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Abstract: This paper presents a system for behavioral, environmental, and physiological monitoring
of working dogs using on-body and aerial sensors. The proof of concept study presented here
includes two trained dogs performing nine scent detection tasks in an uncontrolled environment
encompassing approximately two acres. The dogs were outfitted with a custom designed wearable
harness to monitor their heart rate, activity levels and skin temperature. We utilized a commercially
available micro-air vehicle to perform aerial sensing by tracking the terrain and movement of the dog
in the outdoor space. The dogs were free to explore the space working at maximal speeds to complete
a scent-based search-and-retrieval task. Throughout the experiment, the harness data was transferred
to a base station via Wi-Fi in real-time. In this work, we also focused on testing the performance
of a custom 3D electrode with application specific ergonomic improvements and adaptive filter
processing techniques to recover as much electrocardiography data as possible during high intensity
motion activity. We were able to recover and use 84% of the collected data where we observed a trend
of heart rate generally increasing immediately after successful target localization. For tracking the
dogs in the aerial video footage, we applied a state-of-the-art deep learning algorithm designed for
online object tracking. Both qualitative and quantitative tracking results are very promising. This
study presents an initial effort towards deployment of on-body and aerial sensors to monitor the
working dogs and their environments during scent detection and search and rescue tasks in order
to ensure their welfare, enable novel dog-machine interfaces, and allow for higher success rate of
remote and automated task performance.

Keywords: ECG; heart rate variability; electrodes; machine learning; 3D printing; wearable; drone;
UAV; embedded system

1. Introduction

Dogs play a critical role in modern society and perform an array of functions from
simple quality of life interactions such as companionship, to professionally trained opera-
tions such as herding livestock; detecting drugs, explosives, and pests; and aiding in search
and rescue (SAR) applications. A number of studies in the literature show that monitoring
physiological signals (e.g., heart rate, heart rate variability) and behavioral indicators (e.g.,
activity levels, postures and body movement) not only provide insight into the physical
and emotional health and welfare of the dogs, but also allow for computer-assisted training
approaches [1–7]. Enabling such new information channels and decision-making capabili-
ties during human and dog interactions through quantitative monitoring of dogs also allow
for dog-machine or dog-robot interfaces [8–13].

Commercial unmanned air vehicle (UAV)-based surveillance has great utility in SAR
applications for recording the search activity and surveying the environment. This is espe-
cially useful in relatively harsh environments that are challenging for human exploration
but dogs can work relatively easily in, such as rubble piles after natural disasters or large
agriculture fields and forests. In these environments, dogs can be excellent trackers on the
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ground where UAV cameras in the air allow for situational awareness and further insight
into the detection tasks.

In this paper, we present our efforts towards combining the visual, environmental,
and navigational sensors carried by a commercial UAV with a custom designed sensor-
equipped canine harness [14–16]. We added features to our custom-equipped harness to
support the ergonomic needs of the study; established a wireless network synchronously
connecting all the sensors and actors together; and enabled a human-computer interface
towards a dog-human-drone triad system as shown in Figure 1. We particularly focus on the
assessment of critical information related to working dogs in the field using both harness
based on-body and UAV based aerial data streams. Figure 2 displays an overview of the
system. These include heart rate, heart rate variability, skin versus ambient temperature
and micro- & macro-motion of the animal. The custom designed sensor system embedded
into the dog harness monitors micro-environment—the immediate area of the dog. This
system acquires local ambient temperature and high resolution body movement of the
dog as it moves through the searched space. These are paired with the detection of key
physiological signals of skin temperature, heart rate and heart rate variability. The UAV is
used to track the gross movement in the macro-environment, or the larger working area
the dog and handler conduct their activities in. This paper focuses on the preliminary
assessment and analysis of the data streamed from both the systems with an emphasis
on the development of signal and vision processing techniques related to the collected
multimodal information.

