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Abstract: There is high demand for techniques to estimate human mental workload during some
activities for productivity enhancement or accident prevention. Most studies focus on a single
physiological sensing modality and use univariate methods to analyse multi-channel electroen-
cephalography (EEG) data. This paper proposes a new framework that relies on the features of hybrid
EEG—functional near-infrared spectroscopy (EEG-fNIRS), supported by machine-learning features
to deal with multi-level mental workload classification. Furthermore, instead of the well-used uni-
variate power spectral density (PSD) for EEG recording, we propose using bivariate functional brain
connectivity (FBC) features in the time and frequency domains of three bands: delta (0.5-4 Hz), theta
(4-7 Hz) and alpha (8-15 Hz). With the assistance of the fNIRS oxyhemoglobin and deoxyhemoglobin
(HbO and HbR) indicators, the FBC technique significantly improved classification performance at a
77% accuracy for 0-back vs. 2-back and 83% for 0-back vs. 3-back using a public dataset. Moreover,
topographic and heat-map visualisation indicated that the distinguishing regions for EEG and fNIRS
showed a difference among the 0-back, 2-back and 3-back test results. It was determined that the best
region to assist the discrimination of the mental workload for EEG and fNIRS is different. Specifically,
the posterior area performed the best for the posterior midline occipital (POz) EEG in the alpha band
and fNIRS had superiority in the right frontal region (AF8).

Keywords: sensor fusion; mental workload; n-back; artificial intelligence; feature engineering

1. Introduction

Mental workload refers to the amount of working memory required to complete a task
in a specified time. Its assessment has attracted many researchers, and workload has been
characterised by a variety of physiological sensor data. Investigation of mental workload in
neuroscience is significant for a variety of reasons. First, a person’s high cognitive workload
will affect learning capacity and cause distraction [1]. Second, since there is a limit to the
size of a cognitive workload, there is also a limit to an individual’s performance in a given
cognitive activity [2]. As a result, assessing mental workload is important for preventing
accidents in many areas [3]. Table 1 compares various popular neuroimaging modalities
for evaluating mental workloads: such as functional near-infrared spectroscopy (fNIRS),
electroencephalography (EEG)/Magnetoencephalography (MEG), functional magnetic
resonance imaging (fMRI), and position emission tomography (PET).

Because it has the advantages of low cost and high temporal sampling rate, EEG
has been well-accepted in the field of disease prediction [4], sleep stages [5], and brain
stimulation for different neurological workloads [6] as well as mental workload eval-
uation [7]. A substantial number of studies have reported a significant EEG spectral
correlation with workload in stereotypical frequency bands: such as delta (1-4 Hz), theta
(4-7 Hz), alpha (8-15 Hz), and beta (16-31 Hz) [8-10]. Several popular machine learning
methods have been applied using EEG features such as support vector machine (SVM) [11],
naive bayes [3] and linear discriminant analysis (LDA) [12,13]. Although those meth-
ods achieved satisfactory mental workload classification results, it was notable that most
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EEG-based features were extracted from a single channel that was univariate-based and
neglected association between channels. As a multivariate approach, functional brain con-
nectivity (FBC) is statistically interdependent among spatially distant neurophysiological
regions [14-16]. It has been proven that FBC reveals the underlying function of differ-
ent brain regions and their complex cortical intercommunication, which helps improve
understanding of many neurological conditions including brain-related disorders and
emotions [15-17]. Kakkos et al. [7] fed univariate spectrum power features and FBC estima-
tions from EEG into several machine-learning classifiers and achieved promising results in
two-level workload discrimination. However, the potential of FBC in multiclass workload
classification problems, particularly in combination with other sensing modalities, has not
been fully explored.

Table 1. Comparison of four neuroimaging techniques.

