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Abstract: An efficient feature extraction method for two classes of electroencephalography (EEG)
is demonstrated using Common Spatial Patterns (CSP) with optimal spatial filters. However, the
effects of artifacts and non-stationary uncertainty are more pronounced when CSP filtering is used.
Furthermore, traditional CSP methods lack frequency domain information and require many input
channels. Therefore, to overcome this shortcoming, a feature extraction method based on Online
Recursive Independent Component Analysis (ORICA)-CSP is proposed. For EEG-based brain—
computer interfaces (BCIs), especially online and real-time BCIs, the most widely used classifiers used
to be linear discriminant analysis (LDA) and support vector machines (SVM). Previous evaluations
clearly show that SVMs generally outperform other classifiers in terms of performance. In this case,
Adaptive Support Vector Machine (A-SVM) is used for classification together with the ORICA-CSP
method. The results are promising, and the experiments are performed on EEG data of 4 classes’
motor images, namely Dataset 2a of BCI Competition IV.

Keywords: electroencephalogram; adaptive classifier; support vector machine; common spatial
pattern; online recursive independent component analysis

1. Introduction

Several EEG signal feature extraction methods have been introduced in recent years.
These feature extraction methods include Empirical Mode Decomposition, Autoregressive
approaches, Wavelet transform methods, Phase-Space Reconstruction Approach, and
CSP-based methods [1]. In this article [2] combined the methods of Variational Mode
Decomposition (VMD) and Hilbert Transform (HT) to extract valuable characteristics from
EEG recordings and the stacking neural network to identify epilepsy seizures to suggest
an intelligent system. The HT approach extracts characteristics from EEG signals after
the VMD method decomposes EEG signals into intrinsic mode functions. Using extracted
features, the stacked-NN method is used to identify epilepsy seizures [3]. A Common
Spatial Pattern (CSP), one of the well-liked and effective approaches for Motor Imagery
(MI) Brain Computer Interface (BCI), was used to extract features for the categorization of
motor-imaging tasks [4,5]. This approach provides spatial filters that enable separation of
two conditions by optimizing variance differences between them. CSP filters are perfectly
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suited to identify mental states that are characterized by motor sensory rhythm effects since
the variance of band-pass filtered signals is equivalent to band-power [6].

Despite being highly efficient, the CSP approach is noise sensitive for small datasets [7].
In attempt to address this problem, a number of CSP variations have been proposed that
boost its robustness. In [8] this proposed work the Common Spatio-Spectral Pattern
(CSSP) to enhance the performance of CSP even more. Within CSP in CSSP, a finite
impulse response filter has been optimized in this approach. This is accomplished by
including a temporal delay, which improves CSSP performance and makes it possible to
specify separate frequency filters. The CSSSP (Common Sparse Spectral Spatial Pattern)
methodology was suggested to improve the CSSP method [9].This strategy finds spectral
patterns that are common to all the channels rather than finding unique spectral patterns
for each channel as in CSSP.

The technique known as the Sub-Band Common Spatial Pattern (SBCSP), in which the
motor imagery EEG signals are filtered at different sub-bands and CSP features are extracted
from each of the sub-bands [10] and in this work [11], created the Filter Bank CSP (FBCSP)
to undertake autonomous selection of significant temporal-spatial discriminative EEG
properties in order to address this problem. SBCSP, however, has not taken into account
the probable correlation of the CSP characteristics collected from multiple sub-bands. Then,
CSP characteristics are retrieved from each of the bands created by bandpass-filtering the
EEG readings into different ranges of frequency. Automatically choosing discriminative
pairings of frequency bands and matching CSP features is then done using a feature
selection method. FBCSP performed better than SBCSP, but it also used more sub-bands,
which raised the computational cost.

The authors proposed utilizing the Discriminant Filter Bank CSP (DFBCSP) to choose
the highest discriminant sub-bands from a number of overlapping sub-bands [12]. DFBCSP
improved classification accuracy while using less CPU power than SBCSP and FBCSP.
The spatial patterns produced by the CSP algorithm draw attention to the underlying
neural activity that is crucial for differentiating between different motor tasks. The phase
discrepancies between spatial places are not explicitly treated by CSP, which is a drawback.
According to [13,14], the phase can provide important information for identifying the
different forms of motor imagery activity.