The system described in this paper affords the first attempt towards fusing on-body
and aerial sensors for multimodal interrogation of working dogs’ performance and well-
being through data analytics that incorporate streams of physiological, behavioral and
environmental data. We describe preliminary steps taken towards this goal and provide
experimental results for proof of concept validation of sensing and system performance in
a realistic wilderness environment. Analytical interpretation of sensor data reveals promis-
ing results, demonstrating that the sensing systems can work effectively in challenging
environments and during high-level activity of the dogs.

In our prior work, we examined the benefits and limitations of various on- and off-
body sensing of behavioral, environmental and physiological parameters for working
dog applications [9,11,14,15,17–23]. The major challenge is the difficulty of monitoring
dogs’ maximum heart rate during intense exercise due to excessive motion artifacts. We
have made several design efforts to provide the best skin-electrode contact possible as
discussed in Section 2.1 Materials and Methods: On-body Dog Harness System. We have
also developed peak detection algorithm that can support the faster beat rate of a dogs
heart during intense exercise (around 300 beats per minute) [24].

There has been a recent interest in enabling dog-drone or -ground robot interactions,
especially for SAR applications. Previous research shows that dogs can be trained to
follow a UAV or receive commands in such scenarios and engage in functional referential
communication [25–28]. Previously, our team participated in the Smart America Challenge
in 2013, organized by the White House in which a Smart Emergency Response System (SERS)
was developed to connect cyber-physical technologies (robots and drones) with humans
and instrumented dogs to help save lives in disaster areas [10,11]. In this, we developed
a canine harness with environmental sensors to monitor the disaster area with cameras
and gas detectors, as well as vibration motors and micro-speakers to communicate sound
and tactile signals to the SAR dog. Drones established a Wi-Fi network and provided
an overhead view of the canine and disaster area. Command/control center software
developed by MathWorks, Inc. (Natick, MA, USA) connected dogs, drones, and other
ground robots [29,30].

Another major effort to combine UAVs and working canines was a notable computer-
networking-focused project, based in Europe, Synergistic Interactions in Swarms of Heteroge-
neous Agents (SWARMIX) [31]. The project focused on a SAR application, using “swinglets”
to automatically scan an area using computer vision where the software also tracks human-
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canine teams using drones and communicates areas of interest to the human handlers.
The SWARMIX approach used only single modality sensing from the UAVs and did not
incorporate on-body physiological and behavioral sensing for the dogs.

Figure 1. Hardware assembled to enable the on-body and aerial sensor system. A custom designed
leather harness houses the microprocessor (highlighted by red box) and sensor in its pouches and
hides all the wiring (bottom left). It also hosts custom 3D printed electrodes and temperature sensors.
A commercial Wi-Fi router and antenna provide wireless connection to the Cloud. The aerial images
acquired by commercial drone’s camera.

Figure 2. The block diagram describing the multimodal and distributed sensing capability of the
presented on-body and aerial sensor system.
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2. Materials and Methods
2.1. On-Body Dog Harness System

The details of our harness system can be found in [15]. This system is based on Rasp-
berry Pi3B (Raspberry Pi Foundation, UK) microcontroller with an attached custom circuit
cape we developed for collecting electrocardiography (ECG) and inertial measurement
(acceleration and gyroscopic motion) via a I2C communication bus. This custom circuit
collects ECG data via AD8232 (Analog Devices, Inc. Wilmington, MA, USA) and inertial
data via LSM9DS0 (STMicroelectronics N.V., Geneva, Switzerland) at sampling rates of 440
and 220 Hz respectively. A custom leather harness is used fitting the exact size of electronic
boards and enclosures. For ECG we use custom designed 3D printed conductive electrodes
placed ventrally across the chest of the dog [15]. For this study, we modified the electrodes
to support high intensity activity by 3D printing a channel to zip tie the electrodes into
the harness. The three-prong structure provides optimum stability at the point of contact
and by firmly affixing the electrodes to the housing, we mitigated potential issues during
high motion and prevented the electrodes from rolling and losing body contact. With this
custom electrode, we do not need to shave the dogs and were able to maintain adequate
skin contact throughout the experiment.