Specification fNIRS EEG/MEG fMRI PET
Spatial resolution 2-3 cm 59 cm 0.3 mm voxels 4 mm
Brain cortex for
Penetration depth Brain cortex EEG/deep structures Whole head Whole head
for MEG
Temporal sampling rates <10 Hz >1000 Hz 1-3Hz <0.1 Hz
Range of possible tasks Enormous Limited Limited Limited
Robustness to motion Very good Limited Limited Limited
Range of possible Limited, can be
ir ticipan ts Everyone Everyone challenging for Limited
P P children/patients
Sounds Silent Silent Very noisy Silent
Portability Yes, for portable Yes, for portable EEG None None
systems systems
Low for EEG; high for . .
Cost Low MEG & High High

In recent decades, {NIRS has grown rapidly as a tool for monitoring functional brain
activity in a wide range of applications and populations. fNIRS devices detect two hemody-
namic signals, oxygenated (HbO) and deoxygenated (HbR) hemoglobin, from the cortical
surface at a spatial resolution of 2-3 cm [18-20]. One of the main reasons for the increased
interest in using fNIRS for cognitive activities is that it is resistant to motion artefacts [21],
which is usually a big problem for EEG data acquisition. Furthermore, {NIRS can be more
precise in brain activation areas due to its relatively high spatial resolution. As a result,
fNIRS overcomes some shortcomings of EEG. The importance of including both HbO and
HDbR for analysis has been emphasised by a few studies because their combination provides
a more comprehensive assessment of cortical activation [22-25]. The majority of related
studies has focused on using mean values [26,27], standard deviation [27] and slope [22,25].

Some researchers explored the effectiveness of using both EEG and fNIRS information
for n-back workload classification. Liu et al. [28] employed LDA and obtained 68.1%
classification accuracy in the n-back working-memory task using a combined EEG-{NIRS
approach, but it used univariate features based on a single channel. Saadati et al. [29] used
deep neural networks and hybrid EEG-NIRS features. It was claimed that the classification
accuracy is considerably higher than that of EEG or fNIRS alone. However, there is very
limited research on EEG brain connectivity combined with fNIRS, so the potential of using
both signals to discriminate multi-level workloads requires further exploration.

In this paper, we propose a hybrid EEG-NIRS approach to discriminate among multi-
level mental workloads: univariate frequency and bivariate FBC features are extracted
from EEG, and biomarkers of HbO and HbR are estimated from fNIRS. Overall, combining
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EEG and fNIRS tended to provide two distinct sources of information on the brain includ-
ing electrical activity and hemodynamic responses; this combination has the benefits of
non-invasiveness, robustness to motion, availability for all possible participants, silence,
portability and cost-effectiveness. The novelty of this study is summarised in four folds:

o  To the best of the authors’ knowledge, this study is the first to use combined features
of EEG-based FBC and fNIRS for workload estimation.

e  This paper explores different linear and nonlinear FBC representations in the time and
frequency domains with their associated effect on classification accuracy.

e  This study reports the contribution of different regions to the classification accuracy of
the two sensing modalities.

e Topographic and heat maps were used to reveal distinct areas where the greatest
change occurred at different workload levels.

2. Materials and Methods

As shown in Figure 1, the proposed framework contains four main steps: data prepro-
cessing, feature extraction, feature selection, and machine-learning classification. The detail
of each step is as follows:
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Figure 1. Flowchart of the proposed framework. The pipeline contains four main steps: pre-
processing, feature extraction, feature selection and machine-learning classification.
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2.1. Dataset

This study made use of a dataset gathered by Shin et al. [30] at the Technische Uni-
versitdt Berlin. The dataset comprised scalp recordings—30 EEG channels and 36 {NIRS
channels—for mental workload during n-back tasks. The channels and their locations are
shown in Supplementary Figure S1. These activities were divided into four categories:
0-, 2-, and 3-back tasks, as well as rest between tasks. Twenty-six healthy, right-handed
people took part, and the dataset was divided into three sessions, each with three randomly
organized sets of 0-, 2-, and 3-back tasks, meaning that each participant completed nine
sets of n-back tasks. A single task consisted of a 2 s instruction indicating the type of task
(0-, 2-, or 3-back), a 40 s task period that consists of 20 trials, a 1 s stop period, and a 20 s
rest period (see Figure 2). Therefore, there were 26 x 3 x 9 = 702 tasks available for all
participants. All EEG and fNIRS signals were captured at the same time.

