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Abstract: The intensity of radio waves decays rapidly with increasing propagation distance, and
an edge server’s antenna needs more power to form a larger signal coverage area. Therefore, the
power of the edge server should be controlled to reduce energy consumption. In addition, edge
servers with capacitated resources provide services for only a limited number of users to ensure
the quality of service (QoS). We set the signal transmission power for the antenna of each edge
server and formed a signal disk, ensuring that all users were covered by the edge server signal and
minimizing the total power of the system. This scenario is a typical geometric set covering problem,
and even simple cases without capacity limits are NP-hard problems. In this paper, we propose a
primal–dual-based algorithm and obtain an m-approximation result. We compare our algorithm with
two other algorithms through simulation experiments. The results show that our algorithm obtains a
result close to the optimal value in polynomial time.

Keywords: power control; primal–dual; approximation algorithm; edge computing; power cover

1. Introduction
1.1. Background

In recent years, edge computing has been proposed as a timely and resource-efficient
alternative to address data computation issues [1]. Edge computing brings the service and
utilities of cloud computing closer to the user. The response time that users perceive is
effectively reduced, and the data processing in the cloud center is alleviated. In addition to
reduced service delays, we must consider another issue. From 2010 to 2020, global Internet
traffic expanded 15-fold, and the energy consumed in transmitting data has increased at
the same rate [2]. Industry and academia have focused on reducing energy consumption
in wireless communication processes, in which the power of the antenna is an important
consideration. Various different power control methods have been proposed for wireless
networks. In terms of controlling the power of cellular networks, [3] interpreted cellular
and cell-free massive MIMO networks as max–min utility optimization problems with
affine interference mappings and polyhedral constraints. In [4], Dai et al. investigated the
joint optimization of base station (BS) clustering and power control for non-orthogonal
multiple access (NOMA)-enabled coordinated multipoint (CoMP) transmission in dense
cellular networks, maximizing the sum rate of the system. In addition, in terms of wireless
sensor networks (WSNs), Ref. [5] investigated how machine learning could be used to
reduce the possible transmission power level of wireless nodes and, in turn, satisfy the
quality requirements of the overall network. Reducing the transmission power has benefits
in terms of both energy consumption and interference. In [6], Moltafet et al. developed
a dynamic control algorithm using the Lyapunov drift-plus-penalty method. They used
this approach to jointly optimize the sampling action of each sensor, the transmit power
allocation, and the subchannel assignment, minimizing the average total transmit power
of all sensors, subject to a maximum average Age of Information (AoI) constraint for
each sensor.
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The above researchers optimized the antenna power by considering the influence
of each user on the system and ensuring the user’s quality of service (QoS). QoS may
include the data transmission rate, response time, task execution time, etc. However,
in edge networks, some computing resources, such as CPUs, are often scarcer than channel
resources. Edge networks often have no remaining CPU resources before they run out of
channel resources. Therefore, wireless channel allocation and signal interference are not
considered in this paper. In addition, the directional signal of an antenna is very commonly
used in today’s cellular communication. In this paper, we abstract the MIMO-based base
station as an omni-directional antenna. So, the signal coverage of the antenna can be seen
as a disk.

In such edge networks based on the above assumptions, the signal coverage area
of an antenna, which is determined by the antenna’s power, is a disk centered on the it.
Because the signal intensity decreases with increasing distance, a larger signal coverage
disk needs more power [7]. In an edge computing system composed of edge servers and
users, the edge servers communicate with users through wireless signals transmitted by
antennas. This article assumes that the edge server has an omni-directional antenna and
is abbreviated as the server. When a server serves a user, its signal should cover the user.
In addition, each edge server can provide only limited resources for the users it serves.
In summary, the problem studied in this article is how to appropriately assign power
in a capacitated edge server to ensure that the server covers all users while minimizing
the total power. We define this problem as the capacitated minimum power cover (CMPC)
problem. The signal-to-noise ratio (SNR) between the server and the user is usually the
factor affecting the quality of communication. We know that SNR is inversely proportional
to the signal distance. We make SNRmin to be the SNR between a server i and j user, where
the distance between them is the farthest in the system. We assume that as long as the
SNR between any server and user is greater than SNRmin, the server could serve this user.
In addition, the overall system has the capacity to cover all users. As a result, we can
obtain an approximate scheme that covers all users with the technique developed in this
paper, and we explain that the extreme case, where a server serves the furthest user, rarely
occurs. We can also address the situation in which the demand exceeds the capacity by
repeatedly using the method proposed in this paper. Therefore, the above two assumptions
are reasonable.