An 85 g 5000 mAh battery powered the system and this can be easily extended as dogs
can carry much larger payloads on the order of several kilograms. In practice, we achieved
up to 12 h of continuous data transmission of the system with the given battery. The
twelve hours of transmission time far exceeds the working time an individual dog would
be required to perform a scent detection task. In search and rescue scenarios, handler-dog
teams take regular breaks throughout a deployment. While deployments may last days
or weeks and teams may work 8–12 h per day, seldom would any team work more than
a two hours without a substantial rest period. At this point, the dog would be given a
break, the equipment would be removed and a fresh battery would be used for the dog’s
next activity.

For this study, we distributed a set of temperature sensors DSB18B20 (Maxim Inte-
grated, San Jose, CA, USA) across the harness to collect skin versus ambient temperature
as a vital sign. Three waterproof DS18B20 temperature sensors were added onto the board
via terminal blocks and digital inputs with a sampling rate of 0.5 Hz since temperature
is expected to change slowly. One sensor was placed between the strap of the harness
and against the chest of the dog to monitor skin temperature. A second temperature
sensor was placed inside the electronic pouch environment which houses the electronics.
Finally, a temperature sensor was placed to protrude out from under the harness to mea-
sure the ambient temperature in the environment. This allowed for a complete picture of
the micro-environment of the dog during search activities. In addition, the temperature
of the Raspberry Pi central processing unit (CPU) was monitored as previously we had
seen performance issues when the CPU temperature increased too high, when the dog is
working under sun or hot environments.

While it is possible to perform some amount of streaming data analysis on a Raspberry
Pi microprocessor, doing so limits the ability to synchronize analysis with other streams
of data collected from other sources (i.e., the drone, other wearables on other canines,
etc.). Thus, for this article our approach was to leverage the Raspberry Pi primarily as the
microcontroller to collect and transmit raw data to a central location where it could be
synchronized with other sources.

As such, A modified version of the “CanineEvaluation” software [3] served as a
base station and graphical user interface for data collection to communicate with the
microcontroller on the harness and aggregate the data. The software affords an on-screen
display showing the real time data transmission of ECG, inertial measurement unit (IMU)
and temperature sensor from a Raspberry Pi 3B over Wi-Fi. In addition, annotations can be
made during data collection.
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2.2. Aerial Drone Sensors and Wireless Networking

A commercially available DJI Mavic II Zoom (SZ DJI Technology Co., Ltd., Shenzen,
China) was flown by an experienced pilot and used to film and track the dog throughout the
experiment. This drone has a 4K resolution camera and is capable of speeds up to 72 km/h
and flight time of over 30 min. We synchronized the data streams of the drone video with
the ECG, IMU, and temperature sensors by manual time markers applied at the beginning
and end of the experiments. The experiments took place in an area of approximately
two acres. We used a Rocket M2 2.4 GHz CPE AirMax router and AM-2G15-120 AirMax
Sector 15 dBi 120 deg antenna (both from Ubiquiti, Inc., New York City, NY, USA). The
hardware is specifically designed for harsh weather and outdoor environments, which
makes it ideal for this type of experimentation. Prior to experimentation, we walked the
boundary of the search area by venturing more than 150 m from the router without line of
sight due to tree obstructions and did not lose signal. This allowed us to transmit the ECG
and IMU data back to the base station in real time throughout the search area.