20 trials = 40s task
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Figure 2. Layout of a set in the experiment. A single task consisted of a 2 s instruction indicating the
type of task (0-, 2-, or 3-back), a 40 s task period that consisted of 20 trials, a 1 s stop period, and a 20 s
rest period. Each participant completed nine sets of n-back tasks.

2.2. Signal Preprocessing and Feature Extraction
2.2.1. f{NIRS

fNIRS data were preprocessed using the BBCI toolbox in MATLAB R2019b [31]. The
sampling rate was 10 Hz. Initially, HbR and HbO values were calculated using the modified
Beer—Lambert equation (mBLL) from the fNIRS optical density [32]. A sample of HbR
and HbO values for each participant is shown in Supplementary Figures S2 and S3. Data
augmentation was performed to create small informative segments. To reduce noise
and artefacts, fNIRS signals were passed through a third-order digital Butterworth filter
between 0 and 0.04 Hz. Additionally, baseline correction was applied to the fNIRS signals
to remove the intra-individual variance of the starting values. In this step, the segments
were normalised by subtracting the median value of the pre-stimulus baseline from the
signal in each segment [8].

It should be noted that there was a general 6 s delay between the stimulus representa-
tion and peak cortical hemodynamics. This delay was determined by the task and HbR
and HbO concentrations. Normally, the cerebral hemodynamic response does not return
to baseline until 10 s after stimulus presentation. However, agreement on an ideal time
window for analysis had yet to be reached because the best temporal length depended on
the paradigm used and participant characteristics, such as age [21]. This paper conducted
a sensitivity analysis to identify the optimal time window to produce the most accurate
mental workload estimate and a size of 5s was used. The window slides through the whole
40 s period with a 1 s step. This analysis was performed independently for each participant.

2.2.2. EEG

EEG data were also preprocessed using the BBCI toolbox in MATLAB R2019b, and
resampling was done at 200 Hz. The improved weight-adjusted second-order blind identifi-
cation (iWASOBI) method in the automatic artifact removal (AAR) toolbox in EEGLAB was
used to gain ocular artifact rejection. Initially, data augmentation was done by segmenting
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data samples into smaller but still informative segments. Then, the data were bandpass-
filtered between 1 and 45 Hz using a third-order Butterworth digital filter. The EEG epochs
were extracted from —500 to 6000 ms with respect to the onset of every stimulus. Power
spectral density (PSD) was calculated for three frequency bands of EEG recordings: delta
(0.5-4 Hz), theta (4-7 Hz), and alpha (8-15 Hz) since previous studies indicated that low-
frequency information made more contributions for measuring mental workload [7,33]. The
FBC was estimated using four methods: Pearson correlation coefficient (PCC), mutual infor-
mation (MI) in the time domain, magnitude squared coherence (MSC), and phase-locking
value (PLV) in the frequency domain. The principal details are given as follows:

The PCC was able to evaluate the linear interdependency between two signals in the
time domain and ranged from —1 to +1. The correlation coefficient between signals x and
y were

pxy: E[(x_lf;;)a—(yy_nuy)] (1)

where E is the expected value; py and py, are the mean values; and 0y and 0y, are the
standard deviations of the x and y time series.

MSC is a linear method to estimate interconnections between two signals in the
frequency domain calculated by PSD. The MSC of signals x and y can be written as

Swy(f)?
|Sxx(f)] % |Syy(f)|

where Syy(f) and Sy, (f) are the PSDs of signals x and y, respectively; and Sy, (f) is the
cross PSD at frequency f.