Our detailed contributions in this work can be summarized as follows:

• (CMPC and Resource Allocation Model) The CMPC problem is a fundamental minimum
power coverage (MPC) problem. The MPC problem is NP-hard even in the absence
of capacity constraints [8,9]. Based on the CMPC problem, we establish a minimum
power control resource allocation model in a capacitated edge network.

• (Primal–Dual Algorithms) To address the above challenges, we propose a primal–dual-
based approximation algorithm to solve the CMPC problem. After the theory proof,
we obtain an approximation guarantee of m (m edge servers considered) in polynomial
time.

• (Performance Evaluation) Numerical results are presented to validate the effectiveness
and efficiency of our proposed algorithms.

1.2. Previous Research

The primal–dual-based approximation algorithm is a generalization of the primal–
dual method used for linear programming and combinatorial optimization problems [10].
This algorithm provides effective solutions for many optimization problems in mobile
edge computing (MEC). In [11], attack-resilient distributed algorithms based on primal–
dual optimization were proposed for situations when Byzantine attackers are present in
a system. In [12], Wang et al. modeled the system in an online manner and formulated
the underlying optimization problem, maximizing the total profit according to constraints
on the computational resources on the edge clouds and job migration. Furthermore, a
(1 − 1/e)-competitive primal–dual-based online algorithm was proposed. An efficient so-
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cial welfare approximation algorithm that used a classic primal–dual framework was devel-
oped in [13]. In this paper, the cloud market for computing jobs with completion deadlines
was studied, and efficient online auctions for cloud resource provisioning were designed.

Broadly, the CMPC problem belongs to the family of minimum weight set cover (MWSC)
problems. In general, the MWSC problem is challenging to solve optimally, even for some
simple versions. For example, Alt et al. and Bilò et al. presented a minimum cost-covering
problem without capacity constraints that is still NP-hard for any α > 1 in [8,9]. Thus,
the development of polynomial-time approximation algorithms is the main objective for
CMPC problems. In [14], Zhang et al. proposed a local-ratio-based power control approach
for the access point in mobile edge computing. As for the theoretical study of the minimum
power cover (MPC) problem, Liu et al. introduced the k-prize-collecting minimum power
cover problem (k-PCPC) where k is the number of users that need be covered in [15]. They
presented a novel two-phase primal–dual algorithm for the k-PCPC with an approximation
ratio of at most 3α. In recent work [16], Liu et al. considered an MPC problem with
submodular and linear penalties. For the minimum power partial cover problem, Dai et al.
present an O(α)-approximation algorithm in [17].

As for the disk cover problem, some researchers focused on minimizing the cardinality
of disks. In [18], Lyu et al. considered UAV-Mounted mobile base stations (UAV-MBS) with
the same radii to provide wireless coverage for a group of distributed ground terminals and
minimize the number of UAV-MBS. In [19], a rounding-based mechanism for capacitated
covering problems that minimized the cardinality was proposed and obtained a constant
approximation to address this problem. In the past, there have been some researchers
who investigated the minimum weight disk cover problem. Varadarajan considered the
weight [20] and presented a clever quasi-uniform sampling technique that was improved
by Chan et al. [21], yielding a constant approximation for the minimum weight disk cover
problem. This constant approximation was generalized by Bansal and Pruhs [22] for
the minimum weight disk multicover problem in which every point must be covered
multiple times.

Energy-efficient optimization has attracted extensive attention in mobile computing.
By endowing edge servers with multiple power states, e.g., active state and sleep state,
it is promising to improve the total energy consumption of edge servers through switch-
ing under-utilized servers into sleep state in [23]. Ali et al. in [24] proposed a novel
energy-efficient deep learning-based offloading scheme (EEDOS) to select an optimal set of
computation components to offload to ESs, aiming at minimizing the energy consumption
of MDs. Li et al. in [25] studied the channel selection for task offloading. The effect
of multi-channel interference on the energy efficiency of task offloading was taken into
account. Gu et al. [26] studied the problem of how to efficiently assign computing tasks
to reduce energy consumption in the edge computing system under the constraints of the
computing capacity of both MDs and ENs, wireless channel conditions, and delay.

