
����������
�������

Citation: Ding, S.; Li, Z.; Zhang, K.;

Mao, F. A Comparative Study of

Frequent Pattern Mining with

Trajectory Data. Sensors 2022, 22, 7608.

https://doi.org/10.3390/s22197608

Academic Editor: Felipe Jiménez

Received: 24 August 2022

Accepted: 30 September 2022

Published: 7 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Comparative Study of Frequent Pattern Mining with
Trajectory Data
Shiting Ding 1, Zhiheng Li 1,*, Kai Zhang 1,2 and Feng Mao 1

1 Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
2 Research Institute of Tsinghua, Pearl River Delta, Guangzhou 510530, China
* Correspondence: zhhli@mails.tsinghua.edu.cn

Abstract: Sequential pattern mining (SPM) is a major class of data mining topics with a wide
range of applications. The continuity and uncertain nature of trajectory data make it distinctively
different from typical transactional data, which requires additional data transformation to prepare
for SPM. However, little research focuses on comparing the performance of SPM algorithms and
their applications in the context of trajectory data. This study selected some representative sequential
pattern mining algorithms and evaluated them with various parameters to understand the effect of
the involved parameters on their performances. We studied the resultant sequential patterns, runtime,
and RAM consumption in the context of the taxi trajectory dataset, the T-drive dataset. It was
demonstrated in this work that a method to discretize trajectory data and different SPM algorithms
were performed on trajectory databases. The results were visualized on actual Beijing road maps,
reflecting traffic congestion conditions. Results demonstrated contiguous constraint-based algorithms
could provide a concise representation of output sequences and functions at low min_sup with
balanced RAM consumption and execution time. This study can be used as a guide for academics
and professionals when determining the most suitable SPM algorithm for applications that involve
trajectory data.

Keywords: data mining; vehicle trajectory; sequential pattern mining; traffic congestion

1. Introduction

Location-detection devices such as GPS and FRID provide the ability to log an ob-
ject’s travel pattern. Trajectories denote the paths traced by bodies moving in space over
time [1].They are captured periodically by these devices installed on moving bodies as
sequences of geographical coordinates and timestamps. Every day, enormous amounts of
data are created and collected. Additionally, the movement of objects generally follows
frequently repeated patterns. Trajectory pattern discovery has applications in movement
prediction [2–4], region of interest discovery [5], and the study of traffic flow or conges-
tion [6]. Therefore, extracting implicit and valuable patterns from vast databases of location
data has attracted great interest in recent years.

This work focuses on extracting knowledge from vehicle trajectories through Sequen-
tial Pattern Mining (SPM). SPM is used to find sequences whose ratio of occurrences exceeds
a user-defined minimum threshold [7–9]. The resulting frequently occurring sequences that
are retrieved can be used to find connections between different objects or events. A similar
concept can be extended to trajectory data, where sequential patterns are collections of
geographical locations that several moving objects visit in a particular order. Therefore,
applying SPM on trajectory data gives rise to frequently appearing sequences of locations,
which provide insights into the travel pattern of the subjects. Analyzing and predicting
travel behavior is facilitated by thoroughly understanding residents’ travel patterns, pro-
viding valuable insights into socioeconomic dynamics. These mining objectives are best
achieved with taxi trajectory data since it is ofhigh quality, consistent, and has a wide
distribution [10]. Hence, this work uses Microsoft T-drive taxi trajectory data [11,12].

Sensors 2022, 22, 7608. https://doi.org/10.3390/s22197608 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197608
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5826-3765
https://doi.org/10.3390/s22197608
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197608?type=check_update&version=2

Sensors 2022, 22, 7608 2 of 17

Trajectories are essentially spatio-temporal records of vehicles. Performing SPM with
vehicle trajectory is problematic for two reasons: (1) Spatial uncertainty and noisy trajectory
recordings plague GPS technology. It is impossible to have vehicles visit the exact locations.
For example, two vehicles may travel on the same stretch of road, but their recorded
coordinates rarely match precisely. Therefore, finding frequent travel patterns necessitates
some level of fuzziness. (2) SPM requires sequences of discrete items. However, each
trajectory commonly contains hundreds and thousands of GPS points without any pre-
defined segmentation, presenting a redundancy issue. Worst still, the trajectories recorded
are far from discrete. Due to these characteristics of the trajectory data, many SPM methods
now in use often result in enormous, repetitive, and indecipherable outputs [13].

Addressing these issues requires transforming trajectory data into formats compatible
with current sequential pattern mining systems. An abstract method of segmenting the
trajectories is essential, ensuring the fuzziness of data while reducing the size of the data
and, at the same time, discretizing continuous data. Trajectory simplification methods
such as grid-based or clustering-based segmentation can be applied to get discretized
trajectories and remove spatial uncertainty, thereby preparing trajectory data for SPM
algorithms [1,14,15]. Obtaining a smaller, less redundant set of sequential patterns can
be resolved by enforcing constraints such as closed, maximal, or contiguous [7,16,17].
For example, by enforcing contiguous constraints, items in resultant patterns must also be
adjacent in the original sequence. Such an approach can be observed in [18].

Until now, there has not been much comparative work that extensively examines and
summarizes the performance of the various SPM types in the context of trajectory data.
Furthermore, most of the recent works either focus on introducing trajectory data mining
and provide little clues on the application of SPM on trajectory data, such as [1,19,20],
or focus on the overview of SPM, such as in [7,21]. Therefore, through extensive experi-
ments, this work presented the performances and behaviors of several SPM algorithms,
namely GSP, CM-SPADE, PrefixSpan, CM-Clasp, CloFast, MaxSP, VMSP, and CM-SPAM.
This work served as a reference for those interested in implementing the SPM algorithms
in trajectory-related applications. The process of searching for and choosing a suitable
algorithm is time-consuming. With such a reference guide, users can therefore pick the
most appropriate algorithm based on the application scenario promptly.

The remainder of the paper is structured as follows: Section 2 introduces the defini-
tions and problems of sequential pattern mining. Section 3 elaborates on representative
sequential mining algorithms and constraint-based SPM based on their approaches, some
of which were used in this comparative study. Section 4 describes the data processing
procedure and experiment details. Section 5 presents and discusses the results of mining
T-drive data using different SPM algorithms. Finally, this paper concludes with Section 6.

2. Preliminary and Problem Statement

This section clarifies some basic terminologies and definitions to better illustrate
sequential pattern mining and its application on trajectory data.

2.1. Itemset, Sequences and Support

In a sequence database, sequential patterns refer to itemsets arranged according to their
inherent orders, such as time of occurrence [22]. An itemset is a subset of items, whereas an
item is an entity that can have properties such as date, time, size, colour, speed, coordinates,
etc. Let I = i1, i2, . . . , in be a non-empty set of items. An itemset X = x1, x2, . . . , xm is a set of
items where X ⊆ I. A sequence s is an ordered list of itemsets denoted by < X1, X2, . . . Xj >
where Xk ⊆ I for 1 ≤ k ≤ j and itemset Xk is an element of sequence s. An item can appear
more than once in different sequence elements, but only once in any element.

The length of sequences is the total number of items in all elements in a sequence
s, denoted by length(s). The size of a sequence s is the total number of elements in s
denoted by size(s). As an example, s1 =< a, b, c > has length(s1) = 3 , or |s1| = 3
and size(s1) = 3. s1 can be described as a 3-sequence containing three items, whereas

Sensors 2022, 22, 7608 3 of 17

another sequence s2 =< (ab), c > has a length(s2) = 3 and a size(s2) = 2. A sequence
sy =< Y1, Y2, . . . , Yn > is a subsequence of sequence sx =< X1, X2, . . . , Xm > and sx is also
called a super-sequence of sy where sx contains sy, i.e., sy ⊆ sxif an only if there exists
integers 1 ≤ j1 < j2 < · · · < jn ≤ m such that Y1 ⊆ X(j1), Y2 ⊆ X(j2), . . . , Yn ⊆ X(jm).
For instance, s2 =< a, b, c > is a subsequence of s3 =< a, b, c, d > and s3 is said to be a
super sequence of s2.