According to information theory, the MI of two random variables, x and y, shows how
one is informative for the other one. Let, P(x) and P(y) be the probability distributions of
random variables x and y, respectively. The entropy of x and y is defined as

MSCyy(f) = C3, = 2

H(x) = =Y, P(x;) log, (P(x))) 3)
H) = — Y. P(y;) logs (P(1,) @
j=1

where N defines window length. H(y|x) and H(x, y) represent conditional entropy and
joint entropy between x and y, defined respectively as

H(x,y) = —Ex[Ey[ log, P(x,y)]] (5)

H(y|x) = —Ex[Ey[ log, P(y[x)]] (6)

where E is the expected value function. The MI of two random variables x and vy is
computed as follows

MI(x,y) = H(x) + H(y) — H(x,y) = H(y) — H(y|x) )

MI(x,y) = 0if and only if random variables X and Y are statistically independent. Notably,
the MI is a nonlinear method in the time domain,

Phase synchronisation (PS) assumes that two oscillation systems without amplitude
synchronisation can have phase synchronisation. The phase locking value (PLV) is fre-
quently used to obtain the phase synchronisation strength [14]. The instantaneous phase of
a signal X is given by

x(t)
Dx(t) = arctan—-= 8)

x(t)
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where X(t) is the Hilbert transform of x(t) which is defined as
#(t) = %pv / +: ;‘ET?[dT ©
where PV refers to the Cauchy principal value. The PLV for two signals is defined as
PLV — ‘;] Zjl\;l ol (Dx(jAt)—2y (jAt)) ‘ (10)

where At defines the sampling period, and N indicates the sample number of each sig-
nal [34]. The range of PLV was from 0 to 1, where 0 showed a lack of synchronisation and
1 indicated strict phase synchronisation. Notably, the PLV is a nonlinear method in the
frequency domain.

2.3. Feature Selection and Fusion

A large number of features were extracted from EEG and fNIRS. To be more specific,
considering three frequency bands (delta, theta and alpha), 28 channels and four FBC
methods, there were 3 x 28 = 84 PSD features and 3 x 28 x (28—1)/2 x 4 = 4536 FBC
features estimated from the EEG recording. According to the time window analysis of
the fNIRS signals, the top-10 best time windows were chosen. Considering the number
of channels, there were 10 x 36 = 360 features for {NIRS. The next step was to feed the
extracted features into machine learning classifiers to classify three workloads/tasks. To
avoid the overfitting problem of machine learning and compare the combined methods
fairly with the methods using a single type of feature, a statistical significance test is
used to reduce the feature number. One-way analysis of variance (ANOVA) was used
to evaluate the significance of differences in the 0-back vs. 2-back vs. 3-back features.
The p-value was the criterion for selecting the significant features. As a result, the top-10
features with the smallest p-values were individually selected from EEG-based and fNIRS-
based techniques as classifier input. Furthermore, the top-5 features from EEG (univariate
features only) and fNIRS, respectively, were combined, resulting in 10 hybrid features for
comparison purposes.

2.4. Machine-Learning Classification

The SVM was applied to achieve workload classification. It constructed an optimal
separating hyperplane in the feature space based on the structural risk minimization
principle. The selected features extracted from EEG and fNIRS were fed into the SVM with
a radial basis function (RBF) kernel. Different machine-learning algorithms were tested
and compared, such as the k-nearest neighbour (KNN), decision tree and LDA. The SVM
outperformed other methods in classification. Hence, this paper mainly used the SVM with
RBF to represent classification results. To avoid overfitting =in the case of limited data, a
five-fold cross-validation technique was employed. To be more specific, the dataset of each
condition was divided into five subsets, and then five iterations were undertaken to ensure
each subset was used for training and testing [15]. That is to say, for each iteration, 80%
of the dataset was used for training and the remaining 20% for testing. Consequently, the
classification result was calculated by averaging the accuracies from 5 iterations. Totally,
there were 3 workload levels x 3 series x 3 sessions x 26 participants = 702 samples. Before
being fed into the classifier, the features were normalised from —1 to 1 for each participant
to reduce the influence of individual differences.

