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Abstract: The millimeter-wave frequency band provides abundant frequency resources for the
development of beyond 5th generation mobile network (B5G) mobile communication, and its relative
bandwidth of 1% can provide a gigabit-level communication bandwidth. In particular, the D-band
(110–170 GHz) has received much attention, due to its large available bandwidth. However, certain
bands in the D-band are easily blocked by obstacles and lack penetration. In this paper, D-band
millimeter-wave penetration losses of typical materials, such as vegetation, planks, glass, and slate, are
investigated theoretically and experimentally. The comparative analysis between our experimental
results and theoretical predictions shows that D-band waves find it difficult to penetrate thick
materials, making it difficult for 5G millimeter waves to cover indoors from outdoor macro stations.
The future B5G mobile communication also requires significant measurement work on different
frequencies and different scenarios.

Keywords: millimeter wave; penetration loss; attenuation characteristics; channel model

1. Introduction

The rapid growth of mobile data and the use of smartphones have created an un-
precedented challenge for wireless service providers to overcome the global bandwidth
shortage [1,2]. To address this challenge, there is growing interest in cellular systems in the
30 to 300 GHz millimeter waveband, which has a much wider bandwidth available than
today’s cellular networks [3,4]. Some high frequency bands (mm-band) were previously
used for satellite communications, long-range point-to-point communications, military
communications, and LMDS (28 GHz), but short wavelengths make it impossible for waves
to bypass, or have quasi-optical propagation characteristics [5], which means that the
high frequency bands do not have the rich scattering characteristics of the sub-6 GHz
band [6–10]. Under line-of-sight conditions, the received signal energy is concentrated on
the line-of-sight and a few low-order reflection paths. Under the condition of non-light
of sight, signal propagation mainly relies on reflection and bypass, resulting in sparse
channels in space and time, and the occlusion of people or objects will lead to large signal
fading. High-band channels have many characteristics that are significantly different from
sub-6 GHz cellular mobile channels [11–14]. The development of new 5G systems that
can operate in higher frequency bands requires accurate propagation models for these
frequency bands. Industry trends at home and abroad show that 5G mmWave is the next
stage of 5G development, but it will require a significant amount of time and R&D costs to
address the propagation characteristics of mmWave, before it can be deployed as a more
general wireless network solution.

Millimeter waves propagate in space as directional waves, have good directivity,
are easily blocked by obstacles, and lack penetrating power. Channel measurement and
modeling work has also been carried out for high frequency bands, for example, Aalto
University in Finland has carried out measurement activities in 15, 28, 60 GHz and E-bands
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(81–86 GHz) based on a 60 GHz VNA detection system and completed multi-point confer-
ence room measurements to obtain the extended SV channel model [15]. Using the VNA
measurement system, Ericsson participated in the METIS, mmMAGIC and 5GCM projects
and completed the following several measurements: (1) in indoor 60 GHz transmission
human blocking experiments [16], it was found that the human blocking loss can also be
as high as 10–20 dB; (2) with indoor multi-frequency medium and long-range path loss
measurements, it was observed that the bypass is the main path of millimeter-wave indoor
non-light of sight transmission [16,17]; (3) multi-frequency under NLOS conditions in urban
blocks. The measurement found that the signal path loss does not depend on the frequency
very much, and is lower than the result of the knife-edge bypass, indicating that the signal
in the case of outdoor NLOS mainly comes from other reflection paths [17]. (4) The final
measurement was multi-band measured wall penetration loss [18]. In the 5GCM project,
Nokia and Aalborg University in Denmark collaborated on path loss measurements at
10 GHz and 18 GHz [18]. The mm MAGIC project has other measurement activities [17],
such as (1) French Telecom Orange Lab (Belfort) completed multi-frequency O2I mea-
surements to observe penetration loss as a function of frequency; (2) French CEA-LETI
completed 83.5 GHz and other indoor propagation channel measurements.