A sequence database SDB is a set of tuples < id, s > where id is the identifier of se-
quences and s is a sequence. An example of a sequence database containing four sequences
is shown in Table 1. Taking this idea further, it can be observed that each id represents a
specific vehicle, and each sequence represents a vehicle’s collective trajectory over time.

Table 1. An example of sequence database.

id Sequence

1 <a, b, c>
2 <(ab), c>
3 <(ab), c, d>

2.2. Motivation

The problem of frequent itemset mining to discover frequently appearing items in a
relational database was proposed by Agrawal, Imieliński, and Swami in 1993 [23]. Along
with the concept, the Apriori algorithm was proposed. Sequential pattern mining extended
from itemset mining and was introduced by Agrawal and Srikant in 1995 [9]. It considered
orders by discovering subsequences in a set of sequences and aims to discover frequent
sequential patterns. A sequential pattern is defined as a set of itemsets arranged in a
sequence database occurring sequentially in a specific order, i.e., time. The number of
tuples or the number of ids in D is denoted as |D|. Support is the frequency of a subsequence
sa in D is denoted by sup denoted by (1) :

sup =
o f sequences contains sa

Total # o f sequences in D
(1)

Minimum support threshold min_sup is an user-defined parameter. The result of
frequent pattern mining requires the support of subsequences to meet the user-defined
minimum threshold min_sup for a subsequence to be considered frequent. The task of
frequent itemsets mining in a large transaction database is challenging as a massive number
of distinct single items can give rise to many combinations. Consider a pattern of length m.
Such pattern gives (m

1) sub-patterns of length 1; and (m
2) sub-patterns of length 2 and so on

until (m
m) sub-patterns of length m. Therefore, the total number of sub-patterns in a pattern

of length m will be (m
1) + (m

2) + . . . + (m
m) = 2m − 1. Suppose C denotes the power-set of a

set of items in I. As shown by the (2), the goal of mining is to discover recurring itemsets
among |Cmin_sup| different possibilities:

|Cmin_sum| =
m

∑
k=1

m
k
− 1 = 2m − 1 (2)

Hence, if Sn is the possible frequent sequences within n itemsets, then the value of Sn
is represented by (3):

Sn = |Cmin_sup|n = (2m − 1)n (3)

Apriori exhibits a downward closure property, in which the key concept is that the
support of a k-itemset is less than a threshold t if the support of all its subsets is less
than that t. In other words, all subsets of any frequent itemset must also be frequent [22].
As a result, all of an itemset’s extensions will also be rare if the itemset itself is rare in

Sensors 2022, 22, 7608 4 of 17

the database. The foundation for frequent pattern mining algorithms, such as sequential
pattern mining, is provided by this characteristic.

2.3. Trajectory Data

Trajectory data is a type of spatio-temporal data that describes the paths traveled by
moving objects in space over time [1,24] One example of such data would be the route
taken by a taxi from one point, i.e., a pick-up point, to another point, i.e., a drop-off point.
Trajectory data is defined as a set T = (x1, y1, t1), (x2, y2, t2). . . (xn, yn, tn) of trajectories such
that ti < t(i+1) for all i ∈ 1, . . . , n and each (xi, yi, ti) is a data point denoting the geo-spatial
coordinates of a moving object in the form of latitude (xi) and longitude (yi) at time ti. A sub-
trajectory t is a subset of T such that t contains all data points in T between the time interval
[ti, tj] where ti < tj. Trajectory data must be organized in a structured sequence database
to extract frequent trajectory patterns. A sequence database SDB is a collection of tuples
<id, s> where each id identify a sequence s. Here, the id identifies the trajectory data of
each vehicle, and s is the corresponding trajectories T = (x1, y1, t1), (x2, y2, t2). . . (xn, yn, tn).
Geographical coordinates and timestamps can be interpreted as a time-ordered array
of itemsets. Considering a vehicle can only be at a location at once, a trajectory, unlike
a standard sequence database, cannot appear numerous times in different itemset in a
sequence. Therefore, a trajectory database must contain sequences with itemsets arranged
in ascending order based on the timestamp. In conclusion, the purpose of sequential pattern
mining of trajectory data is to find common sequences of locations that different moving
objects visited in ascending order of timestamps.

2.4. Trajectory Segmentation

SPM works with sequences of discrete items. There is no pre-defined segmentation of
trajectories, and the trajectories recorded are far from discrete. Consequently, many existing
SPM approaches generate redundant and incomprehensible patterns. This complex nature
of trajectory data requires a segmentation method that splits them into disjoint, smaller,
and discrete sub-trajectories before any sequential pattern extraction can proceed. Vehicles
may visit locations that do not exactly match GPS coordinates but are close geographically
and can be considered part of the same pattern [24]. Extending from that, the trajectory
of the typical sequential pattern will follow a similar spatial path but will not necessarily
be the same. There should therefore be some fuzziness in frequent patterns. Therefore,
frequent patterns should have a certain level of fuzziness.

Methods such as the grid-based [19,25,26] or clustering-based method [27,28] may be
employed to segment the trajectories in spatial aspects in preparation for further studies.
For example, a work by Tsoukatos and Gunopulos in 2001 used the grid-based method,
where ordered sequences of rectangular regions are used to define sequential patterns [25].
This method generally groups the GPS points nearby using grids. The entire city, or any
space containing all the trajectory data, is divided into grids with user-defined grid sizes.
Each grid is considered a sub-region, each with its unique ID. GPS points within this
sub-region are denoted by the same grid ID, thereby transforming trajectories from a series
of points to a series of grid IDs. Then, from these sequences of grids, frequent sequential
patterns are found.

Contrarily, clustering-based methods are unsupervised methods that cluster sub-
trajectories based on metrics such as time intervals or distances depending on the clustering
algorithm. After clustering, points belonging to the same cluster will be labeled with the
cluster ID, similar to the grid-based method. Eventually, trajectories will be transformed
into a series of cluster IDs. On the other hand, clustering methods rely on the nature of the
data to determine parameters such as the number of centroids k (for k-means clustering)
or minPts and epsilon (for density-based clustering methods like DBSCAN and OPTICS).
Prior work by Karsoum et al. compared these two approaches [15]. Results demonstrate
that although the density-based method has a faster execution time, grid-based methods
can discover more hidden patterns with the same parameters (i.e., min_sup).

Sensors 2022, 22, 7608 5 of 17

3. Sequential Pattern Mining Algorithms

Pattern mining algorithms differ in several ways: (1) the candidate search method,
such as breadth-first or depth-first search, and (2) the database representation. For ex-
ample, the database described previously is an implementation of a horizontal database.
Sequential pattern mining is computationally more intensive than itemset mining as many
intermediate candidates or subsequences must be generated and verified during the pro-
cess. A typical sequential pattern mining algorithm always aims to find all the patterns
given a database and the min_sup threshold. When mining long sequences, having mas-
sive databases, or small min_sup, the computational resources required may become the
limiting factor. According to (2), a frequent 100-sequence will give rise to 2100 − 1 frequent
subsequences with a min_sup of 1. Also, the algorithms sometimes demand too much
computing power, preventing them from completing the search. Many efforts have been
made to increase the efficiency of algorithms. Some directions of optimization can be:
(1) reducing intermediate candidate size, (2) fewer database scans, (3) limiting the search
space, and (4) optimizing candidate generation and support counting phase.