2.3. Experimental Protocol with the Dogs

All animal procedures were approved by the NC State University Institutional Animal
Care and Use Committee (IACUC). We ran four experiments with two male Labrador
Retrievers (four and eight years old). We had nine search-and-retrievals in an area of
approximately two acres. We outfitted the dogs with the harness and hid typical toys,
called “bumpers”, used in retrieval training. We used positive reinforcement operant
conditioning to train the dogs to search the bumpers. The field was set up to allow the
dog to search for bumpers safely. The handler walked and occasionally pointed the dog
during the search, and retrievals were noted in the software. The two dogs had previously
been acclimated to performing tasks while under drone surveillance and not affected by
its operation.

2.4. Data and Image Processing

Three axes of the IMU provided an activity level vector. The vector was used to detect
excessive motion and reduce motion artifact in the ECG signal. The activity level was
averaged over 5-s windows. The activity and heart rate were examined 10 s before and after
retrieval. In addition, the activity vector was used to perform adaptive noise cancelling
in areas of excessive motion to provide more accurate heart rate estimation. The ECG
system and our peak detection algorithm was previously validated against commercial
devices for resting and average intensity level activities such as walking at a lower speed
and regular pace [32]. Our efforts for improving the ergonomics to support higher walking-
and running-speeds and use of adaptive signal processing helped us to recover majority of
the ECG signal.

To demonstrate the functionality of the aerial camera sensing, we applied a state-of-
the-art online single-object deep tracker, the SiamRPN method [33], to track the dog in
videos. We first briefly summarize the workflow as illustrated in Figure 3, and then present
the evaluation metric.

This online tracking algorithm has the following three components:

(i) Initializing the bounding box of an object instance to be tracked in a given frame of
a video: Based on the initialization, a target model is learned (see Figure 3 top left
diagram). With the recent resurgence of deep neural networks (DNNs), the target
model is typically realized by a convolution neural network for better performance. In
this paper, due to the movement of the drone while the camera records the videos, we
apply multiple-frame initialization by manually selecting four to six frames (e.g., to
account for the dogs disappearing and reappearing when they either are completely
occluded by trees or bushes or run out of the camera field of view). The development
of a fully automatic tracking algorithm is considered as a future work.

(ii) Tracking the object in the subsequent frames: For improved efficiency, a local search
region is defined in the current frame based on the tracking result in the immediately
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previous frame (see Figure 3 left-bottom diagram). Then, the learned target model
is used to “scan” the search region to detect the tracking object based on the scoring
function determined by the nature of the target model.

(iii) Updating the target model based on the new tracking results: Since the initial target
model is learned with a single observation of the object of interest in tracking, it is
desirable to update the target model with more observations obtained to account for
structural and appearance variations of the object of interest. Thanks to the expressive
power of DNNs, the SiamRPN method enables us to obtain reasonably good tracking
performance on the challenging drone videos.

Object
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Figure 3. Illustration of the SiamRPN++ object tracking method, as edited from [33]. In tracking, given
a target template (left-top) and search region (left-bottom), the network ouputs a dense prediction by
fusion the outputs from multiple Siamese Region Proposal Networks (SiamRPNs). Each SiamRPN
block is shown on right.

In evaluating tracking performance, we annotated dogs in each frame of two videos
with bounding boxes using the free and open source “labelImg” tool [34]. For a given video,
we have the annotated ground-truth bounding boxes and the predicted bounding boxes
by the tracking algorithm. We adopt the widely used single object tracking evaluation
protocol which measures the success rate, precision and normalized precision between the
tracking results and the annotated dog bounding boxes, which are summarized as follows.

To characterize the success rate of tracking, the intersection over union (IoU) between the
ground-truth box and the prediction box is calculated in each frame, and then the success
plot is generated by varying the IoU thresholds from 0.05 to 1.0 (inclusive) with a step size
0.05. For a given IoU threshold, the tracking is said to have succeeded in a frame if the IoU
between the ground-truth box and the tracking result is greater than or equal to the given
threshold. The success rate for a given threshold is the proportion of frames with successful
tracking results. The mean success rate is the average over all the IoU thresholds.