2. System Model and Preliminaries
System Model

We consider that all the facilities in the edge networks are distributed in a fixed
dimensional Rd space, where the facilities are edge servers and users. Let S denote the set
of m edge servers and U denote the set of n users. For each user j ∈ U to connect to an edge
server i ∈ S, j must be contained in the signal disk formed by i and obtain an IP from this
disk. The IP capacity of edge server i is ki. If i forms a signal disk with radii ri, the power
we should provide is

pi = c · (ri)
α, (1)

where c and α are constants (α is usually called the attenuation factor).
Although ri can be selected arbitrarily, there will be precisely one terminal device

located on the boundary of the disk with radius d(i, j) in the optimal solution, where d(i, j)
denotes the distance between i and j. Therefore, at most, mn disks need to be considered.
We denote the set of such disks asD. i and j can form a disk Dij ∈ D with radius rij = d(i, j)
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and center i. The disk set with i as the center in D is represented by Di. Therefore, we have
Di = n. A set of disks D̂ ∈ D is called a cover for a set of users Û ∈ U if each user j ∈ Û
is covered by some disk in D̂. The problem is to find a cover D̂ ∈ D for S with minimum
power p(D̂) = ∑Dij∈D̂

pij.

In the following, we denote the instance of the CMPC problem as (U,D, k) and the
optimal power for the instance (U,D, k) as OPT. To simplify the notation, we use Dij
to represent both a disk in D and the set of users contained in Dij and pij to denote the
power of disk Dij, where pij = c · (rij)

α. We note that Dij containing a user u means that
u is within the range of Dij (u ∈ Dij); thus, Dij covering u means that server i serves u,
who then obtains resources. In addition, we use SNRmin to denote the SNR between a
server–user pair (s, u) where (s, u) = arg max d(i, j). Therefore, the SNR between any
other server–user pair will not be less than SNRmin and a server could serve any users.
Obviously, the power of s occurred by serving i ∈ U\{u} would not more than the power
by serving u. We give the mentioned notations of this paper in Table 1.

In actual scenarios, there are situations in which multiple users are located at the
same distance from a server. Suppose that a server cannot provide services for all users
simultaneously. In that case, the server provides the users with services in an orderly
manner according to the urgency or bid level of the users. Because this article does not
focus on task scheduling, we use Definition 1 to determine the order of the users.

Definition 1. Map the positions of all users and servers to a coordinate system and use cos(−→su) to
represent the cosine of the angle between vector −→su and the x-axis formed by server s and user u.
The distances between users u and d and server s are rsu and rsd, respectively. If cos(−→su) > cos(

−→
sd),

then rsu � rsd, and the same is true if psu � psd. Because rsu = rsd, Dsu contains d but Dsd does
not contain u.

Table 1. Summary of Notations.

Notations Description

m # of servers
n # of users
S Set of servers
U Set of users
U′ Set of uncovered users

SNRmin
SNR between a server and user with the

farthest distance
D′ Set of unselected disks
ki Server i’s capacity

d(i, j) Distance between server i and user j

Dij
Disk formed by i and j or the set of users the

disk contains
ri (rij) Radius of server i’s disk (disk Dij)
pi (pij) Power of server i’s disk (disk Dij)
D Set of disks formed by m servers and n users
Di Set of disks centered on server i in D
xij Disk Dij is selected (1) or not (0)

yh,ij User h is covered by disk Dij (1) or not (0)
θh Costs charged due to user h
µi Extra cost of server i selecting multiple disks

βij
Minimum cost that disk Dij charges each user

it contains
γh,ij Cost that user h is willing to pay for disk Dij
D′ij Set of uncovered users in Dij

δ(Dij) Set of users charged by Dij
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3. A Primal–Dual Approach for Capacitated Servers

In this section, we present a primal–dual algorithm for the CMPC problem on the
instance (U,D, k). Then, we show how to use this algorithm to determine the power
assignment of each server.

3.1. Capacitated Minimum Power Cover Problem

Under the assumption of sufficient capacity (∑i∈S ki ≥ n), the CMPC problem can be
formulated as an integer program. Variable xij indicates whether disk Dij ∈ D is chosen;
that is, xij = 1 if and only if Dij is selected. Variable yh,ij indicates whether user h ∈ U
is covered by Dij; here, yh,ij = 1 if and only if h is covered by Dij. The integral linear
programming (ILP) problem can be formulated as follows:

min ∑
Dij∈D

pij · xij (2)

s.t. ∑
Dij :h∈Dij

yh,ij ≥ 1, h ∈ U and Dij ∈ D (2a)

kixij − ∑
h:h∈Dij

yh,ij ≥ 0, Dij ∈ D (2b)

xij ≥ yh,ij, h ∈ Dij ∈ D (2c)

∑
Dij∈Di

xij ≤ 1,Di ∈ D (2d)

xij ∈ {0, 1}, yh,ij ∈ {0, 1}, ∀h ∈ U, ∀Dij ∈ D (2e)

Note that constraint (2a) ensures that user h is covered by at least one disk. The capacity
limit of each disk is expressed in constraint (2b). Constraint (2c) guarantees that disk Dij
can not cover user h until the disk is selected. Constraint (2d) implies that each server i ∈ S
can select only a disk as its power assignment.