Besides computational inefficiency, the algorithms often output a massively large
number of frequent patterns. Redundant and meaningless patterns in the output caused
users to spend additional time and effort searching for patterns of interest. Mining trajectory
sequential patterns, which often have long sequences, poses the challenge of obtaining a
smaller, less redundant set of sequential patterns. These challenges can be overcome by
using constraint-based SPM. This diversion of SPM allows results to be summarized as a
concise representation of a complete set of frequent patterns without extracting the entire
set meaningfully.

This section first introduced three main types of search techniques and their rep-
resentative algorithms, followed by three different constraints and the algorithms that
enforced them.

3.1. Breadth-First Search

The Apriori algorithm was proposed to deal with the problem of frequent itemset min-
ing [23]. The algorithm is designed for mining frequently occurring itemsets by applying
the downward closure property, which states that if an itemset is infrequent in the database,
all its extensions would also be infrequent [22]. It is particularly useful during pruning by
greatly reducing the search space. However, Apriori does not account for orders, causing
it to fail in situations where orders matter, such as time-series data and text. Sequential
pattern mining was subsequently introduced [9]. Prior to expanding them to longer se-
quences, AprioriAll first determines which item is frequently observed in the database. It
proceeds in a two-step manner: candidate generation followed by support counting. In can-
didate generation, the algorithm first searches for the frequent 1-sequences (i.e., sequences
containing a single item) and generates 2-sequences by extending the 1-sequences.

Similarly, 3-sequences are generated with 2-sequences. The process continues until no
further extensions can be made. This approach is also known as the level-wise or breadth-
first approach [7,22]. Each n-sequence extension scans the whole database. The search space
with such approaches can become monumental as they always consider the worst-case and
explore all possible sequences [7]. In the support counting phase, AprioriAll employs a hash
tree to count the generated sequential patterns and remove unwanted patterns. Various
improvements have later been proposed to increase the efficiency of the Apriori-based
algorithm, but techniques such as the two-step approach and hash-tree-based support
counting in AprioriAll remain inspirational for newer algorithms.

The authors of the Apriori algorithm, Agrawal and Srikant, proposed an improved
version named Generalized Sequential Patterns (GSP) in 1996 [29]. GSP adopts a similar
type of horizontal database as Apriori and also uses the breadth-first search for frequent
sequential pattern discovery. GSP attempts to generalize sequential pattern mining by em-
ploying time restrictions, sliding time windows, and taxonomies in sequential patterns [22].
Like AprioriAll, GSP follows a two-step approach where all candidates are generated prior

Sensors 2022, 22, 7608 6 of 17

to support counting. However, GSP keeps all k-sequences in memory to extend and gen-
erate k + 1-sequences [7]. By merging smaller patterns, this tactic allows GSP to generate
candidates without repeatedly visiting the database. Although this reduces the number of
database scans, much time and space is wasted on non-existent candidates. In the second
step, GSP performs multiple database scans to calculate the support, which is very costly
for large databases.

3.2. Depth-First Search

Unlike breadth-first search, the depth-first search algorithm starts with sequences
containing single items, i.e., 1-sequence, and recursively extends one of the sequences
until exhausted. Then, the algorithm returns and extends another 1-sequence to generate
other sequential patterns. This search strategy was employed in the SPADE (Sequential
Pattern Discovery Algorithm Using Equivalence Classes) by Zaki in 2001 [30]. SPADE
creates an IDList for each item, indicating that particular item’s position in the respective
sequence. An IDList is a vertical database representation. All IDLists are generated together
by scanning the horizontal database once. The horizontal database can be reconstructed
from corresponding vertical databases. The support counting step is greatly simplified
as all frequent patterns can be enumerated by performing the joins of IDLists, hence
calculating the support of any pattern directly. Subsequently, it checks the cardinality of the
resulting id-list against min_sup to ensure that all subsequences of the resulting sequence
are frequent. Adopting such approaches improved the performance significantly compared
to breadth-first search algorithms without the need to perform multiple databases or
maintain candidates in memory.

However, the issue of the non-existence candidates persisted as the candidate gener-
ation procedure made no references to original databases. Furthermore, when a pattern
appears in many sequences, the join operation of IDList remains costly in a large database,
especially a dense one or long sequence database. Co-occurrence pruning was introduced
by Fournier-Viger et al. in CM-SPADE to minimize join operations [31]. A co-occurrence
map was created during the initial database scanning, which stores all frequent 2-sequences.
If the last two items of any sequence are not in the co-occurrence map, the sequence is elim-
inated directly without constructing IDLists, thus reducing the number of join operations.

Another strategy using bitmap representation of vertical databases is employed in
SPAM [32]. For each item, a bitmap with a bit of 0 or 1, depending on the appearance of such
an item in each pattern, is generated. Such a data layout makes SPAM perform efficient
support counting and is capable of online outputting the resultant pattern. However,
SPAM is relatively space-inefficient. It needs to fit the entire database and data structure
into memory. This makes large trajectory data possibly incomprehensible when memory
resources are limited. Similarly, co-occurrence pruning was added in CM-SPAM to enhance
the performance of SPAM.

3.3. Pattern-Growth

Besides utilizing a vertical database, another way of optimizing the frequent pattern
mining process is by establishing a frequent pattern tree (FP-tree) structure projected
database, which is a more efficient variation of the horizontal database and extends from
the prefix tree during the depth-first search [33,34]. Such an approach eliminates the
costly task of candidate generation as it gradually grows trees of frequent itemsets during
projected database generation. The original database is divided into a series of projected
databases, with each itemset projected to no more than one of the projected databases.
The size of the resulting database is always less than that of the original database. Next,
this method starts from a frequent pattern of length 1, or suffix pattern, and recursively
extends the pattern from sub-databases consisting of the set of frequent items co-occurring
with the suffix pattern [33]. Larger patterns form as the algorithm recursively concatenates
items to suffix patterns, eventually resulting in a constructed FP-tree. During the process,
sets of frequent patterns under the same suffix pattern are ordered in descending supports.

Sensors 2022, 22, 7608 7 of 17

The FP-tree-based mining approach achieves efficiency in three ways: (1) Using a highly
condensed database that reduces the number of database scans to two, hence avoiding
multiple database scans; (2) Using a pattern fragment growth method to avoid massive
candidate sets; and (3) Using a partitioning-based, divide-and-conquer method to reduce
colossal search space.

However, the FP-tree is unsuitable for sequential mining as sub-sequences with dif-
ferent orderings cannot be re-ordered and considered the same pattern, leading to a vast,
non-collapsible database. In the worst-case scenario, database projection will require copy-
ing almost the entire database. Based on the idea of FP-tree, Pei, Han et al. developed Pre-
fixSpan (Prefix-projected Sequential pattern mining) and extended it to sequential pattern
mining [35]. In PrefixSpan, the corresponding postfix subsequences of prefix subsequences
in sequence databases are recursively projected into smaller databases. Upon completion,
each projected database considers only frequent local patterns to grow the sequential
pattern trees. When the database is huge, the main-memory-based pseudo-projection
techniques in PrefixSpan, which consider the projected database as a set of pointers on the
original database, can reduce the computational cost for projection.