3. Results
3.1. Time Interval Selection
The selection of the time interval relied on the classification performance implemented

on each participant. Figure 3A represents the mean classification accuracy for all partici-
pants using fNIRS-based features against the moving time window, and sustained growth
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was observed during the first 30 s. After a 25 s oscillation, the accuracy reached its peak
when the 45-50 s time window was used. Consequently, the 10 time-windows in the range
of 45 to 54 s were selected for the next step of feature extraction. Figure 3B illustrates the
changes in classification accuracy against the length of the time window of fNIRS and EEG.
Notably, the accuracy of using fNIRS-based features decreased along with the window-size
increment for all three classification groups. However, the EEG-based method performed
better following the window-size increment and peaks at 40 s, particularly for O-back vs.
2-back and 0-back vs. 3-back. As a result, the final window-size selections for fNIRS
and EEG were 5 and 40 s, respectively. Furthermore, it indicated that the fused features
outperformed features from a single modality.
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Figure 3. Time window analysis (A) Time interval analysis for fNIRS features; Time window-size
evaluation for EEG and fNIRS features for (B) 0-back vs. 2-back, (C) 0-back vs. 3-back, (D) 2-back
vs. 3-back.

3.2. Machine-Learning Classification Performance

To select the optimal FBC features, four different methods (MI, PCC, MSC and PLV)
were tested individually, and the nonlinear time-domain method, MI, was found to provide
the highest classification accuracy. Figure 4 shows the comparison of the four estimations in
the three bands for top-10 average classification accuracy. The error bar shows the accuracy
from each iteration of cross-validation. Therefore, MI was selected as the EEG-based FBC
feature for the following analysis.

To classify multi-level mental workload, the classification task was separated into three
groups: 0-back vs. 2-back, 0-back vs. 3-back and 2-back vs. 3-back. The performances using
EEG-based features only, {NIRS-based features only, and hybrid features were evaluated
and shown in Tables 2—4. To ensure classification fairness, each classification task used
10 features as the input. The features were selected according to the significance test and
a sample is given in Supplementary Figure S4. The EEG alpha band information had the
best performance in discriminating the three workload levels for both univariate (PSD)
and bivariate features (FBC). Meanwhile, the results also suggested that the FBC features



Sensors 2022, 22,7623

8of 17

performed better with an approximately 5% accuracy increment for all three sub-tasks.
When it came to fNIRS, HbR outperformed HbO, but the accuracies were both significantly
lower than for EEG-based FBC features, particularly for 0-back vs. 2-back and 0-back vs.
3-back. Other references suggested that classifiers, such as LDA, SVM and CNN, achieved
higher accuracy using HbR indicators [18,19].

Accuracy using FBC features in three bands

Delta Theta Alpha
EM EmPCC mMSC mPLV

(o)) o)} ~J ~l
o ol o vl

Accuracy / %

Ul
(%2}

U
o

Figure 4. Comparison of four FBC estimations (MI, PCC, MSC and PLV) in terms of the average of
the Top 10 classification accuracies along with maximum and minimum value.

Table 2. SVM classification accuracy of 0-back vs. 2-back using different features.

EEG fNIRS
EEG + fNIRS
PSD FBC HbO HbR
Delta 66% 67% 72%
-back vs.
Oback Vs ™ heta 68% 73% 62% 68% 75%
2-back
Alpha 70% 74% 77%
Table 3. SVM classification accuracy of 0-back vs. 3-back using different features.
EEG fNIRS
EEG + fNIRS
PSD FBC HBO HBR
Delta 65% 63% 74%
Oback Vs heta 69% 72% 62% 72% 75%
3-back

Alpha 71% 77% 83%
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Table 4. SVM classification accuracy of 2-back vs. 3-back using different features.

EEG £NIRS
EEG + fNIRS
PSD FBC HBO HBR
Delta 52% 60% 57%
2-back vs.
back vs. ) 56% 61% 60% 61% 58%
3-back
Alpha 550/0 620/0 590/0

Overall, the fused features (EEG-fNIRS) improved classification performance. For
the 0-back vs. 2-back and 0-back vs. 3-back tasks, the hybrid method obtains the highest
accuracy with 77% (Table 2) and 83% (Table 3), which suggests, as expected, there is more
difference between 0-back and 3-back than between 0-back and 2-back. However, the
difference between 2-back and 3-back was small, as evident by a much lower accuracy.
Notably, the results suggested that the hybrid features did not have superiority in all tasks.
As shown in Table 4, the FBC features in the alpha band had the best performance (62%)
but the fused features had only 59%. Nevertheless, 2-back and 3-back were difficult to
distinguish for any features.