The ILP without constraints (2b) and (2d) is still an NP-hard combinatorial optimiza-
tion problem that is equivalent to the classic set cover problem. The challenge escalates
when we consider the capacity of the servers and the uniqueness of the power assignments.
To address these challenges, we utilize the primal–dual algorithm design technique. We
relax the ILP constraints of xij and yh,ij to xij ≥ 0 and yh,ij ≥ 0 to formulate the dual
problem. Note that we do not need to add the constraints xij ≤ 1 and yh,ij ≤ 1, since
they are automatically satisfied in an optimal solution of Equation (2). By introducing
dual variables θh, βij, γh,ij and µi to constraints (2a)–(2d), respectively, the dual LP of the
relaxed (2) becomes:

max ∑
h∈C

θh −∑
i∈S

µi, (3)

s.t.θh − βij − γh,ij ≤ 0, h ∈ Dij ∈ D, (3a)

kiβij + ∑
h:h∈Dij

γh,ij ≤ pij + µi, Dij ∈ Di ∈ D, (3b)

θh ≥ 0, βij ≥ 0, h ∈ U, Dij ∈ D, (3c)

γh,ij ≥ 0, h ∈ Dij ∈ D. (3d)

These dual variables also have economic benefits. Servers charge a fee of θh to user h ∈ U
to provide services. The dual variable µi represents the additional cost when server i ∈ S
selects multiple disks. Users are not charged more than they are willing to pay. For a user h
contained in Dij, h is willing to pay βij when D’s capacity is insufficient. Otherwise, the fee
paid by h is γh,ij. Furthermore, all users contained in disk Dij are willing to pay no more
than the sum of pij and µi. Therefore, the objective function (3) maximizes the profit of
the servers.
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We next design an efficient primal–dual covering scheme that simultaneously increases
the dual variables by a polynomial number of times, which we use to solve optimization
problems (2) and (3).

Algorithm 1 PD.

Input: A set of users U, a set of servers S, a power function p : Dij 7→ R+, and a capacity
constraint k.

Output: A subset of disks D̂ covering all users in U.
1: Initialize k′i ← ki, Li ← ∅, µi ← 0, θh ← 0, βij ← 0, γh,ij = 0, ∀j, h ∈ U, ∀i ∈ S.
2: D̂ ← ∅, D′ ← D, U′ ← U.
3: while U′ 6= ∅ do
4: Increase {θh}h∈U′ and { βij + γh,ij} D′ij :h∈D′ij

simultaneously until some disk Dsu be-

comes tight. (If
∣∣∣{h : h ∈ D′ij ∩U′

}∣∣∣ > ki, we increase βij; otherwise, we increase

γh,ij, h ∈ D′ij)
5: Ls ← Dsu.
6: U′ ← U′\D′su,D′ ← D′\D′<rsu .
7: D′ij ← D′ij\{D′ij ∩ D′su}, Dij ∈ D′\D′s.
8: end while
9: D̂ ← {L}.

10: return D̂.

3.2. Primal–Dual Algorithm Design

The first use of the primal–dual-based approximation algorithm is based on the work
of Bar-Yehuda and Even [27]. The procedure PD follows the classic primal–dual method:
starting from the trivial dual feasible solution of zero, the method increases the dual
variables simultaneously until some disk becomes tight. Then, a tight disk is chosen
and iterated until a feasible solution is obtained. Next, we introduce how the algorithm
works in detail. The pseudo-code of followed process is shown in Algorithm 1 named PD
(Primal-Dual).

Initially, the dual variables {θ} and {α} are 0, resulting in a dual feasible solution
(with all βij = 0 and γh,ij = 0). We use U′ to denote the set of uncovered users and D′
to denote the set of unselected disks. We use D′ij to denote the uncovered users currently
in Dij. The disks are selected by increasing the dual variables θh for the uncovered users
h ∈ U′ simultaneously. The dual program has two kinds of constraints: user constraints
and server constraints.