3.4. Closed Constraints

Closed frequent patterns represent the largest sub-sequences common to sets of se-
quences [7]. Such patterns are lossless, which means the whole set of sequential patterns
can be reconstructed from the resulting patterns. Given a dataset D, a pattern X is a closed
frequent pattern if X is frequent and there exists no proper super-pattern Y such that
Y has the same support as X in D, i.e., sup(X) > sup(Y) for all Y ⊃ X. The idea of a
closed pattern was first introduced by Pasquier et al. in 1999, together with the frequent
closed itemset discovery algorithm AprioriClose (or A-Close) [36]. Subsequently, Yan et al.
proposed CloSpan (Closed Sequential Pattern Mining), which targets closed sequential
patterns [37]. CloSpan was extended from PrefixSpan and adopted a two-step approach.
The first step generates a candidate set based on the concept of equivalence of the projected
database, followed by pruning all non-closed sequences in the second step. A hash-based
technique for pruning where the hash function is the support of a sequence. CloSpan
outperforms PrefixSpan and can mine long sequences in a large database even with low
min_sup where PrefixSpan failed. ClaSP (Closed Sequential Patterns algorithm) was then
proposed by Gomariz and Campos et al. [38]. It marries the idea of vertical databases
from SPADE and the heuristic pruning approach from CloSpan. However, ClaSP needs
to maintain previous candidates in the memory for sequence pruning, which is rather
memory-intensive. Similar to CM-SPADE, Co-occurrence map was also implemented in
CM-ClaSP by Fournier-Viger et al. [31]. Unlike the aforementioned approaches, CloFAST
combines the idea of sparse id-list and vertical id-list to enable rapid counting of sequential
patterns [39]. The properties of such combinations improve the memory-intensive situation
in ClaSP by allowing a one-step approach for both sequence closure checking and search
space pruning. Specifically, sparse id-list is used for closed frequent itemset mining, and
vertical id-list is used for closed sequence pattern generation.

3.5. Maximal Constraints

For dense databases or databases with long sequences, closed sequences may still
produce a large set of patterns. Therefore, maximal patterns are introduced to address
such issues further. Maximal patterns are sets of sequential patterns that do not appear
in other sequential patterns. By definition, a pattern X is a maximal frequent pattern in
dataset D if X is frequent in D, and there exists no sequence Y where X 6= Y, which is
a super-sequence of X. A set of maximal sequential patterns is always smaller than the
set of closed sequential patterns and all sequential patterns, i.e., MS ⊆ CS ⊆ FS. Unlike
closed patterns, maximal patterns are not lossless. Similarly, different strategies are em-
ployed for finding maximal sequential patterns or itemsets. For example, AprioriAdjust
and FMMSP [40] uses breadth-first search algorithms, MaxSP [41] and DIMASP [42] use

Sensors 2022, 22, 7608 8 of 17

pattern-growth algorithms, and VMSP [43] uses depth-first algorithms with a vertical
database. MaxSP adopted PrefixSpan’s projected database mechanism. To tackle the mem-
ory inefficiency of previous algorithms, MaxSP determines whether a frequent pattern is
maximal without retaining previously found patterns in the memory. It incorporates a
checking mechanism consisting of verifying maximal-backward-extensions and maximal-
forward-extensions [41]. With these, MaxSP can output results directly. A more efficient
method, VMSP, uses vertical databases instead of costly database projection generation in
MaxSP. VMSP relies on three approaches: exclusion of non-maximal patterns, validation of
forward maximal, and co-occurrence map candidate pruning to achieve its efficiency [43].

3.6. Contiguous Constraint

Contiguous constraint requires items in resultant patterns must also be adjacent to each
other in the original sequence. Two sequences Y = <y1, y2, . . . , yi> and X = <x1, x2, . . . , xi>
where X is a contiguous subsequence of Y denoted by X v Y if and only if there exist
integers k1, k2, . . . , ki where 1 ≤ k1 < k2 < . . . ki ≤ j, and x1 = yk1 , x2 = yk2 , . . . , xi = yki

. It
also implies that Y is a super-sequence of X. GSP was one of the first few algorithms to
incorporate the idea of gap constraints and contiguity in sequential patterns [29]. The con-
straint is well-suited to a particular trajectory data mining goal, assuring that the resulting
trajectory patterns will always follow the actual trajectory. Without this constraint, resultant
elements in sequential patterns, which represent the locations in a trajectory, can jump
from one position to another. Some algorithms, such as VMSP and CM-SPAM, inherently
allow specifying the number of gaps between itemsets, with no gaps allowed, suggesting a
contiguous constraint.

4. Methodology

This section focuses on the design of the experiments to evaluate the performances
of the algorithms discussed in the previous section. Several representative algorithms
will be chosen to participate in the experiment using a large trajectory dataset, T-drive
data. Algorithms are chosen based on their search heuristics, database implementations,
and constraints applied to study how these affect the mining result.

All experiments were performed on a machine with a Linux system, running on an
Intel(R) 6-Core (TM) i7 CPU processor at 3.20GHz, 16GB DDR4 memory with low latency
Solid State Drive (SSD) as storage. Data cleaning and processing were done with Python
version 3.10.2. SPMF (Sequential Pattern Mining Framework) (version 2.52) was used to
run the algorithms. SPMF is a Java-based open-source data-mining library running on
64-bit Java Running Environment (JRE) which has been deployed in many researches [44].
This library ensures maximum comparability and reproducibility of the experimental
results. However, the performances may vary considering the default mechanism of JAVA,
specifically the controlled memory allocation and the garbage collection mechanisms. Also,
it is assumed that the algorithms in SPMF are correctly implemented and optimized.

4.1. Datasets and Pre-Processing

This study will use the Microsoft T-drive data, which contains the raw GPS trajectories
of 10,357 taxis in Beijing, China, between 2 February 2008 and 8 February 2008 [11,12]. There
are 15 million GPS recorded trajectories, adding up to 9 million kilometers. The dataset is a
good representation of typical real-life trajectory records. Table 2 below gives an example
of the trajectory data. Figure 1 briefly overviews the whole data processing procedure to
prepare trajectory data for subsequent sequential pattern mining. The process started with
obtaining the map data of the study area. The study area needed to be divided into grids
with user-defined grid sizes for trajectory segmentation. Based on the size of one grid, it
was possible to calculate the total number of grids required to encompass the study area.
With the size of the grid and the total number of grids, grid formation was performed
to calculate the geographical coordinates of the center of grids such that the grid center
coordinates can represent any GPS point within the grid. At the same time, raw trajectory

Sensors 2022, 22, 7608 9 of 17

data must be cleaned and processed to remove unwanted trajectories. Detailed procedures
for data cleaning and preprocessing were elaborated in the following sub-sections. When
trajectories and grids were ready, it was possible to map all GPS points within the trajectory
to grids to represent GPS sequences coordinated with a series of grids. The next step
would be determining the status of the taxi considering the events such as parking, shift
change, and traffic congestion. In these scenarios, vehicles would be in a stationary position.
This step is crucial for determining a trajectory’s origin-destination (OD extraction) and
subsequent path extraction, as data was recorded continuously throughout the period.
The above steps prepared the data for subsequent sequential pattern mining.

Table 2. A snippet of original Microsoft T-drive dataset.

Taxi Id Date Time Longitude Latitude

1 2008-02-02 15:36:08 116.51172 39.92123
1 2008-02-02 15:46:08 116.51135 39.93883

.
10,357 2008-02-08 17:26:51 116.72877 40.01143

Figure 1. Procedure of generating discrete trajectory database for sequential pattern mining.