In April 2019, Verizon, the largest mobile operator in the United States, launched 5G
mobile services in the 28 GHz band in Chicago and Minneapolis. For indoor coverage,
Verizon’s 5G mmWave signal is nearly unreachable. After penetrating the concrete wall, the
5G download rate dropped sharply from 600 Mbit/s to 41.5 Mbit/s, while the 4G downlink
rate at 1900 MHz did not change much, due to the severe penetration loss of 5G mmWave.
Clearly, the wave penetration loss of typical building materials should be studied in light of
the need to improve future 5G mmWave indoor coverage. However, the existing millimeter-
wave research mainly focuses on the millimeter-wave frequency band below 100 GHz, and
the 100–300 GHz millimeter-wave still needs to be developed. D-band (110~170 GHz)
electromagnetic waves (EMW), with a frequency range of 110~170 GHz, are located in the
cross-band of millimeter waves (30~300 GHz) and terahertz (THz) waves (100~10,000 GHz).
The atmospheric window frequency bandwidth of the D-band millimeter wave is about
26 GHz, and its center frequency is about 140 GHz, and the propagation loss in the air is smaller
than THz band. Compared to lower millimeter wave frequencies, D-band electromagnetic
wave signals have a wider bandwidth, with narrower beams and shorter wavelengths,
resulting in greater transmission capacity and higher resolution. Research on the D-band
channel propagation characteristics will be helpful to the research of new technologies
in the physical layer of 5.5G and even 6G systems. To this end, this paper studies the
penetration characteristics of the D-band (140–160 GHz) to typical materials, such as glass,
slate, vegetation, and wood, and finds that the penetration loss of D-band millimeter waves
is not very dependent on high frequencies, while the masking loss of vegetation is as high
as 10–20 dB. D-band millimeter waves can hardly penetrate 5 cm-thick slate and 2 cm-thick
wood, and the penetration loss is positively related to the thickness of the masking material.

mmWave is known to increase the capacity of 5G networks and reduce latency. Wider
implementations of high-definition video conferencing, teleoperation, and industrial au-
tomation will benefit from the wider bandwidth of the mmWave spectrum, especially those
applications that require high precision. 5G mmWave will also enable each automated
robot to generate or receive large amounts of data, as well as the high-density deployment
of these robots in confined areas. From this point of view, good mmWave indoor coverage
is necessary. Some current measurements and modeling efforts are still well underway,
and work is expected to be carried out in several areas [9], including the following: current
measurements focus on a few hotspots, with additional measurements in other candidate
frequency bands; existing models claim that they support high bandwidths, but rely on
systems that typically have smaller measurement bandwidths and lower angular resolution,
so they will also enhance measurements and data analysis in large bandwidths and large
antenna arrays. In addition, the statistical parameters provided by the model are all in the
form of large table data lists. If the size scale parameters and frequencies, connection types,
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including antenna height and environmental parameters, can be established, this requires a
rethinking of the modeling method.

2. Materials and Methods

The cause of wireless path loss is the radiation diffusion of electromagnetic waves
and the channel characteristics in the transmission path, so that the received power is
smaller than the transmitted power. The free-space path loss model describes the channel
propagation characteristics in an ideal propagation environment. Its expression is given as

FSPL(d, f ) = 20log10(4πd f /c) (1)

where

d is the wireless transmission distance;
f is the transmission frequency;
c is the speed of light.

It can be observed from the above formula that the free space path loss is only related
to the transmission distance d and the transmission frequency f. When the transmission
distance or transmission frequency doubles, the loss is increased by 6 dB. The free-space
propagation model is suitable for the wireless environment with an isotropic propagation
medium (such as a vacuum), which does not exist in reality and is an ideal model, but the
air medium is similar to an isotropic medium.

Moreover, atmospheric attenuation is closely related to altitude, air pressure, tempera-
ture, and water vapor density above the Earth. Figure 1 shows atmospheric absorption for
free-space paths at sea level (z = 0 km) and at 10 km above sea level under dry conditions
(water vapor density w = 0 g/m3) and standard conditions (w = 7.5 g/m3).
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Figure 1. Free-space path atmospheric absorption for dry and standard environments at z = 0 km
and z = 10 km.