The Analytical Common Spatial Pattern (ACSP), which enables the definition of
magnitude and phase features, was used for the first time [15]. By choosing a group of
spatial filters that maximise variance for one class of data while reducing variance for the
other, the ACSP approach aims to discriminate between two classes of data. As opposed
to its real-valued cousin, ACSP can handle complex-valued variance, which may be more
illuminating. To achieve the best results, the authors [16] suggested using a manually
calibrated decimation filter. The dimensionality of the features was decreased using Fishers’
Discriminant Analysis (FDA), and an SVM classifier was deployed. The technique (known
as CD-CSP-FDA) produced improved performance compared to cutting-edge alternatives.
The multiple filter band Sparse Filter Bank CSP (SFBCSP) method, Ref. [17] introduced,
is used to optimize the sparse patterns. Significant CSP characteristics are chosen from
many overlapping frequency bands using a supervised approach. Then, using the chosen
characteristics, an SVM classifier is utilized to categorize motor images.

Sparse Bayesian learning, which has been applied for feature selection in a variety of
applications, has also lately attracted more interest. The decomposition of the EEG signal
into several sub-bands and extraction of CSP characteristics [18]. The Bayesian learning
technique is utilized to create sparse features, and the SVM classifier is then employed for
classification. Empirical averaging of covariance matrices for training samples is carried
out in CSP. This includes the poor signal quality, which reduces system performance. As
a result. In [19], presented a sparsity-aware technique that added weighted averaging.
Weight coefficients are allocated to each of the trial. The efficiency of the CSP algorithm
was enhanced by using this weighting approach to calculate the average covariance matrix.
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As the CSP approach needs a lot of electrodes to obtain good results, According to [20],
introduced a unique feature extraction technique called common spatial patterns with
autoregressive parameters to boost the CSP classification accuracy with less electrodes
(CSP-AR). The CSP-AR approach optimizes the differences between two populations in
addition to making explicit use of frequency data (i.e., right and left motor imagery). The
test results reveal that the CSP-AR has a higher classification accuracy of 87.1 percent than
standard CSP and AR parameters, which is demonstrated using the motor imagery data set
from the second BCI Competition. The CSP-AR technique improves classification results
while simultaneously offering the advantages of high robustness.

A linear classifier establishes classification boundaries based on the value of a linear
combination of variables or features. Linear Discriminant Analysis (LDA) and Support
Vector Machines (SVMs) are the most often used classifiers in EEG-based BCIs, especially
in online and real-time BCIs [21,22]. SVM often outperforms competing classifiers [23].

The classification methods used in EEG-based BCIs may be broken down into four
categories: transfer learning, deep learning, adaptive classifiers, grid, and tensor classifiers.
It is clear that, even for unsupervised adaptation, adaptive classifiers outperform static ones.
By modifying the classifier online, fresh data entered while using the BCI may be used for
ongoing training of the classifier, minimizing the amount of training data needed while
also enhancing execution by enhancing the classifier’s ability to alter data. When fresh
EEG data become available for adaptive classifiers, the settings are continually reviewed
and changed. As a result, it is suggested to pair the ORICA-CSP based feature extraction
approach with an Adaptive Support Vector Machine classifier. The suggested technique is
used to differentiate between four motor imagery tasks using actual EEG data from nine
human individuals.

The remaining paper is organized as follows: Section 2 explains the Adaptive SVM
classifier and the framework of A-SVM with ORICA is explained in Section 3. The experi-
mental results of the proposed approach are discussed in Section 4 and finally the work is
concluded in Section 5.

2. Adaptive SVM Classifier

The standard SVM is a non-probabilistic binary linear classifier, for example prediction
is done for every information that is given and identifies where between the two classes
is the information [24]. An assumption is made by SVM that the information sources are
numeric. In the event where categorical information sources are present, they must be
changed to binary dummy variables (one variable for every classification). SVM can do
linear classification and work as a nonlinear classification using kernel tricks where the
inputs are mapped to high-dimensional feature spaces. In taking care of the nonlinear
classification problem of SVM, the kernel function is utilized rather than the internal product
calculation and nonlinear problems are changed over to linear classification problems by
increasing their dimensionality.