4.2. Grid Formation

The map data for Beijing, China, is obtained from OpenStreetMap. Grid-based tra-
jectory segmentation is performed with Python version 3.10.2 on Microsoft VSCode. This
study uses a grid size of 500 m × 500 m. Based on [15], which investigated the impact
of grid cells on the result, a larger grid size would reduce the execution time since the
number of grids is reduced. The choice of grid size should consider factors such as the
characteristics of trajectory data (i.e., length and spread of trajectories) and study area
size. A larger grid size results in more points belonging to the same cell, and hence, fewer
patterns are found by pattern mining algorithms. Specifically, one point may belong to
the ith grid, and the other may belong to the (i + 1)th grid, but with a large grid size, all
these points belong to the same grid. As the total number of grids decreases, the resultant
sequential pattern found can be too generalized to be useful. For instance, a grid size of
1 km × 1 km was considered large for the T-drive dataset. Nevertheless, when the grid size
is too small, in the worst case, most grids contain at most one data point, which defeats the
purpose of trajectory segmentation. For this dataset, the grid size of 250 m × 250 m is too
small, and most algorithms fail to give valid results even at higher min_sup. Eventually,
this study chose 500 m × 500 m as the grid size.

The maximum and minimum geographical coordinates of the study area, Beijing city,
are (113.75194, 22.447837) and (114.624187, 22.864748), respectively. These points form
a rectangular region divided equally into 32,984 grids. The next step is assigning an ID
to each grid and calculating the geographical coordinates of the respective grid centers.
Considering Earth’s spherical shape, changes in the latitude and longitude of each grid
center are not constant as on a flat plane. Given the average radius of Earth is 6,371,004 m,
let R represent the radius, x be the grid size defined in meters, and lat_1 and lat2 be
the minimum and maximum latitudes of the study area; then, (4) and (5) can be used to
calculate the changes in latitude and longitude. All recorded taxi coordinates are mapped
to each grid. Here, we have the original coordinates, the grid ID it belongs to, and the
coordinates of the grid center.

Sensors 2022, 22, 7608 10 of 17

∆Lon =
360x

2πRcos(π(lat1−lat2)
360)

(4)

∆Lat =
360x
2πR

(5)

4.3. OD Extraction

T-drive data consists of the ID of each taxi, the DateTime, and the longitude and
latitude of locations. The geographical locations of each taxi are continuously recorded.
For each taxi, each record’s DateTime and geographical location are compared with the
next. Hence, we are then able to label the status of each record as moving or stationary.
If the next time point coordinate remain the same as the current time point, the taxi is not
moving. If the status at time t− 1 equals the status at time t + 1 and the status at time t is
not equal to any, the record at t is considered abnormal. The status of the record at t is then
corrected to that of t− 1.

Taxis may be running, parking, or waiting for traffic. Here, it must be noted that when
the taxi is in a prolonged stationary state suggests a change of shift or is in offline status.
In this case, only trajectories between two parking events are wanted, and time spent
waiting for traffic should be distinguished from parking events. The first step is to identify
moving events between two parking events. Based on the pre-processed data, where the
status of each record is marked as 1 or 0, if a taxi remains in the same grid for 10 min or
more, it is considered as parking and marked 0. Finally, each taxi’s origin-destination (OD)
data for each trip is extracted. Each record, instead of the taxi’s location at each timestamp,
had become a single trip made by the taxi. There are at least 10 minutes of stationary
phase between each trip. Each row consists of the Taxi ID, start time and end time of the
trip, the grid ID of origin, and a list of locations in the form of grid ID involved in the
trip. The final dataset contained 592,982 trips traveled by 10,226 vehicles. Figure 2 shows
the frequency distribution of grids and trips traveled per taxi, respectively. Overall, taxis
traveled an average of 187.66 grids and 57.98 trips during data collection.

(a) (b)

Figure 2. Distribution of data after segmentation. (a) Average grids traveled per taxi. (b) Average
trips traveled per taxi.

5. Experimental Results and Analysis

This section presents the results and analysis of comprehensive experiments. This
paper intends to evaluate each algorithm based on the following properties: runtime,
memory usage, and the number of patterns generated. Each algorithm’s runtime was
measured from the time the algorithm started to the time it returned a result. Memory
usage was obtained with the Java class Runtime. Each algorithm was repeated with
the same parameters five times, with the results averaged to obtain the final runtime
and memory consumption. The number of patterns generated depends on the min_sup
parameters. Hence, each algorithm would be run with min_sup values of 0.1, 0.2, 0.3,

Sensors 2022, 22, 7608 11 of 17

0.4, 0.5, 0.6, and 0.7. VMSP and CM-SPAM can be run with and without gaps allowed
between candidate sequences. When no gap is allowed, it forces the resultant pattern to
be consecutive, i.e., a contiguous constraint. Experiments are conducted with bash scripts
running in a Linux environment with breaks between each run and consider sufficient JVM
warm-ups beforehand.

The data for runtime (s), RAM consumption (Mb), and the number of output patterns
are shown in Table 3, Table 4 and Table 5, respectively. All algorithms give no pattern
output at min_sup of 0.7, suggesting that no grid has 70% of all trajectories passing through.
Among all, MaxSP failed at min_sup is at 0.2 or less. Only CM-SPADE and algorithms with
contiguous constraints enforced can mine at a min_sup of 0.1. The considerable number of
patterns mined by CM-SPADE indicated that non-constrained algorithms might struggle
with either time, memory, or storage space, given the massive number of outputs.

Table 3. Runtime (s) of Algorithms with different minimum support (min_sup) categorized by
their constraints.

Constraint Algorithm
min_sup

0.7 0.6 0.5 0.4 0.3 0.2 0.1

No GSP 1.66 1.62 8.76 67.73 581.82 2986.78 Failed
No PrefixSpan 1.17 1.15 1.81 3.69 19.78 272.52 Failed
No CM-SPADE 5.39 5.04 5.72 7.58 18.74 52.93 436.35

Closed CM-ClaSP 5.81 5.47 6.34 8.50 22.03 143.45 Failed
Closed CloFAST 24.45 22.84 23.10 26.16 42.85 162.80 Failed

Max MaxSP 1.97 2.10 7.26 28.11 310.01 Failed Failed
Max VMSP 4.73 4.75 6.43 11.67 38.38 275.12 Failed

Contiguous VMSP(no gap) 3.11 3.11 4.55 8.30 27.45 71.933 203.05
Contiguous CM-SPAM(no gap) 3.41 3.16 4.65 8.74 28.78 75.26 210.26

Table 4. RAM consumption(MB) of Algorithms with different minimum support (min_sup) catego-
rized by their constraints.

Constraint Algorithm
min_sup

0.7 0.6 0.5 0.4 0.3 0.2 0.1

No GSP 242.95 238.47 378.50 395.95 582.18 1197.63 Failed
No PrefixSpan 147.98 178.37 374.3 365.03 430.45 596.19 Failed
No CM-SPADE 2476.88 2465.66 1885.88 1522.30 1286.48 2217.165 1740.41

Closed CM-ClaSP 1591.04 1611.44 1665.99 2158.76 2499.13 2955.19 Failed
Closed CloFAST 2553.58 2456.77 2939.67 2326.90 2450.64 1880.79 Failed

Max MaxSP 416.04 459.42 970.77 946.63 1075.76 Failed Failed
Max VMSP 652.35 788.27 736.09 362.55 645.86 637.58 Failed

Contiguous VMSP (no gap) 100.95 1196.67 219.346 303.99 284.27 417.61 630.23
Contiguous CM-SPAM (no gap) 112.96 112.36 205.11 284.65 533.012 756 1359.29

Algorithms that failed experienced either Java heap space problems, extremely long
run times, or exceptionally high RAM usage if min_sup is too low, i.e., below 0.2. In these
scenarios, algorithms either threw an execution exception, were killed when runtime
exceeded 3 h, or when output occupied more than 300 GB of storage space. These algorithms
were marked with “Failed” in the result tables.