To further evaluate the machine learning algorithms performance, accuracy (Accu),
sensitivity (Sens) and specificity (Spec) were calculated:

TP+ TN
A = 100% 11
U= T TN+ PP+ EN ¢ 00% (1)
Sens = _TP x 100% (12)
~ TP+FEN ’
TN .

where TP = True Positive; FN = False Negative; TN = True Negative; and FP = False Positive.
Moreover, the receiver operating characteristic (ROC) curve, and the area under the ROC
curve (AUC) [35,36] were used to assess the goodness of classification. Specifically, the
ROC was constructed from the true positive rate (TPR = sensitivity) in the vertical axis
and the false positive rate (FPR = 1-specificity) in the horizontal axis [37]. The resulting
accuracy, sensitivity, specificity and AUC are shown in Table 5. The ROC curves for three
binary classification tasks is shown in Figure 5.

Table 5. Performance of classification for 3 binary classification tasks.

Alpha Hybrid Features Accuracy Specificity Sensitivity AUC
0-back vs. 2-back 77% 79% 76% 0.8332
0-back vs. 3-back 83% 84% 80% 0.9501
2-back vs. 3-back 59% 57% 63% 0.6721

3.3. Visualisation

To further explore the difference among the three workload levels, a distinct visualisa-
tion method was employed. A topographic map was used to represent the PSD distribution
of the EEG alpha-band (Figure 6), which provided about 70% classification accuracy for the
0-back vs. 2-back and 0-back vs. 3-back tasks. The averaged PSD distribution across all
participants, illustrated by the left column, suggested that the posterior area of 0-back had
much higher PSD than 2-back and 3-back, while other areas had similar PSD distribution. It
seemed that, during the low workload level, there was more brain activity in the alpha band
in the posterior area than during high workload. It matched the classification result, which
revealed that the posterior midline occipital (POz), left occipital (O1) and right occipital
(02) channels contributed more than the others. The patterns of 2-back and 3-back are very
similar for the whole bran, which explains the low classification accuracy (55%) in Table 4.
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The individual PSD distribution, illustrated in the middle column of Figure 6, indicates the
difficulty of the classification to an extent. Furthermore, to validate the observation, the
right column of Figure 6 shows the accuracy of using each channel’s PSD as the input. As
expected, the posterior area can provide more than 70% accuracy for 0-back vs. 2-back and
0-back vs. 3-back tasks.

ROC for Classification
T ]

True positive rate

02 — 0-back vs. 2-back
: 0-back vs. 3-back
2-back vs. 3-back

0 1 1 1
0 0.2 0.4 0.6 0.8 1

False positive rate

Figure 5. The receiver operating characteristic (ROC) curves for three binary classification tasks:
0-back vs. 2-back, 0-back vs. 3-back, and 2-back vs. 3-back.

The topographic map of HbR features is shown in Figure 7. Similar to EEG, the
averaged HbR distribution of 0-back is significantly different from that of 2-back and
3-back, shown in the left column. More specifically, the frontal-right area has increased
HDR following the increment of workload level while the frontal-centre and middle-left
areas have decreased HbR following the increment of workload level. All these findings
have been supported by the classification result of individual channels (Figure 7). There is
no significant difference between 2-back and 3-back in terms of the overall pattern. The
individual HbR distribution is illustrated in the middle column of Figure 7. Furthermore,
to validate the observation, the right column of Figure 7 shows the accuracy of using each
channel’s HbR as the input. It is noted that the right frontal area can provide more than
70% accuracy for the 0-back vs. 3-back task. Interestingly, the accuracy of the posterior
area (PPOz) was close to 70% for 0-back vs. 2-back and 0-back vs. 3-back tasks, which
was not easy to observe from the feature visualisation. It also matched the findings in the
EEG analysis.
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Figure 6. Topographic map of the EEG alpha-band PSD. Left: average; Middle: each participant;
Right: Accuracy using each-channel PSD as the input. The area that provides the highest accuracy
is highlighted.