Consider a training set of the form (m1, n1) . . . . . . (mn,nn), where mi belongs to the
class ni that is represented as 1 or −1. SVM uses a hyperplane to segregate the datasets mi
with ni as 1 from the datasets mi with ni being −1. Datasets mi are expanded; it is said to
be the maximum margin hyperplane; this is done when the distance of the hyperplane is
closest. The hyperplane is written as v. m− b = 0, where v is a normal vector. The offset
of the hyperplane along the vector can be determined through the parameter b

||v|| . To
maximize the distances between the planes, ||v|| needs to be maximized.

Adaptive classifiers with progressively updated online parameters were developed to
address EEG non-stationarity and monitor changes in EEG features over time. Additionally,
by learning online, adaptive classifiers can function with little to no offline training data.
Due to the non-stationarity of brain signals, the adaptive processing can lessen accuracy
loss in the subsequent classification step as well as modest changes in the global mean
during the course of evaluation sessions. Since these oscillations have nothing to do with
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the activity at hand, they can be handled without supervision. The same classification
model may be used for training and assessment sessions.

Guided user training is necessary for supervised BCI adaptation, during which the
users’ orders are enforced and the appropriate EEG class labels are therefore known. With
free BCI use, supervised adaptation is not feasible since the real label of the incoming EEG
data is unknown. The entering EEG data’s label is unknown with unsupervised adaptation.
As a result, unsupervised adaptation is based on an estimation of the data class labels for
retraining or updating, or it is based on class-unspecific adaptation, such as updating the
classifier model with the general all classes EEG data mean.

The weights given to each feature in a linear discriminant hyperplane, for example, are
adaptive classifier parameters that are progressively re-estimated and modified over time
when fresh EEG data become available. As a result, even with non-stationary inputs like
an EEG, the classifier can follow potentially changing feature distribution and continue to
function well. Both supervised and unsupervised adaptation, or knowing the actual class
labels of the incoming data, may be used by adaptive classifiers. In supervised adaptation,
the real class labels of the entering EEG signals are known, and the classifier is either
updated solely using the new data and retrained using the existing training data enriched
with the new, labelled incoming data.

3. A-SVM with ORICA-CSP Framework

It is proposed to pair the ORICA-CSP based feature extraction approach with an
adaptive support vector machine classifier. The suggested technique is used to differentiate
between four motor imagery tasks using actual EEG data from nine human individuals. In
an MI movement, the applicant imagines how the actual action would be executed, and the
EEG modality records the appropriate neuro-electric processes. There are several varieties
of EEG-based BCI, including single finger motions from one hand utilizing human EEG
signals, continuous arm movement using EEG signals, simple and compound limb motor
imagery, etc. The majority of research studies in the current MI literature are concerned
with two-class or three-class problems, such as left hand vs. right hand and left hand, right
hand, and feet, respectively. In this case, the two feet are treated as a single class. When
two-foot movement needs to be discriminated, between multiclass MI movement or more
than three class classification work, is always a difficult issue.

3.1. System Architecture

The overall system architecture is represented in Figure 1. The figure describes the
workflow with the proposed feature extraction and classification approaches. Initially, the
raw EEG signals are preprocessed with the ORICA approach to remove the signal artifacts
and the Common Spatial Pattern filter is generated to extract the features, which is then
sent for classification by the proposed Adaptive SVM based approach that classifies the
signals into four classes as Left hand, Right hand, Feet, and Tongue. This approach of signal
processing is explained further in detail.

3.2. Dataset Description

The BCI COMP IV 2a dataset, which was created from data collected from nine
people in the BNCI Horizon 2020 database, served as the basis for the Motor Imagery EEG
data used in this study. Four motor imagining tasks were included in the cue-based BCI
paradigm: left hand (class 1), right hand (class 2), both feet (class 3), and tongue movement
(class 4). Two separate sessions were videotaped for each subject on several days. In each
session, six runs were spaced apart by brief pauses. At the beginning of each session, a
recording of around five minutes was produced to gauge the EOG impact. Three segments
of the tape were used: two minutes of open eyes (gazing at a fixation cross on the screen),
one minute of closed eyes, and one minute of eye movements.
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Figure 1. System architecture.