To characterize the precision of tracking, the distance between the center of the ground-
truth box and the center of the prediction box is calculated. In our case, the distance
threshold varies between 0 and 51 pixels with a step size of 1. For a given threshold, the
precision rate is defined by the proportion of frames with the center distances smaller than
or equal to the threshold. The mean precision rate is the average over all thresholds. The
normalized precision of tracking is calculated using both the center of ground-truth boxes and
the center of prediction boxes, and normalizing those values by dividing each according to
the side length of ground-truth boxes.

Intuitively, the precision rate only evaluate the relative distance between the ground-
truth and the prediction without checking the shape and size of the boxes. The success rate
captures both the distance and the shape and size.

Video files from the UAV camera were archived on local storage to a central repository
in the cloud before backup for subsequent analysis during training of the SiamRPN++
model. It should be noted that, although not implemented here, the SiamRPN++ model,
when doing inference as opposed to training, can run on a suitably equipped mobile
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device (e.g., a gaming laptop with discrete GPU or a single board computer miniaturized
computer). However, while training, the requisite compute resources are more significant
and thus the workload is better performed in the cloud.

3. Results

We set out to measure behavioral, physiological, and environmental data using both on-
body harness and off-body UAV based aerial sensing in dogs during scent detection tasks.

We used ECG waveforms to extract heart rate based on R peak detection. Initially,
we extracted heart rate from the ECG signal using the “find peaks” function in MATLAB
where peaks are detected with a minimum local maximum of three times the average signal
value and minimum gap of 143 ms per peak. The initial analysis showed exceptionally
high heart rates during intense activity above the expected maximum, as a result of motion
artifacts. The observed instances of heart rate in the order of 360 beats per minute (bpm)
is well above the expected physiological maximum of around 300 bpm [24]. This can be
seen in Figure 4 where the heart rate peaks above 340 bpm briefly with a total average
of 260 bpm, a relatively high value. The evaluation of these results necessitated the use
motion artifact reduction. It should be noted that, to the best of our knowledge, there is no
wireless, wearable and portable “gold standard” ECG system exist to be deployed on dogs
in such outdoors field conditions to benchmark against since it is difficult to obtain ECG
during such high intensity motion. Therefore, we used visual inspection of the data and
the maximum heart rate normal values reported in the literature to assess the reliability
of the outcomes. The authors are not aware of any commercially available products
capable of performing ECG collection at maximal working speeds where an application
specific wireless ECG system was custom designed with novel electrode structures enabling
assessment of biopotentials despite the presence of hair and skin motion.
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Figure 4. Initial heart rate estimation without adaptive filtering.

In order to improve heart rate estimation, the three axes of the IMU are vectorized:√
a2

x + a2
y + a2

z

to produce a singular value. Then, the data are windowed into 5-s segments and the
average acceleration vector is calculated per window. This affords a relative comparison
across the experiment of whether or not the dog is increasing or decreasing activity for each
segment. Finally, a total average is computed for each window and any epoch with a value
above one standard deviation of the average is removed from the heart rate estimation as it
contains excessive motion artifacts. As can be seen in Figure 5, when the vectorized value
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is below the aforementioned threshold, the signal quality greatly increases and the peaks
become more observable visually. Utilizing the IMU for adaptive filtering by removing any
activity one standard deviation above the average retains 84% of the data. This produces a
more reasonable result for overall heart rate estimation shown in Figure 6. Once the highest
activity data is removed, the average falls to 216 beats per minute with peaks around 280.
This value is in line with [24] where heart rate was examined after extreme exercise.

Figure 5. Process of heart rate estimation using adaptive filtering. The areas regions of ECG (blue)
corresponding to lower IMA (orange) are used to estimate the overall heart rate and areas of higher
IMA are removed.