To visualise the FBC features, a heat map was used as shown in Figure 8. The maps
for individual participants are illustrated in Figure 8A-C for 0-back, 2-back and 3-back
respectively. The accuracy of the three classification tasks is illustrated in Figure 8D-F for
0-back vs. 2-back, 0-back vs. 3-back, and 2-back vs. 3-back, respectively. It shows that
each participant had a similar FBC pattern estimated by MI, while the value of different
regions varied. Furthermore, it helped us to understand the differential contribution of the
various brain regions for mental workload discrimination. The functional brain connectivity
between frontal channels and Fp1l estimated by MI had a significant increase when the
workload level became higher. It was also proved in Figure 8D-F that the following pairs
left frontopolar-anterior midline frontal (Fp1:AFz), left frontopolar-left frontal (Fp1:F1), left
frontopolar-right frontopolar (Fp1:Fp2) and left frontopolar-right frontal (Fp1:F2) provided
relatively higher classification accuracy when differentiating 0-back from 2-back and 3-back.
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Figure 7. Topographic map of the {NIRS HbR features. Left: average; Middle: each participant; Right:

Accuracy using each-channel HbR feature as the input. The area that provided the highest accuracy
is highlighted.
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Figure 8. The heat map of MI FBC features and the accuracy results. (A-C) shows the MI value
for each participant in 0-back, 2-back, and 3-back task. (D-F) represents the classification accuracy
for 0-back vs. 2-back, 0-back vs.3-back and 2-back vs. 3-back, respectively, using each pair of EEG
channels as the input where the FBC value was estimated by MI.

4. Discussion

A comparative analysis of previous research and the proposed work employing EEG
and fNIRS in mental workload classification is shown in Table 6. This paper now discusses
the results in detail from three aspects: EEG vs. {NIRS, univariate vs. multivariate features,
and independent vs. hybrid feature.

Table 6. A comparative analysis of the previous research and the proposed work.

Reference Study Setting Classifier Accuracy
Liu et al. [28] 0-, 1-, 2- N-back LDA 64.4% (EEG)
55.6% (fNIRS)
68.1% (EEG+fNIRS)
Aghajani et al. [10] 0-, 1-, 2-, 3- N-back SVM 85.9% (EEG)
74.8% (fNIRS)
90.9% (EEG+{NIRS)
Nguyen et al. [38] Simulated driving FLDA 73.7% (EEG)
system 70.5% (tNIRS)
79.2% (EEG+{NIRS)
Saadati et al. [29] N-back DNN, SVM 67.0% (EEG-DNN)
DSR 80.0% (fNIRS-DNN)
Word generation 87.0% (EEG+{NIRS-DNN)
LHand vs. RHand 82% (EEG+{NIRS-SVM)
Chu et al. [39] Mental workload SVM, RE, DT 55.4% (EEG-RF)

69.2% (fNIRS-RF)
78.3% (EEG+{NIRS-RF)

Proposed study 0-, 2-, 3-back SVM 77% (0-back vs. 2-back)
83% (0-back vs. 3-back)
59% (2-back vs. 3-back)

Abbreviations: LDA—Linear discriminant analysis; SVM—Support Vector Machine; FLDA—Fisher Lin-
ear Discriminant Analysis; DNN—Deep Neural Network; RF—Random Forest; DT—Decision Tree;
DSR—discrimination/selection response task.
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4.1. EEG vs. fNIRS

On one hand, EEG needed a longer data length to suggest difference between different-
level workloads. To be more specific, a 40 s time window was the most suitable, while
5 s was suggested for fNIRS. That is to say, {NIRS required less response time to support
a satisfactory classification accuracy, which meant it may be more efficient in actual ap-
plication. On the other hand, the EEG-based features, especially the FBC, represented
obvious advantages over the fNIRS-based features in classification accuracy although the
FBC methods were more complicated and entailed a higher computational cost.