Twenty-two Ag/AgCl electrodes with 3.5 cm between them were used to capture the
EEG. The left mastoid served as the reference and the right mastoid as the ground while all
signals were collected monopolarly. Data between 0.5 and 100 Hz were bandpass filtered
after being recorded at 250 Hz. The sensitivity of the amplifier was set at 100 volts. An
extra 50 Hz notch filter was turned on to lessen line noise. Along with the 22 EEG channels,
three monopolar EOG channels were also captured and sampled at 250 Hz. They had a
0.5 to 100 Hz bandpass filter applied to them (with the 50 Hz notch filter enabled), and the
amplifier’s sensitivity was set at 1 mV [25].

3.3. ORICA

To enable the ORICA algorithm and CSP appropriate for MI EEG data feature extrac-
tion, a novel framework is developed. The original sources may be successfully retrieved
using this framework and supplied to CSP as input for feature extraction. The ICA algo-
rithm’s goal is to identify the de-mixing matrix M−1, where M is the mixing matrix in the
recorded EEG signal, and then to recover the EEG sources. The independent source signals
may combine into dependent signals during the mixing process. The whitening procedure
is thought to address this issue by making the source independent by lowering the corre-
lation between the signals. The whitening process and the separation process, where the
whitened signals are applied for the de-mixing process, are therefore two processes that
make up the separation process.

The recordings will be separated into blocks, with the same number of samples in
each block, in order to simplify processing and make the method more universal and
usable. Instead of repeating the iteration for every sample, it will be done in brief blocks
of samples. The number of block sizes affects how quickly the method converges. The
effective duration of the time frame is determined by the forgetting factor. The appropriate
window length will be short if the value of the forgetting factor is high. A large beginning
value of the forgetting factor is often required to achieve rapid convergence, whereas a
lower starting value is employed to reduce variation.

To make the mixed sources independent, the signals after pre-processing are subjected
to the online whitening process. The artifact-contaminated MI EEG recording source is
accurately and successfully separated using the ORICA algorithm [26]. For each itera-
tion, the whitening matrix X and the de-mixing matrix W are computed according to
Equations (1) and (3), respectively, by adding the block-update rule on matrix W. Since the
iteration is processed in blocks instead of each sample, the computational complexity can
be reduced:
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Xi+1 = Xi +
ui

1− ui

[
I −

vi × vT
i

1 + ui
(
vT

i × vi − 1
)] × Xi (1)

where Xi, Whitening matrix; i, number of iterations; vi = Xixi, the whitened data; ui, factor
to be forgotten; I, an identity matrix:

Wi+1 = Wi + lr
[

I − f (ai)× aT
i

]
×Wi (2)

Wi+1 = Wi +
ui

1− ui

[
I − ai × f T(ai)

1 + ui( f T(ai − 1)

]
× Wi (3)

where W = M−1, demixing matrix a i = Wivi; lr, learning rate; f (ai), activation function.
Original EEG and EOG sources are restored once ORICA is applied. When people do

MI, just one specific area of the brain is activated. The contralateral areas over the motor
cortex, for instance, are active during hand imaging. The mid-central or parietal regions are
engaged in images of the feet and tongue. However, it is unknown which of the separated
components corresponds to the active region of the brain.

3.4. ORICA-CSP

Consider using the ORICA-processed characteristic elements of a motor imaging
process in an experiment as the input for the CSP algorithm. Calculations should be made
using the CSP feature extraction approach, and all feature vectors should be chosen to
create a spatial filter W for multiclass EEG data. Apply the aforementioned filter W on
data1 and use the filtered results as data 2. Do the math to get the data energy of the
number of independent components—also known as the number of channels.

To create a new filter W′, the feature vector that best represents the energy difference
between the various categories in each training set is chosen. Feature extraction is done
when filtering is done using the enhanced filter W′. The final features for classification
are acquired after performing a logarithmic transformation on the feature values due to
the significant variance between particular feature values. The ORICA-CSP working is
explained in the Algorithm 1.

Algorithm 1: ORICA-CSP algorithm.