While motion artifacts can be mostly addressed through ergonomics of electrode
design and signal processing, the trend of the data collected indicates a potential additional
improvement through careful design of the analog front end circuits by adding an adaptive
gain stage in the future. The data collected in the field experiments suggest that the
amplitude of the ECG signal is the highest at points of highest motion and as such, there’s a
proportional relationship between the activity level and peak magnitude of the ECG signal.
An adaptive amplifier could be utilized to perform amplification at an inverse relationship
to the activity level, decreasing the gain when motion is high and increasing the gain during
lower activity. This would improve the overall signal to noise ratio of the ECG signal.

In all, we ran four experiments with two different dogs performing two experiments
each with a total of nine object retrievals. We examined the interplay between heart rate
and activity level 10 s before and after for all nine retrievals as shown in Table 1. As a
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representative example in Figure 6, the three bumper retrievals are denoted by 1, 2, and
3 respectively. Overall, a similar trend is noted for the heart rate immediately before and
after the retrievals. In seven of the nine retrievals, the heart rate tended to increase once
the dog retrieved the object (located the bumper toy). Then, the dog would return to his
handler and the heart rate recovered. This resulted in lower activity levels in six out of nine
retrievals, and then both the heart rate and activity level would increase when the dog was
released to continue its search.

Figure 6. Heart rate estimation (blue) overlaid with the IMA (orange). The three bumper retrieval
events are enumerated in red.

Table 1. Heart rate and activity level trends ten seconds before and after bumper retrieval.

Heart Rate Activity Level

Before After Trend Before After Trend

Dog 1 240 270 Increase 1.94 1.31 Decrease
Dog 1 270 270 No Change 1.57 1.51 Decrease
Dog 1 228 240 Increase 1.82 1.70 Decrease
Dog 1 192 234 Increase 2.00 1.85 Decrease
Dog 1 252 252 No Change 1.92 1.71 Decrease
Dog 1 258 282 Increase 1.30 1.63 Increase
Dog 2 234 264 Increase 2.19 1.53 Decrease
Dog 2 282 288 Increase 1.50 1.54 Increase
Dog 2 248 266 Increase 1.35 1.39 Increase

While our aim here is to provide proof-of-concept data about the use of on-body and
aerial sensors for tracking dogs, we note that our observations lead to interesting trends
with a need for further investigation in the future, especially to explore the relationship
between the increase in heart rate associated with the dog after object retrieval despite a
decrease in activity level. The decrease in activity level generally occurred because the dog
returned the bumper to the handler; however, it is interesting to note that in seven of the
nine retrievals the heart rate starts to decrease as the bumper is retrieved and increases
after retrieval. We keep this investigation beyond the scope of this article and reserve for a
future study.
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The temperature sensors distributed across various points on the harness also revealed
interesting results. We collected the temperature inside the electronics pouch, the CPU
temperature, the ambient temperature, and the temperature between the dog’s fur and
the computer as shown in Figure 7. The temperatures were relatively constant across all
measurement points with the largest change being a 3 ◦C drop in the electronic pouch
temperature. The ambient temperature dropped approximately 2 ◦C, the CPU temper-
ature remained relatively constant. We note the drop in ambient and electronic pouch
temperatures could be explained by extra airflow over the sensor when the dog is moving
at relatively high rates of speed. Allowing more airflow within the pouch mitigated the
CPU temperature rises and subsequently CPU performance to decrease. Finally, the skin
temperature of the dog’s under the harness increased by approximately 1 ◦C. As expected,
the measured values were lower than the core body temperature for a healthy dog (approx-
imately 38.5 ◦C measured rectally) due to the location of the sensor being over the skin
and fur. It was in the expected range and still provides an endpoint to track overheating to
prevent a potential heat stroke [35].

Figure 7. Measured temperatures from the electronics pouch, CPU, space between the dog body and
the computer, and the ambient environment.