Sensors 2022, 22, 7608 12 of 17

Table 5. Number of output patterns of Algorithms with different minimum support (min_sup)
categorized by their constraints.

Constraint Algorithm
min_sup

0.7 0.6 0.5 0.4 0.3 0.2 0.1

No GSP 0 3 46 120 305 621 Failed
No PrefixSpan 0 3 46 122 606 7967 Failed
No CM-SPADE 0 3 46 122 606 7973 384,295

Closed CM-ClaSP 0 3 46 122 606 7973 Failed
Closed CloFAST 0 3 46 122 610 8068 Failed

Max MaxSP 0 3 45 99 380 Failed Failed
Max VMSP 0 3 46 120 554 7627 Failed

Contiguous VMSP (no gap) 0 3 46 120 305 620 1255
Contiguous CM-SPAM (no gap) 0 3 46 120 305 633 1461

The number of outputs presented a challenging task for processing and interpretation.
Theoretically, max and closed constraints should return a concise representation of the
output, yet algorithms returned a similar number of outputs with the T-drive dataset. This
observation revealed that the characteristics of the dataset determined these constraints’
effects. Trajectory data might be too distinct to be compressed compared to other forms
of data.

Between three algorithms without constraints: GSP, PrefixSpan, and CM-SPADE, GSP
observed a sharp increase in runtime as min_sup decreased to 0.1, while PrefixSpan and
CM-SPADE remained relatively stable. However, CM-SPADE consumed more RAM but
could mine sequences at min_sup of 0.1, where PrefixSpan failed. PrefixSpan utilizes
main-memory-based pseudo-projection techniques, which reduce RAM consumption sig-
nificantly, as demonstrated by experiment results. PrefixSpan trades execution time for less
RAM consumption. PrefixSpan might be able to finish execution if more time were given.
On the other hand, CM-SPADE had a shorter, more stable execution time at the expense of
higher RAM consumption time. The choice between PrefixSpan and CM-SPADE would
depend on the computational resources available.

As closed-constraint algorithms, CM-ClaSP and CloFast were similar in terms of RAM
usage. However, CloFast was significantly faster. The number of closed sequential patterns
discovered differs slightly between the two algorithms, which is attributed to different
strategies employed. Strangely, the number of closed patterns found by CloFast was greater
than those without constraints. Experimental figures further suggest that the closed pattern
did not work well with trajectory data.

Conversely, maximal SPM algorithms like MaxSP and VMSP adopt very different
candidate generation and pruning approaches. MaxSP can generate output directly with-
out in-memory candidate maintenance, whereas VMSP opts for the common candidate-
maintain-and-test approach. The approaches generated a notably different number of
patterns. VMSP mined more maximal sequential patterns with less RAM consumption
and shorter execution time, while MaxSP has the highest RAM consumption and longest
execution time among all algorithms. VMSP, therefore, is more efficient considering the
size and sequence length of typical trajectory databases.

Contiguous constraints were performed with VMSP and CM-SPAM. Their respective
gap constraints were set to no gaps allowed. Their runtime differed by a few seconds, while
VMSP had consumed lesser RAM than CM-SPAM.

However, judging the algorithm’s efficiency simply through runtime or the number
of pattern outputs was unfair. Figure 3 depicts algorithm efficiencies using runtime per
pattern. When compared to algorithms that found a similar number of patterns (i.e., VMSP
(no gap) and CM-SPAM (no gap)), GSP performed better at most min_sups, particularly at
0.6, 0.3, and 0.2. As a closed-constrained algorithm, CM-ClaSP was the second most efficient
algorithm besides GSP at a min_sup of 0.6, while MaxSP became the second at a lower
min_sup of 0.3. CM-ClaSP was the best-performing among algorithms without constraints.

Sensors 2022, 22, 7608 13 of 17

However, MaxSP and GSP failed to complete the task as min_sup was further reduced.
Therefore, at low min_sup, CM-SPAM (no gap) became the most efficient algorithm.

Figure 3. Comparison of algorithm efficiency through time(s) over pattern outputs at different
min_sup.

Figures 4 and 5 visually compared SPM results at min_sup of 0.2 and 0.5, with and
without contiguous constraints plotted against actual roads of Beijing. Results from CM-
SPADE and CM-SPAM were used, respectively. At min_sup of 0.2, the outputs of three
algorithm groups, non-constraint based, closed constraints, and max constraints, fall in the
range of 7628 to 8068, except for GSP, which produces a very concise result similar to that of
contiguous constraint algorithms. Contiguous constraints give an exceptionally low output
count, which makes the comparison meaningful. Higher support denoted that more vehicle
trajectories traveled on the road segment. A red-colored road segment suggested a large
volume of vehicles. CM-SPADE was selected for visualizations, representing the results
of algorithms producing outputs within the 7628 to 8068 rang. Results were distributed
within the 3rd Ring Road, which is a city ring road that encircles the center of Beijing.
The solid red box outlined in blue in Figure 5b is one of the sequential patterns mined.
The road segment in the blue box is the junction between the West Second Ring, which is
notorious for traffic congestion in Beijing, and Chegongzhuang Road. Figure 6 exemplified
the SPM result by plotting some trajectories that supported the pattern boxed out. The same
road segments were found in these trajectories. Trajectory pattern mining tries to mine for
repeated patterns, such as frequently traveled road segments. More overlapping trajectories
give more support.

The high-support regions colored red and captured by SPM with and without con-
straints were highly similar at min_sup of 0.5. While with min_sup of 0.2, SPM with
constraints captured more high-support road sections as contiguous constraints gave a
more concise representation of results. The resultant pattern discovered by SPM with-
out contiguous constraints tends to be duplicated. When the contiguous constraint was
enforced, a single pattern could represent multiple patterns.

Sensors 2022, 22, 7608 14 of 17

(a) (b)

Figure 4. Output of SPM (min_sup = 0.5) against Beijing road map. (a) Without constraint (b) With
constraint. Color changes from yellow to red as support increases. Higher support suggests more
vehicles trajectories overlapping at the particular road segment.

(a) (b)

Figure 5. Output of SPM (min_sup = 0.2) against Beijing road map. (a) Without constraint (b) With
constraint. Color changes from yellow to red as support increases. Higher support suggests more
vehicles trajectories overlapping at the particular road segment.

Figure 6. An example of sequential pattern mined in the blue boxed region (Figure 5b) with actual
trajectories(colored lines) against the roads (grey lines).

Sensors 2022, 22, 7608 15 of 17

6. Conclusions

The continuity and uncertain nature of trajectory data make it distinctively different
from typical transactional data, which requires additional trajectory segmentation proce-
dures to allow applications of SPM for various purposes. This work outlined the method
of dealing with trajectory data of such a nature. Subsequently, several representative al-
gorithms were chosen to participate, including GSP, PrefixSpan, CM-SPADE, CM-SPAM,
CM-CLasp, CloFast, VMSP, and MaxSP, in the sequential pattern mining comparative ex-
periment using a large trajectory dataset, the Microsoft T-drive trajectory data. Algorithms
are selected based on their search heuristics, database implementations, and constraints.
Comparative experiments are performed to understand how different implementations and
parameters affect SPM results. The runtime, RAM consumption, and the number of pattern
outputs were collected. The results were further visualized on the actual map, which uses
traffic congestion as an analytic example. These experimental results demonstrate that
contiguous constraints are more relevant in the context of trajectory data than closed and
maximal constraints, as contiguous constraints can provide a concise representation similar
to constraint-less SPM and allow algorithms to perform well under extremely low min_sup
when other algorithms fail to. Among all non-constraint-based algorithms, CM-SPADE
shows decent performance at low min_sup and stable control of runtime and memory
consumption with varied parameters. PrefixSpan is a suitable choice when RAM resources
are limited, but there is plenty of storage space. This work performed sequential pattern
mining using taxi trajectory data and visualized the result of SPM on the actual road in
Beijing, China. The results highlighted road segments frequently traveled by taxi, which
implies congested regions. Results from SPM can be further extended to other forms of
analysis, such as next-location prediction. Employing trajectory map-matching techniques
can further improve the accuracy of pattern mining. This study can be used as a guide
for academics and professionals when determining the most suitable SPM algorithm for
applications that involve trajectory data. Future experiments can investigate patterns’
quality and dive deep into reasons for inconsistency in pattern output between algorithms
using similar constraints or parameter settings. A comparative study of other specialized
forms of pattern mining, such as time constraints and top-k, can be considered.