To maintain the dual feasibility of the user constraints (3a), as we increase θh, we must
increase βij or γh,ij, where h ∈ Dij ∈ D′. If the disk contains a large number of uncovered

users, we increase βij; otherwise, we increase γh,ij. Formally, if ki <
∣∣∣D′ij∣∣∣, we increase βij;

otherwise, we increase γh,ij.
For each disk constraint, kiβij + ∑h:h∈Dij

γh,ij ≤ pij + µi; initially, the left-hand side of
this equation is 0, and the right-hand side is equal to the cost of the disk. This algorithm
ensures that each server selects at most one disk; thus, µi = 0 for all i ∈ S. When the
dual variables of the unassigned edges are increased, we stop the procedure as soon as
a disk constraint is met with equality. (In Algorithm 1, this is represented by disk Dsu
in the main loop.) We can confirm only that the users in D′su are served by s, not that
s chooses disk Dsu. We temporarily select this disk as the current disk for s and record
the value with Ls = Dsu. Through Ls, we can ensure that each edge server selects at
most one disk as its power strategy, so µi = 0, i ∈ S in the whole algorithm process.
In lines 5–6 of Algorithm 1, we update the related variables and sets. First, we delete
the users in D′su from U′ and the concentric disk with a radius less than d(s, u) from D′
(D′<rsu = {Dij : Dij ∈ D′ and rij < rsu} ∪ Dsu). Then, we update {D′} in the disks of the
other servers. After these variables and sets are updated, the dual variables corresponding
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to the removed users and disks stop increasing in subsequent iterations. The above steps
are iterated until all users are covered by a disk. The disk that covers the user are the last
disk selected by each server, that is, {L}.

The above process maintains dual feasibility. According to Lemma 1, the capacity
constraint is maintained throughout the algorithm.

3.3. A PD Instance

To further understand the PD algorithm, we illustrate an instance of the PD al-
gorithm. In Figure 1, we present an instance of the CMPC problem (U,D, k), where
U = {1, 2, . . . , 20}, S = {1, 2, 3, 4, 5} and k = 5. For ease of representation, we use triangles
and circles to represent servers and users, respectively, which are distributed in a two-
dimensional coordinate system. In Figure 1, the disk drawn as a solid line is the final disk
obtained by Algorithm 1. The specific power value that each server should provide can
be calculated with the equation p(a) = c · r(a)α (in this case, c = 1 and α = 2). The disk
drawn with the dot line is the disk that is temporarily selected by the PD algorithm during
processing (that is, the value assigned to the variable la during the algorithm’s execution).
There are nine disks in Figure 1, indicating that the main loop of the PD algorithm produces
nine tight disks in total. Next, we introduce how the PD algorithm obtained the results in
this instance.
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Figure 1. Total power of the PD algorithm with different numbers of servers and values of K.

After the instance (U,D, k) is input and all dual variables are set to zero, the algorithm
enters the while loop. By continuously increasing the dual variables, disks D3,10 become
tight first. According to the iteration sequence, the disks selected for each iteration are
D3,10, D4,19, D5,7, D3,8, D1,4, D2,5, D4,20, D2,16 and D1,6. In this process, each user determines
which server serves it. For example, although users u8 and u12 are contained in disk D3,8
and disk D2,5, respectively, the first selected disk, that is, D3,8, covers them. Finally, the users
served by servers s1 to s5 are {u1, u4, u6}s1 , {u2, u3, u5, u15, u16}s2 , {u8, u10, u12, u14, u18}s3 ,
{u19, u20}s4 , and {u7, u9, u11, u13, u17}s5 .

3.4. Theoretical Analysis

Lemma 1. Dsu must have the capacity to cover all users in D′su when it is selected. Formally,
|D′su| ≤ ks when Dsu is selected.
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Proof. Assume that the Dsu selected in an iteration satisfies |D′su| > ks. At this point,
ksβsu = psu, with γh,su = 0, h ∈ Dsu. Then, there must be an unselected disk Dsd, rsd ≺ rsu
with

∣∣D′sd

∣∣ = ks. We have that

psd ≥ ksβsd + ∑h:h∈Dsd
γh,sd

= ∑h:h∈D′sd
(βsd + γh,sd) (4)

= ∑h:h∈D′sd
θh

= ksβsu (5)

= psu

> psd. (6)

Equation (4) holds because γh,sd = 0, h ∈ Dsd\D′sd. Based on the former assumption and
Definition 1, D′sd ⊆ D′su. Then, θh = βsu = (βsd + γh,sd), h ∈ D′sd. Therefore, Equation (5)
holds. In summary, Inequality (6) breaks Constraint (3b), and the above assumption is
not tenable.