The best region for assisting in the discrimination of the mental workload was different
for EEG and fNIRS. Specifically, the posterior area performed the best for EEG (POz)
in the alpha band and fNIRS had superiority in the right frontal region (AF8). Some
studies suggested similar findings. Brouwer et al. [33] found the alpha power of the
midline parietal (Pz) region in EEG recordings significantly decreased with memory load,
effectively distinguishing 2-back from 0-back. Chu et al. [39] stated that the alpha-power of
O1 indicated differences between multi-level workloads. Regarding fNIRS, the prefrontal
areas were well-accepted for measuring variations in mental workload [40—42]. However,
there was limited research pointing out a determined channel that contributes the most. Our
study narrowed down the region (right frontal) to support the discrimination of workloads,
as evidenced by the topographic visualisation of the machine-learning classification results.

4.2. Univariate vs. Multivariate Features

Considering the EEG features, the bivariate FBC approaches obtained more satisfactory
accuracy compared to the univariate PSD features. The results of this study provide
evidence to support the hypothesis that the FBC not only estimated the informational
intercommunication of separate brain regions but also tracked distinct changes for different
levels of workload. There are other supporting studies for this hypothesis in the literature
on workload classification. Pei et al. [43] suggested the fusion of band power and FBC
features, which were estimated by PLV and the phase lag index (PLI), enhanced the
classification performance of workload identification. The PLI-based FBC was also used by
Kakkos et al. [7], and the study implied that using FBC emphasised its ability to serve as
a promising indicator for different workload levels. Our framework employed four FBC
estimations that illustrated connections with various properties, and MI outperformed PCC,
MSC and PLV for the highest classification accuracy. In this case, the proposed framework
deepened the use of the FBC technique in the field of mental workload discrimination.
Furthermore, it implied that, among different levels of workload, the greatest changes
occurred in nonlinear brain connectivity.

4.3. Independent vs. Hybrid Feature

The hybrid features of EEG and fNIRS outperformed the independent category of
features in classification results, achieving the highest accuracy of 77% for 0-back against
2-back and 83% for 0-back against 3-back. It meant that different methods explored distinct
information and became complementary to each other thereby improving classification
performance. The results agreed with the conclusion in the literature [29,38,39,42]. The
present paper is an advance on previous studies because it generated new knowledge about
regional information by comparing the foci of independent types of features. To an extent, it
paved the way to use an EEG—NIRS hybrid sensor in real-world workload classifications.

5. Conclusions

In this paper, a novel solution relying on hybrid EEG-{NIRS features was proposed
to deal with multi-level mental workload classification supported by machine-learning
classifiers. To be more specific, the univariate PSD and four bivariate FBC features were
extracted from an EEG recording in three frequency bands. With the assistance of HbO
and HbR indicators from fNIRS, the fused features improved classification performance.
Moreover, topographic and heat-map visualisation indicated distinct regions for EEG and
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fNIRS that represented difference among 0-back, 2-back and 3-back. Overall, the FBC
technique based on an EEG recording proved its value in mental workload classification,
and accuracy improvement emphasised the effectiveness of the hybrid EEG-fNIRS. The
one limitation of this study was that there was a volume conduction effect in the EEG
dataset, but the high classification accuracy suggested that the functional connectivity
was effective for classifying different workloads. One potential future work would be to
use bipolar channels rather than unipolar channels or to pre-process the data to mitigate
volume conduction.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/s22197623/s1, Figure S1: Channels and locations for the EEG
(Left) and fNIRS (Right) recordings; Figure S2: {NIRS average HbR value of each of 26 participants in
three levels of workload; Figure S3: fNIRS average HbO value of each of 26 participants in three levels
of workload; Figure S4: A sample of significant test to represent the difference among three-level
workload with the purpose of selecting limited numbers of features (p-value < 0.0001).
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