Input decomposed EEG signal using HOL-SSA
for I = 1 to n

Compute Xi+1 = Xi +
ui

1−uI

[
I− vi∗vT

i
1+ui(vT

i ∗vi−1)

]
∗ I // whitening matrix

Compute Wi+1 = Wi +
ui

1−Ii

[
I− ai∗fT(ai)

1+ui(fT(ai−1)

]
∗ I // demixing matrix

end
for k=1 to 4
Compute
Sk = UKUT

K / trace (UKUT
K)

Uo ∆UT
o// diagonal decomposition

M =∆−1/2 UT
o// whitening matrix

Compute Wk and W′k// whitening covariance matrices Sk and S′k
Wk = MSkMT

W′k = MS′kMT

Compute Pk = UT
k ∗M

Decompose Sk= Dk/Pks
Generate Ps = ∑4

k=1 Pks
end
for trial t=1 to n
Compute fv = log(Vm/ ∑t=1 Vm)// Vm, variance matrix
end
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The separated sources are sent for feature extraction through the construction of a
spatial filter W for multiclass EEG data, using the filter W to select the most obvious feature
vector of the energy difference between different categories in each training set to form a
new filter W’. This is done after the whitening matrix X and the de-mixing matrix W have
been computed in accordance with Equations (2) and (3), respectively. The final features
for classification are acquired after performing a logarithmic transformation on the feature
values because of the significant variance between particular feature values.

Current brain–computer interfaces raise concerns about the non-stationarity of the
underlying signals. It becomes difficult to transfer a classifier from one session to the next
as a result, and the need for input sample collection at the conclusion of each session results.
Employing an adaptive classifier is one way to maintain performance while lowering the
likelihood of the training required for ideal BCI performance. It is suggested to use an
adaptive classification method based on support vector machines.

Due to its effective classification performance, versatility in handling multi-dimensional
data, and explicit error control, SVM is a popular classification paradigm in BCI systems.
The fundamental goal of SVM is to build hyperplanes with the highest possible classifica-
tion accuracy by reducing the cost function and maximizing the margins between classes.
Support vectors display hyperplanes.

The main advantage of SVM is that it can be used as both an inconsistent and a
consistent classifier. SVM may be turned into an inconsistent classifier by using one of
the numerous kinds of kernel functions available, such as polynomial, radial basis, and
sigmoid functions. In the current investigation, a sigmoid function was employed. Platt’s
probabilistic output is used to determine the sigmoid function that calculates the posterior
class probabilities vj. Since it has been shown to outperform consistent classifiers in terms
of classification accuracy, an inconsistent SVM was chosen. The accuracy of the BCI system
may be significantly higher after adaptation than it would be without adaptation, showing
that online BCI adaptation improves performance. The Algorithm 2 below explains how
the adaptive SVM works with the ORICA-CSP feature extraction approach.

Algorithm 2: A-SVM with ORICA-CSP.

Step 1: Input features vectors
fv = log(Vm/ ∑t=1 Vm)
//Vm, variance matrix of EEG signal projection
Step 2: Determine the class label with function
f(si ) = (w, si ) + b
//si ∈ , . . . , sN }
Step 3: Classify the new sample by uj and vj
//uj= sign(f(si )) and the posterior class probability, vj= Pb

(
vj = vj|si ) is calculated using

Platt’s probabilistic output.
//Classifier is adapted with uj and vj
Step 4: Define threshold th
Step 5: if vj > th holIs, si is introduced to the dataset for training T
Step 6: Update whenever new samples are included in the solution

To avoid completely retraining each iteration, we adopted an incremental training
strategy. Every time a new sample is added, the adaptive SVM will progressively update
the solution. Due to its increased speed and ability to handle high-dimensional data,
the adaptive classifier may now be employed in an online setting. The algorithm above
explains how the Adaptive SVM works in terms of classification. Determine the class labels
using the training data samples si as indicated in step 2. If the posterior class probability
is higher than the threshold set, the classifier should be updated with the new data when
new samples like uj and vj are discovered.
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4. Results and Discussion

The signal variable comprises 25 channels that are processed between 8 and 12 Hz
(the latter three are EOG signals, while the first 22 are EEG signals). The EOG channels
should not be utilized for classification; instead, they should be used for artifact processing
operations thereafter. Here, the artifact removal strategy is the ORICA method.