Author Contributions: Conceptualization, S.D.; Data curation, S.D.; Formal analysis, S.D.; Funding
acquisition, Z.L. and K.Z.; Investigation, S.D.; Methodology, S.D.; Resources, Z.L.; Software, S.D.;
Supervision, Z.L., K.Z. and F.M.; Validation, S.D.; Visualization, S.D.; Writing—original draft, S.D.;
Writing—review & editing, S.D., Z.L., K.Z. and F.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded in part by the National Key Reasearch and Development Pro-
gram of China (No.2018YFB1601103 of 2018YFB1601100) and Science and Technology Innovation
Committee of Shenzhen (CJGJZD20200617102801005).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Microsoft T-drive data used in this work can be obtained from: https:
//www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zheng, Y. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol. 2015, 6, 1–41. [CrossRef]
2. Iqbal, M.; Pao, H.-K. Mining non-redundant distinguishing subsequence for trip destination forecasting. Knowl.-Based Syst. 2021,

211, 106519. [CrossRef]
3. Morzy, M. Mining Frequent Trajectories of Moving Objects for Location Prediction. In Machine Learning and Data Mining in Pattern

Recognition; Perner, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4571, pp. 667–680. [CrossRef]

https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
http://doi.org/10.1145/2743025
http://dx.doi.org/10.1016/j.knosys.2020.106519
http://dx.doi.org/10.1007/978-3-540-73499-4_50

Sensors 2022, 22, 7608 16 of 17

4. Monreale, A.; Pinelli, F.; Trasarti, R.; Giannotti, F. WhereNext: A location predictor on trajectory pattern mining. In Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD’09, Paris, France,
28 June–1 July 2009; p. 637. [CrossRef]

5. Zhang, Z.; Zhao, X.; Zhang, Y.; Zhang, J.; Nie, H.; Lou, Y. Efficient Mining of Hotspot Regional Patterns with Multi-Semantic
Trajectories. Big Data Res. 2020, 22, 100157. [CrossRef]

6. Gidófalvi, G.; Borgelt, C.; Kaul, M.; Pedersen, T.B. Frequent route based continuous moving object location- and density
prediction on road networks. In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems—GIS’11, Chicago, IL, USA, 1–4 November 2011; p. 381. [CrossRef]

7. Fournier-Viger, P.; Chun, J.; Lin, W.; Kiran, R.U.; Koh, Y.S.; Thomas, R. A Survey of Sequential Pattern Mining. Data Sci. Pattern
Recognit. 2017, 1, 54–77.

8. Chand, C.; Thakkar, A.; Ganatra, A. Sequential Pattern Mining: Survey and Current Research Challenges. Int. J. Soft Comput. Eng.
(IJSCE) 2012, 2, 185–193.

9. Agrawal, R.; Srikant, R. Mining sequential patterns. In Proceedings of the International Conference on Data Engineering, Taipei,
Taiwan, 6–10 March 1995; pp. 3–14. [CrossRef]

10. Yang, H.; Wong, K.I.; Wong, S.C. Modeling urban taxi services in road networks: Progress, problem and prospect. J. Adv. Transp.
2001, 35, 237–258. [CrossRef]

11. Yuan, J.; Zheng, Y.; Xie, X.; Sun, G. Driving with knowledge from the physical world. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011; pp. 316–324.

12. Yuan, J.; Zheng, Y.; Zhang, C.; Xie, W.; Xie, X.; Sun, G.; Huang, Y. T-drive: Driving directions based on taxi trajectories. In
Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA,
USA, 2–5 November 2010; pp. 99–108.

13. Atev, S.; Miller, G.; Papanikolopoulos, N.P. Clustering of vehicle trajectories. IEEE Trans. Intell. Transp. Syst. 2010, 11, 647–657.
[CrossRef]

14. Bermingham, L.; Lee, I. Mining distinct and contiguous sequential patterns from large vehicle trajectories. Knowl.-Based Syst.
2020, 189, 105076. [CrossRef]

15. Karsoum, S.; Gruenwald, L.; Leal, E. Impact of Trajectory Segmentation on Discovering Trajectory Sequential Patterns. In
Proceedings of the 2018 IEEE International Conference on Big Data, Big Data, Seattle, WA, USA, 10–13 December 2018;
pp. 3432–3441. [CrossRef]

16. Pei, J.; Han, J.; Wang, W. Constraint-based sequential pattern mining in large databases. In Proceedings of the 2002 International
Conference on Information and Knowledge Management (CIKM’02), McLean, VA, USA, 4–9 November 2002; pp. 18–25.

17. Zhang, J.; Wang, Y.; Yang, D. CCSpan: Mining closed contiguous sequential patterns. Knowl.-Based Syst. 2015, 89, 1–13. [CrossRef]
18. Lee, S.; Lim, J.; Park, J.; Kim, K. Next Place Prediction Based on Spatiotemporal Pattern Mining of Mobile Device Logs. Sensors

2016, 16, 145. [CrossRef] [PubMed]
19. Giannotti, F.; Nanni, M.; Pinelli, F.; Pedreschi, D. Trajectory pattern mining. In Proceedings of the 13th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining—KDD’07, San Jose, CA, USA , 12–15 August 2007; Volume 121, p. 330.
[CrossRef]

20. Lin, M.; Hsu, W.J. Mining GPS data for mobility patterns: A survey. Pervasive Mob. Comput. 2014, 12, 1–16. [CrossRef]
21. Mooney, C.H.; Roddick, J.F. Sequential pattern mining—Approaches and algorithms. ACM Comput. Surv. 2013, 45, 1–39. [CrossRef]
22. Grover, N. Comparative Study of Various Sequential Pattern Mining Algorithms. Int. J. Comput. Appl. 2014, 90, 36–41. [CrossRef]
23. Agrawal, R.; Imieliński, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of the

1993 ACM SIGMOD International Conference on Management of Data—SIGMOD’93, Washington, DC, USA, 25–28 May 1993;
pp. 207–216. [CrossRef]

24. Atluri, G.; Karpatne, A.; Kumar, V. Spatio-temporal data mining: A survey of problems and methods. ACM Comput. Surv. 2018,
51, 1–37. [CrossRef]

25. Tsoukatos, I.; Gunopulos, D. Efficient mining of spatiotemporal patterns. In Proceedings of the International Symposium on
Spatial and Temporal Databases, Los Angeles, CA, USA, 12–25 July 2001; pp. 425–442. [CrossRef]

26. Bachmann, A.; Borgelt, C.; Gidófalvi, G. Incremental Frequent Route Based Trajectory Prediction. In Proceedings of the Sixth ACM
SIGSPATIAL International Workshop on Computational Transportation Science—IWCTS’13, Orlando, FL, USA, 5–8 November
2013, pp. 49–54. [CrossRef]

27. Giannotti, F.; Nanni, M.; Pedreschi, D.; Pinelli, F.; Renso, C.; Rinzivillo, S.; Trasarti, R. Unveiling the complexity of human mobility
by querying and mining massive trajectory data. VLDB J. 2011, 20, 695–719. [CrossRef]

28. Chen, Z.; El-nasr, M.S.; Canossa, A.; Badler, J.; Tignor, S.; Colvin, R. Modeling Individual Differences through Frequent Pattern
Mining on Role-Playing Game Actions. In Proceedings of the Eleventh Artificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE), Santa Cruz, CA, USA, 14–18 November 2015; pp. 2–7.

