.0664 77.56% 92.31% 91.72%

Fr2/train_station_walking 0.4947 0.4169 0.0539 0.0480 0.0716 84.30% 0.0924 0.0785 0.0542 71.97% 85.47% 83.59%
Fr2/signs_walking 0.7428 0.6592 0.0489 0.0631 0.0441 83.97% 0.0369 0.0428 0.0241 78.55% 82.65% 84.96%

Fr2/xyz_static 0.0392 0.0684 0.0356 0.0414 0.0247 54.39% 0.067 0.0774 0.0377 36.02% 55.32% 53.44%
Fr2/rpy_static 0.0639 0.0425 0.0095 0.0063 0.0075 46.11% 0.0053 0.0080 0.0078 30.74% 48.76% 47.55%

Fr2/train_station_static 0.0418 0.0089 0.0495 0.0338 0.0247 28.42% 0.0743 0.0699 0.0136 20.87% 29.22% 29.85%
Fr2/signs_static 0.0073 0.0097 0.0044 0.0097 0.0098 16.96% 0.0082 0.0094 0.0057 11.41% 14.54% 13.78%

6. Discussion

Table 1 shows experimental results that indicate the track_station_walking dataset
should not be regarded as improving. During the experimental phase, tracking failures
occurred while using the Fr2_xyz_walking dataset. Based on the analysis of the dataset, we
can see that a few images of people and signs are blurred. In a few instances, while using
the Fr2_xyz_walking dataset, when the camera was moving, the people and objects in the
images could not be detected by the network, which caused the accuracy to drop and the
tracking to fail. As part of future research, object detection models could be optimised to
improve accuracy and speed during this process, making it easier to detect dynamic objects
and reducing their impact on vSLAM.
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7. Conclusions

Moving objects can affect estimation accuracy in indoor dynamic environments, which
can lead to tracking errors. The aim of this paper was to use an object detection model
capable of handling moving objects in an indoor dynamic environment based on the
recent ORB-SLAM3 framework. The YOLOX and YOLOR object detection algorithms have
been tested to detect moving objects in an environment. For pose estimation, only static
feature points were used. Dynamic point tracking was performed after static points were
filtered out before tracking. Compared to VPS-SLAM, YOLOX combined with ORB-SLAM3
improved accuracy by 2–4% in highly dynamic indoor environments with pedestrians. This
algorithm has certain advantages over other algorithms of the same type, both in terms of
accuracy and performance.
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