The accuracy of the classifier and the associated Information Transfer Rate (ITR)
were determined in order to assess the results from several sessions and for the various
adaption approaches.

Although the ITR is a commonly used indicator of BCI performance that takes into
account a better correlation of different BCI frameworks, it is a way for evaluating the
BCI execution that ignores the actual plan of the BCI application and will thus often
overestimate the performance. ITR and accuracy are used to gauge how well the suggested
technique is working.

The analysis of artifact removal from the motor imagery signals using the proposed
method is explained below. Figure 2 represents the channels used to acquire the motor
imagery signals and their locations. The signals acquired by each of these channels are
represented in Figure 3 as channel data. These signals are further decomposed using the
proposed decomposition approach and the topoplots of all the independent components
are shown in Figure 4.
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A sample of two component’s topoplot is explained below for analysis. Figure 5
depicts the topoplot of component 12 and the presence of brain signals and other artifacts.
The ERP (Event Related Potential) of component 12 is represented in Figure 6. Similarly,
the presence of EEG signals and artifacts in the other components are shown in Table 1.
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Table 1. EEG and artifacts present in the observed signals. 

Components/ 
Signals 

EEG 
(%) 

Muscle 
(%) Eye (%) 

Heart 
(%) 

Line Noise 
(%) 

Channel 
Noise (%) Other (%) 

IC 1 37.1 7.0 0.2 1.0 3.9 2.5 48.2 
IC 2 6.9 26.5 0.6 0.1 2.1 2.7 61.1 
IC 3 4.9 38.7 0.0 0.2 1.5 0.7 53.9 
IC 4 91.7 0.3 0.0 0.1 4.4 0.0 3.6 
IC 5 39.8 0.4 0.1 0.8 16.2 0.0 42.7 
IC 6 78.1 1.5 0.2 1.3 0.5 0.7 17.6 
IC 7 73.6 1.4 0.0 0.3 12.2 0.1 12.5 
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Table 1. EEG and artifacts present in the observed signals.

Components/
Signals EEG (%) Muscle (%) Eye (%) Heart (%) Line Noise

(%)
Channel

Noise (%) Other (%)

IC 1 37.1 7.0 0.2 1.0 3.9 2.5 48.2

IC 2 6.9 26.5 0.6 0.1 2.1 2.7 61.1

IC 3 4.9 38.7 0.0 0.2 1.5 0.7 53.9

IC 4 91.7 0.3 0.0 0.1 4.4 0.0 3.6

IC 5 39.8 0.4 0.1 0.8 16.2 0.0 42.7

IC 6 78.1 1.5 0.2 1.3 0.5 0.7 17.6

IC 7 73.6 1.4 0.0 0.3 12.2 0.1 12.5

IC 8 42 0.8 0.2 0.2 2.5 0.5 21.5

IC 9 91.7 0.1 0.0 0.1 4.1 0.0 3.9

IC 10 67.0 0.0 0.0 0.0 8.3 0.0 24.7

IC 11 91.0 0.0 0.0 0.1 0.9 0.0 8.0

IC 12 21.6 0.3 0.4 0.1 44.0 1.6 32.0

IC 13 84.3 8.5 0.1 0.4 1.7 0.1 4.9

IC 14 43.4 0.5 0.1 3.2 36.5 3.4 12.9

IC 15 6.1 0.9 0.1 3.1 3.9 5.3 80.4

IC 16 99.1 0.0 0.0 0.6 0.1 0.0 0.2

IC 17 12.3 3.2 2.6 0.3 5.9 0.7 75.0

IC 18 95.8 0.0 0.0 0.0 2.2 0.1 1.9

IC 19 0.5 0.1 0.0 1.4 5.5 0.2 92.2

IC 20 42.5 0.8 0.1 0.2 16.6 0.1 39.8

IC 21 2.5 0.9 9.6 0.2 8.3 0.8 77.8

IC 22 5.2 2.0 8.9 0.2 2.7 5.1 75.9

IC 23 5.2 2.0 8.8 0.2 2.7 5.1 76.1

IC 24 1.6 0.3 0.3 0.5 31.2 0.5 65.7

IC 25 4.5 3.2 0.2 6.0 5.9 0.6 79.6

With the Online Recursive Independent Component Analysis approach of artifact
removal, the original source signal is separated from the other artifact signals. This sepa-
ration of signal is represented in Figure 7 where the signals in red denote the artifact free
EEG signals.