Lemma 2. We can charge the power of each selected disk Dij to users in D′ij such that each user h
obtains a charge of at most m · θh.

Proof. Define a disk to be a low-degree disk if
∣∣Dij

∣∣ ≤ ki when it is selected; otherwise, define
the disk as a high-degree disk. We discuss the charging mechanism for both low-degree and
high-degree disks. We use δ(Dij) to denote the set of users charged by i.

Consider a low-degree disk Dij with βij = 0. When Dij is selected, we charge all
the users contained in this disk; thus, δ(Dij) = Dij. Since the disk constraint is tight, we
have pij = ∑h:h∈Dij

γh,ij = ∑h:h∈δ(Dij)
θh. Thus, we charge the cost of disk Dij to all users

contained in this disk by charging θh to each h ∈ δ(Dij).

Now, consider a high-degree disk Dij; then, at some point in time, we have
∣∣∣D′ij∣∣∣ = ki. At this

point, we fix the value of βij and subsequently increase the γh,ij variables and make δ(Dij) = D′ij.

When this disk is declared open
∣∣∣D′ij∣∣∣ ≤ ki, we have that pij = kiβij + ∑h:h∈Dij

γh,ij. For the
users not in δ(Dij), note that γh,ij = 0. Hence, pij = kiβij + ∑h:h∈δ(Dij)

γh,ij. Since there
are exactly ki users in δ(Dij), we have pij = ∑h:h∈δ(Dij)

(βij + γh,ij) = ∑h:h∈δ(Dij)
θh. Thus,

the cost of disk Dij is charged to all users in δ(Dij).
Finally, Algorithm 1 selects up to m disks. Therefore, each user in C can be charged up

to m times. Formally,
∣∣∣{Dij : h ∈ δ(Dij), Dij ∈ D̂}

∣∣∣ ≤ m, h ∈ U.

Theorem 1. The CMPC-PD algorithm returns an m-approximation for the capacitated minimum
power cover problem in polynomial time.

Proof. (Approximation ratio): For the cover D̂ constructed by the algorithm, we show that
∑Dij∈D̂

pij ≤ f ·OPT, where OPT is the value of an optimum solution to the CMPC problem.

Let Z∗LP be the optimal value of the linear programming relaxation of (2). It is sufficient to
show that ∑Dij∈D̂

pij ≤ f · (∑h∈U θh −∑i∈S µi) for the final dual solution θ and α, since by

weak duality, we know that for any dual feasible solution θ and α, ∑h∈U θh−∑i∈S µi ≤ Z∗LP.
Thus, since the LP is a relaxation, Z∗LP ≤ OPT.
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According to Lemma 2, we can charge the cost of each chosen disk Dij to the users in
δ(Dij) at most m times. Thus, we have that

∑
Dij∈D̂

pij = ∑
Dij∈D̂

(kiβij + ∑
h:h∈Dij

γh,ij − µi)

= ∑
Dij∈D̂

∑
h:h∈δ(Dij)

θh

= ∑
h∈U

θh ·
∣∣∣{Dij : h ∈ δ(Dij), Dij ∈ D̂}

∣∣∣
≤ m · ∑

h∈U
θh

≤ m ·OPT

where the second equality is derived from Lemmas 2 and µi = 0, i ∈ S.
(Polynomial Running Time): The while loop iterates at most n times to cover all users.

Line 4 takes O(mn2) time to increase the dual variables. Lines 5–7 update several sets in
O(n) time. Thus, the CMPC-PD algorithm runs in polynomial time O(mn3).

4. Experimental Results

We use the PD algorithm proposed above and synthetic data to conduct practical
experiments to simulate the power control for servers in edge networks. The experiments
ignore the vertical distribution of the two facilities, mapping their positions to a two-
dimensional coordinate system. The relevant parameters are shown in Table 2. The specific
experimental settings are as follows:

1. The hardware configuration of the experimental environment is as follows: the CPU
is an Intel i7-10700 with eight cores and 16 threads at 2.9 GHz, 16 GB memory, and a
hard disk capacity of 1 TB.

2. The entire system includes two facilities, namely, servers and users, which are dis-
tributed randomly in a two-dimensional space. The capabilities of each server are lim-
ited, and all users must be covered by some server. In this experiment, we randomly
set the capacity of each server according to its average capacity k̄; thus, the capacity
of each server varies around k̄. To ensure that the total system capacity satisfies the
requirement of covering all users, if ∑i∈S ki < n, we artificially increase the gap so
that ∑i∈S ki = n; if ∑i∈S ki ≥ n, no operation is performed.