Figure 8 presents representative examples of dog tracking results using UAV camera
images and Figure 9 demonstrates that a satisfactory success rate, precision and normalized
precision performance were achieved in the scope of this study. Two other representative
image examples are provided in Figure 10 illustrating the lack of compactness of the anno-
tated bounding boxes in some frames affecting the success rate evaluation in Figure 9. The
next and future step would be the development of a fully automatic dog tracking algorithm
to eliminate the multi-frame initialization entailed in the current experiments (e.g., two ini-
tialization frames are used in (0) and (5) in Figure 8). To eliminate the manual initialization,
one potential solution is to integrate object detection and online object tracking. The former
can provide high-scoring detection results (e.g., dogs) to initialize the latter, and also help
correct the drift of tracking.
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0) Initialized 

bounding box 

of the dog in 

the 1st frame

1) Successful tracking after the 1st

initialization of the tracking model

2) Short-term loss of tracking

due to motion blur and specular

reflection & auto-recovering

3) Tracking is robust when the dog was running without potential 

distracting objects appearing nearby

4) Tracking failure due to relatively long-term distraction

**the dog was running in circles around the person, which causes 

large pose changes between frames

5) Tracking manual reinitialization (the bounding box in red) 

after the failure 

6) Tracking became more robust after the 2nd initialization, 

till the end of this testing video clip. 

Figure 8. Examples of dog tracking results. We dissect the tracking results into seven components
(0–6), illustrating the inner working mechanism of the tracking algorithm we used. Overall we
observed that the tracking algorithm worked well on the videos we collected. We show the tracking
bounding boxes every five frames. The bounding boxes in red represent either the initialized box
(e.g., in the first frame) or re-initialized boxes (e.g., after the tracking failed due to the dog being
completely occluded for a while from (4,5)). The bounding boxes in green are from online tracking.
It also is observed that the tracking drifts due to fast motion caused either by the drone moving or
by the dog running, e.g., in (2). Best viewed in magnification for checking the cropped individual
tracking result.
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Figure 9. Quantitative results of dog tracking in two videos. The widely used success rate, precision
and normalized precision are used in evaluation.

Figure 10. Illustration of the lack of compactness of the annotated bounding boxes (in black) in some
frames, which may cause the not-very-high success rate in evaluation. The bounding boxes in green
are tracking results.

4. Discussion

In this paper, we present the first study fusing on-body wearable sensors and aerial-
visual sensors to monitor working dogs. We particularly focus on offering solutions
towards assessment of two important signals while the dog is performing a high speed
scent-detection task in a large area. These signals include the heart rate acquired with
the on-body ECG electrodes and macro-level activity of the dog using visual sensors. In
this section, we would like to widen the scope and offer a broader vision that can be
achieved with such stream of dataflow acquired from a suite of multimodal on-body and
aerial sensors in real time. This novel data stream could be essential to determine the true
performance of the working dog, characterize confidence in searches, improve situational
awareness, and optimize search patterns to increase effectiveness while also ensuring
welfare of working dogs.

Due to space limitation, several aerial-sensor enabled macro-environment analysis
is kept beyond the scope of this paper, including UAV cameras examining the topology
of the land to identify certain characteristics that would impact search performance (e.g.,
terrain that may impact airflow; moisture that may impact scenting conditions; or potential
hazards on the search trajectory). The fusion of aerial UAV cameras and on-body IMUs
and global positioning systems (GPS) could offer very high resolution tracking of the
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dog throughout the search whether it is on- or off-sight of the visual sensors. Beyond
providing a live video feed of the surveyed area, the UAVs can also be used as wireless
data relays to transmit any information received from electronics carried by humans or
dogs to distant base stations or directly to the Cloud [8,9]. The typical quadcopter UAVs
are capable of approximately 30 min of flight time and fixed wing devices can fly longer.
The extension of flight duration in UAVs is beyond the scope of this paper and an active
research under the field of aerospace engineering. The presented effort on drone-wearables
connection will definitely benefit from those advancements in the long run. In order to
perform an extensive search and rescue, multiple drones and a mesh network would be
required. A protocol would need to be developed to hand-off the data transmission to
ensure continuous monitoring. Additionally, the dogs should be trained to perform the
task with an operating drone present. This would ensure the dogs are able to communicate
and receive commands if necessary or learn to ignore the drone and focus on the scent
detection task [16,25].