29. Srikant, R.; Agrawal, R. Mining sequential patterns: Generalizations and performance improvements. In Proceedings of the
International Conference on Extending Database Technology, Avignon, France, 25–29 March 1996; pp. 1–17.

30. Zaki, M.J. SPADE: An efficient algorithm for mining frequent sequences. Mach. Learn. 2001, 42, 31–60. [CrossRef]

http://dx.doi.org/10.1145/1557019.1557091
http://dx.doi.org/10.1016/j.bdr.2020.100157
http://dx.doi.org/10.1145/2093973.2094028
http://dx.doi.org/10.1109/icde.1995.380415
http://dx.doi.org/10.1002/atr.5670350305
http://dx.doi.org/10.1109/TITS.2010.2048101
http://dx.doi.org/10.1016/j.knosys.2019.105076
http://dx.doi.org/10.1109/BigData.2018.8622209
http://dx.doi.org/10.1016/j.knosys.2015.06.014
http://dx.doi.org/10.3390/s16020145
http://www.ncbi.nlm.nih.gov/pubmed/26805850
http://dx.doi.org/10.1145/1281192.1281230
http://dx.doi.org/10.1016/j.pmcj.2013.06.005
http://dx.doi.org/10.1145/2431211.2431218
http://dx.doi.org/10.5120/15815-4703
http://dx.doi.org/10.1145/170035.170072
http://dx.doi.org/10.1145/3161602
http://dx.doi.org/10.1007/3-540-47724-1_22
http://dx.doi.org/10.1145/2533828.2533840
http://dx.doi.org/10.1007/s00778-011-0244-8
http://dx.doi.org/10.1023/A:1007652502315

Sensors 2022, 22, 7608 17 of 17

31. Fournier-Viger, P.; Gomariz, A.; Campos, M.; Thomas, R. Fast vertical mining of sequential patterns using co-occurrence
information. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Springer: Cham, Switzerland , 2014; Volume 8443 LNAI, pp. 40–52. [CrossRef]

32. Ayres, J.; Flannick, J.; Gehrke, J.; Yiu, T. Sequential PAttern Mining using A Bitmap Representation. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23–26 July 2002; p. 7.

33. Han, J.; Pei, J.; Yin, Y.; Mao, R. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data
Min. Knowl. Discov. 2004, 8, 53–87. [CrossRef]

34. Agarwal, R.C.; Aggarwal, C.C.; Prasad, V.V.V. A Tree Projection Algorithm for Generation of Frequent Item Sets. J. Parallel Distrib.
Comput. 2001, 61, 350–371. [CrossRef]

35. Han, J.; Pei, J.; Mortazavi-Asl, B.; Pinto, H.; Chen, Q.; Dayal, U.; Hsu, M. PrefixSpan: Mining sequential patterns efficiently by
prefix-projected pattern growth. In Proceedings of the International Conference on Data Engineering, Heidelberg, Germany,
2–6 April 2001; pp. 215–224. [CrossRef]

36. Pasquier, N.; Bastide, Y.; Taouil, R.; Lakhal, L. Discovering Frequent Closed Itemsets for Association Rules. In Database Theory—
ICDT’99; Beeri, C., Buneman, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1540, pp. 398–416. [CrossRef]

37. Yan, X.; Han, J.; Afshar, R. CloSpan: Mining: Closed Sequential Patterns in Large Datasets. In Proceedings of the 2003 SIAM
International Conference on Data Mining, San Francisco, CA, USA, 1–3 May 2003; pp. 166–177. [CrossRef]

38. Gomariz, A.; Campos, M.; Marin, R.; Goethals, B. ClaSP: An efficient algorithm for mining frequent closed sequences. In Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Berlin/Heidelberg, Germany, 2013; Volume 7818 LNAI, pp. 50–61. [CrossRef]

39. Fumarola, F.; Lanotte, P.F.; Ceci, M.; Malerba, D. CloFAST: Closed sequential pattern mining using sparse and vertical id-lists.
Knowl. Inf. Syst. 2016, 48, 429–463. [CrossRef]

40. Lin, N.P.; Hao, W.; Chen, H.; Chueh, H.; Chang, C. Fast Mining Maximal Sequential Patterns. In Proceedings of the International
Conference on Simulation, Modeling and Optimization, Chongqing, China, 28–30 April 2007.

41. Fournier-Viger, P.; Wu, C.W.; Tseng, V.S. Mining maximal sequential patterns without candidate maintenance. In Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Berlin/Heidelberg, Germany, 2013; Volume 8346 LNAI, pp. 169–180. [CrossRef]

42. García-Herńandez, R.A.; Martínez-Trinidad, J.F.; Carrasco-Ochoa, J.A. A new algorithm for fast discovery of maximal sequential
patterns in a document collection. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2006; Volume 3878 LNCS, pp. 514–523. [CrossRef]

43. Fournier-Viger, P.; Wu, C.-W.; Gomariz, A.; Tseng, V.S. VMSP: Efficient vertical mining of maximal sequential patterns. In
Proceedings of the Canadian Conference on Artificial Intelligence, Montreal, QC, Canada, 6–9 May 2014; pp. 83–94.

44. Fournier-Viger, P.; Lin, J.C.W.; Gomariz, A.; Gueniche, T.; Soltani, A.; Deng, Z.; Lam, H.T. The SPMF Open-Source Data Mining
Library Version 2. In Machine Learning and Knowledge Discovery in Databases; Berendt, B., Bringmann, B., Fromont, É., Garriga, G.,
Miettinen, P., Tatti, N., Tresp, V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 9853, pp. 36–40.
[CrossRef]

http://dx.doi.org/10.1007/978-3-319-06608-0_4
http://dx.doi.org/10.1023/B:DAMI.0000005258.31418.83
http://dx.doi.org/10.1006/jpdc.2000.1693
http://dx.doi.org/10.1109/icde.2001.914830
http://dx.doi.org/10.1007/3-540-49257-7_25
http://dx.doi.org/10.1137/ 1.9781611972733.15
http://dx.doi.org/10.1007/978-3-642-37453-1_5
http://dx.doi.org/10.1007/s10115-015-0884-x
http://dx.doi.org/10.1007/978-3-642-53914-5_15
http://dx.doi.org/10.1007/11671299_53
http://dx.doi.org/10.1007/978-3-319-46131-1_8

	Introduction
	Preliminary and Problem Statement
	Itemset, Sequences and Support
	Motivation
	Trajectory Data
	Trajectory Segmentation

	Sequential Pattern Mining Algorithms
	Breadth-First Search
	Depth-First Search
	Pattern-Growth
	Closed Constraints
	Maximal Constraints
	Contiguous Constraint

	Methodology
	Datasets and Pre-Processing
	Grid Formation
	OD Extraction

	Experimental Results and Analysis
	Conclusions
	References