3. The experimental data are generated in an average distribution over a given range,
so each experiment is repeated 50 times. The final results are averaged to reduce the
impact of randomness.

4. The IP utilization rate of a server is the ratio of the number of users covered by it to
its capacity.

5. The variance in the IP utilization is defined by Equation (7):

s2 =
∑i∈S (|Li| − n/m)2

m
. (7)

According to the property of variance, the smaller the value of s2 is, the more balanced
the number of users covered by each server.

6. In this section, we compare the PD algorithm with the optimal and nearest capable
server (NCS) approaches. The OPT approach uses IBM’s open source tool CPLEX to
obtain the optimal solution to the CMPC problem. If we do not obtain the optimal
solution within 10 min, we stop CPLEX. The NCS approach is a greedy-based method
that can be used to solve the CMPC problem. To determine which server covers which
user during each iteration, the algorithm selects the closest server–user point pair for
which the server still has capacity.
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Table 2. Configuration of experimental parameters.

Param Description Value

α Power parameter in Equation (1) [1, 2]
c Power parameter in Equation (1) 1
m # of servers [1, 10]
n # of users [20, 500]
k̄ Average capacity of all servers [0, 200]
ki Capacity of server i [0, 200]
K Total capacity of all servers m · k̄
l Side length of facility distribution area 100
λ Ratio of the side length of the server distribution area to l [0, 1]
pX

i (pY
i ) X (Y) coordinate of server i [0, 100]

pX
j (pY

j ) X (Y) coordinate of user j [0, 100]

4.1. Impact of the Number of Users

In this experiment, we analyzed the impact of changes in the number of users on
the CMPC problem. The main foci are the total system power, algorithm execution time,
and variance in the server’s capacity utilization. n is gradually increased from 20 to 200.
All facilities are distributed in an area with a side length of 100. The average capacity of
each server is k̄ = 50. Therefore, the total capacity of all servers is K = 500. For the two
constants in Equation (1), c = 1 and α = 2. When the number of users is greater than 200,
the optimal solution of a single instance cannot be obtained within 10 min. So, the power
and execution time of CPLEX seems to be 0 when n = 200 in Figure 2.

Figure 2a shows the variation in the total power as the number of users increases for
the three approaches. Overall, the total power obtained by the three methods increases
as the number of users increases. This is consistent with our intuition. For example,
consider several servers installed around a shopping mall. It is certain that the number
and capacity of these servers do not change in one day. However, users in the mall change
over time. When the number of consumers increases, the probability that the server serves
more distant customers increases. The statistics of the total power should then increase.
In addition, the DP result is closer to OPT than the NCS result. This finding indicates the
superiority of our method. Although our results are not as good as the optimal solution,
Figure 2b shows the considerable time cost required to arrive at the optimal solution.
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Figure 2. System performance with different numbers of users. (a) Total power. (b) Execution
time (ms).

4.2. Impact of the Number of Servers and K

In this section, we study the impact of the number of servers and the total capacity
K on the algorithm. This investigation helps us to determine whether to reduce the total
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power of the system by increasing the number or capacity of the servers when the number
of users is stable. In this experiment, we assume that there are 100 users, and m and K
increase from 1 to 8 and 100 to 200, respectively. The values of the other variables are the
same as those in Section 4.1.

Figure 3a clearly shows that when the total capacity of the system is sufficient
(K ≥ 150), the total power does not change significantly with increasing m. This result
indicates that sufficient capacity generates less power. When the system capacity is tight,
increasing the number of servers causes the PD algorithm to encounter the issue of local
optimization. Combined with the results in Figure 3a,b, this finding leads to a rapid in-
crease in the total power. However, when considering the cost of the server itself, with the
assumption of a stable number of users, we can use fewer servers. In this case, the PD algo-
rithm shows good performance regardless of resource constraints, as shown in Figure 3b.
In addition, Figure 3b shows that as the number of servers increases, the approximate ratio
of the PD algorithm increases. This result confirms the conclusion of Theorem 1.

In the introduction, we assume that a server can serve every user. In an optimal
solution, a server serves the relatively close user and rarely the user who is farthest away.
The approach proposed in this paper leads to servers serving more costly users due to local
optimality, which is a challenge for all approximation algorithms. In Figure 3b, we can
see that the approximation ratio will only exceed 2 in a few cases where m ∈ {4, 5} and
k ∈ {100, 110, 120}. When the approximation ratio is less than 2, the average radius of the
disk obtained by our approach does not exceed 2

1
α times the optimal solution.