The combined on-body and aerial sensing of the working dog and the environment
could also comprise a basis for novel in vivo psycho-physiological studies of working
canine behavior as well as avenues for advanced algorithmic analysis and optimization of
handler-canine-drone triad performance in real-world settings. Working canines are among
the most sophisticated mobile olfactory sensors in existence, and it is well documented
that air conditions (flow, moisture, temperature, wind direction, ground influences, etc.)
heavily influence the performance of these working animals. For example, the way air
swirls up and over an obstacle can lead to cyclic scent flows emanating from the obstacle.
Alternatively, on a warm, high-humidity day a dog may generate excessive body heat
in low-lying terrain where airflow is stalled by vegetation, thereby reducing the dog’s
olfactory effectiveness. The tracking of micro- and macro-level factors with environmental
sensors placed on harness and aerial visual sensors (such as hyperspectral imaging) could
provide a better assessment of the dogs working conditions and effect of these on the its
success rate for scent detection tasks. Moreover, combination these with tracking of the
heart rate, respiratory patterns and movement of the body could further improve this
success rate [9,15,17].

The system presented in this study with the addition of other commercially available
sensors and more advanced data analytics hold promise for such a grand vision that will
be the focus of our future work on this topic.

5. Conclusions

In this paper, we used on-body and aerial sensing to monitor the behavior, physiology,
and environment of a dog during search and rescue tasks. We successfully measured heart
rate, activity level, and temperature via on-body sensors placed on a wearable harness.
We used commercial UAVs with cameras for aerial tracking of the dog throughout the
experiment. Taken together, these two categories of capability substantively increase the
ability to monitor and characterize the performance of working dogs in vivo. Wearable
and drone-based sensing combined enable simultaneous collection of both egocentric and
allocentric data representing canine performance and welfare, as well as location within
the environment and interaction with specific objects. This capability goes beyond simply
using GPS for geolocation to enable a system whereby canine behavior can be analyzed in
concert with environmental factors discernible by drone-based environmental sensing.

We particularly focused on design enhancements to address experimental challenges
imposed by high intensity motion activity of dogs performing scent detection tasks in
uncontrolled environments. We achieved a robust wireless network encompassing a
nearly two acre space and allowing for real-time data streaming. In this space, our proof
of concept experiments included two dogs and nine search-and-retrieval sessions. It is
very challenging to acquire ECG signals during excessive motion of working dogs. We
improved and tested the reliability and robustness of an application-specific 3D printed
electrode during maximal working speeds. A custom designed leather harness improved
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the ergonomic fit and proved rugged enough to withstand the uncontrolled, outdoor
environment. The heart rate estimation was improved through adaptive filtering by using
the activity level from the IMU to remove excessive motion during the bumper retrieval.
Signal processing techniques recovered 84% of the data in an application where it was not
possible to collect usable data previously. In general, we saw the dog’s heart rate increase
upon retrieval of the bumper and recover after the retrieval was complete and it waited to
be released.

Using deep neural networks applied to UAV visual recordings for object tracking, we
accurately tracked dogs’ movements throughout a two acre field. With this, we performed
automated video tracking of dogs in the wild and obtained promising results. We analyzed
the barriers towards improving the tracking performance further and offered suggestions
for a fully automatic tracking algorithm by integrating DNN object detection and online
object tracking in the future.

While many challenges exist to realize the full capabilities of automated canine-human-
drone triads, the work presented in this paper represents a significant effort forward in
overcoming some of the most significant ones. Fusing data streams obtained from on-
body and aerial sensors could enable more efficient performance of remote scent detection
search tasks and ensure the welfare of the working dog during potentially dangerous
environments.
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