The categorization of imaginary motor tasks for EEG-based BCI using the ORICA-CSP
feature extraction method is the focus of this work. The effectiveness of the suggested
method is evaluated using dataset 2a from the BCI Competition IV’s multiclass problem.
The performances were contrasted with those of the other publicly available approaches,
CSP and ICA + Wavelet-CSP. According to our study, using the ORICA+CSP feature extrac-
tion approach in combination with adaptive classification would boost the classification
accuracy since it provided much higher kappa values than other methods, as will be
detailed below.
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The results of the suggested approach are compared to those of the Wavelet-CSP on
the BCI Competition IV 2a and the results of the standard CSP based on the 8–30 Hz IIR
band-pass filters (4 class motor imagery dataset). A kappa coefficient (k) was utilized in
this competition as a criterion of uniqueness. Table 2 displays the k values for the two
techniques as well as the suggested strategy. In comparison to Wavelet-CSP and traditional
CSP with a band-pass filter, the suggested technique yields an average k value of 0.75
rather than 0.68 and 0.51, respectively. Figure 8 also shows the performance analysis of
each participant using a different feature extraction approach, and Figure 9 compares the
average results.

Table 2. Performance comparison of every participant in terms of Cohen’s Kappa coefficient.

Subject/ Participants CSP ICA + Wavelet-CSP ORICA + CSP

A01 0.69 0.75 0.79

A02 0.34 0.61 0.76

A03 0.71 0.80 0.86

A04 0.44 0.63 0.71

A05 0.16 0.57 0.69

A06 0.21 0.52 0.61

A07 0.66 0.77 0.82

A08 0.73 0.74 0.81

A09 0.69 0.72 0.76

Mean 0.51 0.68 0.75
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The results of the proposed method are compared to those of the ORICA-CSP method,
which produces better results because it computes complex-valued spatial filters instead of
choosing a wavelet function that necessitates the extraction of sources’ prior knowledge,
as opposed to the Wavelet-CSP method. This enhancement raises the possibility that
spatial filters derived from ORICA-CSP might offer more information on the interactions
between different cortical areas when mental activities are being carried out. Our findings
essentially indicate that ORICA-CSP produced a more reliable motor imaging feature
extraction than the conventional CSP and Wavelet-CSP methods. This indicates that a
greater categorization success rate may result from the suggested strategy. The major cause
of this situation is the noise sensitivity of traditional CSP.

The signal quality change will be accompanied by variations in the classification
success rate. Studies have shown a frequency overlap between the artifacts and the motor
imagery signals. Since the Wavelet-CSP depends on the chosen wavelet function and an
8–30 Hz IIR band-pass filter cannot only eliminate certain distortions but also runs the risk
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of damaging motor imagery signals, choosing a wavelet function necessitates extracting
previous knowledge from the sources.

However, by isolating the motor imagery signals from the raw EEG to eliminate the
artifacts, the ICA approach may better preserve the integral of the motor-related signals.
However, the ORICA method outperforms the conventional ICA in terms of efficiency
when compared to high-density EEG data. This suggests that the ORICA algorithm is a
viable technique for live time series identification since it has the capacity to adapt to the
immediate mixing. Therefore, the suggested approaches may retain accurate classification
results even when the raw EEG is of low quality.

The results in Table 3 are the comparative analysis of the LDA, SVM, Adaptive LDA,
and Adaptive SVM based classification approaches applied on the acquired motor imagery
signals from nine subjects. In addition, the corresponding Information Transfer Rate (ITR)
for the accuracy achieved is represented in Table 4.

Table 3. Results of LDA, SVM, A-LDA, and A-SVM in terms of accuracy on Motor Imagery data.