(a) (b)

Figure 3. System performance with different numbers of servers and values of K. (a) Total power.
(b) Approximation ratio.

4.3. Impact of the Number of Servers and λ

Server location problems are also an important research topic. Although this paper
does not discuss how to determine the location of the server, we can explore the impact
of the server distribution on the PD algorithm by controlling the concentration of the
servers. We assume that the two facilities are distributed in a square with a side length
of l = 100 and use λ to control the distribution area of the server. The side length of this
area is λl, and the center of this region is located at (l/2, l/2). The number of servers m is
increased from 1 to 8, with K = 150 and n = 100. The values of the other variables are the
same as those in Section 4.1.

Figure 4a shows that when the number of servers is less than or equal to 3, the more
concentrated the servers are, the lower the total power is. However, as the number of
servers gradually increases, different concentrations lead to power changes. When the
number of servers is increased to eight, the total power ranking result is opposite to the
previous result. Thus, when we need to place servers in an area, to meet the requirement of
the system, we need to place servers only near the center of the area; however, if the QoS of
users is considered, the servers should be evenly placed in this area rather than only close
to the center.
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Figure 4. System performance with different numbers of servers and values of λ. (a) Total power.
(b) Approximation ratio.

4.4. Impact of Different Values of α

In Equation (1), α is an important parameter that represents the signal attenuation
coefficient. Variations in α inevitably affect the total power. Therefore, in this section,
we explore the impact of α on the total power and the performance of the PD algorithm.
In this experiment, the same dataset was used for different values of α. This dataset was
developed according to the case when m = 6 and K = 150, as described in Section 4.2.

Figure 5a shows that the total power of the PD and CPLEX algorithms increases
exponentially with increasing α. The reason for this result is clear. A larger value of α
increases the cost of the PD algorithm choosing a disk that differs from the optimal solution.
Therefore, as shown in Figure 5b, the approximation ratio of the PD algorithm does not
increase with small increases in α. Although the influence of α on the approximation ratio
is not obvious, the variance in the IP utilization decreases with increasing α. This result
shows that users are increasingly evenly served by the server.
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Figure 5. System performance with different values of α. (a) Total power. (b) Approximation ratio.
(c) Variance in IP utilization.

4.5. Evaluating the Gap between Assumptions and Practical Scenarios

We propose a variable named SNRmin in the introduction section. When the SNR
between server s and user u is greater than SNRmin, s can serve u. However, there is
still some gap between this assumption and the practical scenarios. We need a further
evaluation of this gap that is not confined to the analysis at the end of Section 4.2.

We assume the default coverage radius r∗ is the same for all servers. The radius r∗ is
determined by ρ, which is defined as the proportion of users that can be covered when the
radius of servers is r∗. For example, when ρ = 0.5, r∗ is equal to the radius of the server
signal disk when it can just cover 50% of the users. In this experiment, m = 4, and K and ρ
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increase from 100 to 200 and 0.5 to 1, respectively. In addition, we use E to evaluate the gap
between assumptions and practical scenarios, which is defined as follows:

E =
∑i∈S

(ri−r∗)
r∗

m
, (8)

where ri is the radius of server i from the solution of Algorithm 1. As defined in Equation (8),
E indicates the average expansion of the radius of the solution obtained by our approach
compared to r∗.

As we can see in Figure 6, if ρ ≥ 0.7 such that E ≤ 1, it indicates that the server signal
disk does not need to be increased by more than a factor of 1 radius when by default,
the server can cover more than 70% of the users. Under the line-of-sight channel model,
we think this expansion is acceptable. However, E becomes impractical when r∗ is close to
0.5 or the total capacity is very constrained. We can obtain recommendations on whether
additional servers should be established from this result.

Figure 6. Average expansion E with different values of K and ρ.

5. Conclusions

Signal coverage consumes considerable energy in wireless networks; thus, in this paper,
we studied how to assign the appropriate power to servers to reduce energy consumption.
We built a signal coverage model based on the CMPC problem in edge networks and
developed an m-approximation primal–dual-based algorithm. The numerical results show
satisfactory performance.

In this paper, we considered that all users need to be covered by servers. However,
servers need not serve users because of high energy costs, poor communication quality, etc.
Therefore, server blocking probability, packet loss, and throughput metrics should focus on
future work. These considerations can affect the decision to choose the optimal connecting
station for the wireless user. In addition, the power allocation problem for each user after
power control for servers would be a further work. Thus, the signal interference between
users has to be considered.
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