Subjects/Participants LDA (%) SVM (%) A-LDA (%) A-SVM (%)

A01 79 90 85.6 90.1

A02 79.5 88.8 89.3 91.3

A03 81.1 87.6 87 88

A04 81.7 87.2 82.2 90.8

A05 75.9 88.9 84.8 92.2

A06 79.8 87.8 85.8 85.9

A07 80.9 89.2 85.7 89.2

A08 79.8 86.5 86.9 88.9

A09 78.2 90.5 82.6 89.6

Mean 81 89 86 91

Table 4. Results of LDA, SVM, A-LDA, and A-SVM in terms of ITR (bits/min) on Motor Imagery data.

Subject/Participants LDA SVM A-LDA A-SVM

A01 246.39 365.33 313.33 366.60

A02 251.08 350.44 356.57 382.16

A03 266.46 336.11 329.13 340.83

A04 272.39 331.44 277.41 375.60

A05 218.62 351.66 304.58 394.29

A06 253.91 338.46 315.55 316.66

A07 264.50 355.34 314.44 355.34

A08 253.91 323.42 327.98 351.66

A09 239.02 371.71 281.47 360.30

Mean 251.808 347.101 313.384 360.382

This analysis is also represented in Figure 10. From this experimentation, it is observed
that Adaptive SVM based classification achieves better accuracy with an average of 91%
compared to the linear SVM, LDA, and Adaptive LDA classification which resulted in an
accuracy of 89%, 81%, and 86%, respectively, with the proposed approach of ORICA-CSP
based feature extraction where ORICA-CSP seems to perform better with all the classifiers
used for analysis. Similarly, the Information Transfer Rate represented in Table 4 reports
Adaptive SVM with the highest rate of 360.38 bits/min, whereas the other classifiers used
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in the comparative study linear SVM, LDA, and Adaptive LDA have achieved 347.10
bits/min, 251.80 bits/min, and 313.38 bits/min, respectively.
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The classification of the same motor imagery signals achieved with the LDA, SVM,
A-LDA, and A-SVM with different existing and proposed feature extraction methods of
CSP, ICA+Wavelet-CSP, and ORICA-CSP are presented in Table 5. It is observed from the
results that the Adaptive Support Vector Machine and other classifiers achieve the highest
accuracy with the proposed ORICA-CSP approach of feature extraction compared to the
CSP and ICA+Wavelet-CSP approach. This comparison analysis is explained graphically in
Figure 11.

Table 5. The average classification accuracy of several feature extraction techniques is compared.

Feature Extraction/Classifier LDA SVM A-LDA A-SVM

CSP 0.69 0.72 0.73 0.81

ICA-Wavelet-CSP 0.78 0.82 0.81 0.86

ORICA-CSP 0.81 0.89 0.86 0.91
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Highlighting the proposed results, Figure 12 is constructed to represent the accuracy
achieved by the Adaptive Support Vector Machine with the CSP, ICA-Wavelet-CSP, and
ORICA-CSP feature extraction approaches which are 0.81, 0.86, and 0.91, respectively,
where A-SVM seems to perform better with ORICA-CSP comparatively. Similarly, Figure 13
depicts the ORICA-CSP feature extraction approach applied on the LDA, SVM, A-LDA,
and A-SVM methods, which resulted in an accuracy of 0.81, 0.89, 0.86, and 0.91, respectively.
It is observed that ORICA-CSP with LDA performs much better comparatively.
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5. Conclusions

The proposed work attempted to use the adaptive classifier on the Motor Imagery
based BCI which was not tried earlier in the past. The classifier used was an adaptive
SVM classifier implemented on the BCI COMP IV 2a, four class MI EEG signals. The
benefits of the ORICA-CSP feature extraction method are combined with the Adaptive
SVM based classifier in the proposed work to optimize the classification accuracy and the
information transfer rate. The Adaptive SVM classifier proved to produce better accuracy
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compared to the existing LDA and adaptive LDA based classifiers as LDAs are not highly
applicable on nonlinear problems and as they are preferred only for a smaller number of
samples. Similarly, the accuracy of the ORICA-CSP feature extraction method is compared
with other classifiers to check the accuracy level that has been achieved for the four class
MI signals. The experimentation is carried with different combinations of the discussed
feature extraction and classification techniques. Upon conclusion, it is observed that the
proposed Adaptive SVM with the ORICA-CSP feature extraction method is found to result
in an improved accuracy and rate of information transfer on the preferred MI. The work is
planned to be enhanced under two phase classification in future.
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