As shown in Figure 1, it is a graph of signal attenuation per kilometer as a function
of frequency. It can be observed that the attenuation of electromagnetic wave signals of
different frequencies in water vapor and oxygen is different, and there are absorption peaks
at several frequency points in the relationship between the resonant frequencies of water
vapor and oxygen, and the D-band is just between the two absorption peaks, ranging from
0.01 dB/km to around 2 dB/km. So, the D-band is suitable for long distances up to 100 m
millimeter wave communication.

In the real environment, the path loss is related to the presence or absence of occluders,
the type of occluders, the thickness of the occluders, as well as the angle of the sender
and receiver. The FSPL model does not reflect the actual propagation characteristics.
For obstacles of different materials in the transmission path, two modeling schemes of
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three rays and four rays are used in Ref. [19]. With the proposed scheme, the transmission
model of the D-band millimeter-wave signal with obstacles at a distance of 100 m can be
simplified, as shown in Figure 2.
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Figure 2. Transmission attenuation model diagrams of D-band millimeter-wave signal passing
through obstacles.

The attenuation model given in Figure 2 is adaptive for the different materials with
different thickness. For example, the relative permittivity and permeability of iron are
very large, and the D-band millimeter-wave signal will have a very large transmission
loss under the shielding of the steel plate. It can be considered that the D-band millimeter-
wave signal cannot penetrate the steel plate, so the three-ray diffraction model is applied
to the steel plate shielding. For relatively thin insulator materials, such as 5 mm-thick
glass and 3 mm-thick wood, their penetration loss is not very large, i.e., between 2 dB
and 5 dB, so the four-ray method is used for D-band modeling [20]. Four rays include
three edge diffraction paths and one transmission path. Unlike thicker insulating materials,
such as 5 cm-thick slate and 1.75 cm-thick wood, D-band mmWave signals also have very
large transmission losses. Therefore, we also believe that the D-band mmWave signal is
impenetrable in this case, while the three-ray diffraction method is suitable for simulating
thicker insulator materials.

The penetration performance of millimeter waves is very poor with increasing fre-
quency. Therefore, in our experiments, the penetration loss of millimeter waves in the
140–160 GHz frequency band is large, and it is also influenced by the dielectric constant,
thickness and other parameters of the blocking material. The schematic diagram of signal
transmission [21] is shown in Figure 3.
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In Figure 3, Pin is the incident signal power, Pout is the transmitted signal power, Pref
is the reflected signal power, and D is the thickness of the barrier. The fading coefficient
can be obtained from the transmission attenuation caused by material penetration [21],
as follows:

ζ =

∣∣∣∣√εr − 1√
εr + 1

∣∣∣∣ (2)
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where

εr is the relative permittivity of the barrier materials.

The relationship between Pin and Pout (that is, the transmittivity of penetration selected
below) can be expressed as follows:

Pout

Pin
=

ζ

e200D−1

(
1− ζ2

)2
e−2Dχ (3)

χ ≈ πtgδ

λ
√

εr
(4)

where

D is the thickness of the obstacles, and its measurement unit is meters;
λ is the operating wavelength;
tgδ is the tangential loss angle;
εr is the relative permittivity of the blocking material.

For almost impenetrable barriers, such as slates, the relationship between Pin and Pout
can be expressed as follows:

Pout

Pin
=

(
1− ζ2

)2
e−2Dχ (5)

Then, the penetration loss can be expressed as follows:

A ≈ −10lg(Pout/Pin) (6)

Conversely, the relationship between Pin and Pout can also be calculated from the
penetration loss measured in the experiment. For a more intuitive comparison, we select
the transmittance index for comparison.

It should be emphasized that the parameters of relative permittivity and tangent loss
angle have been given in Refs [20,22–28], and we use these parameters directly in the
measured D-band mmWave system. The real part of wood permittivity was measured by a
quasi-optical Mach–Zahnder interferometer with a backward-wave oscillator and the result
was 1.60–1.89 in the D-band [25]. However, some of the parameters were not measured in
the case of the D-band, so there is a certain error. The parameters are shown in Table 1.

Table 1. Parameters of relative permittivity and tangent loss angle of different materials.

Material Frequency εr tgδ

Wood
<100 GHz 1.99 [24] 0.0040

110~170 GHz 1.6~1.89 [25] 0.0040

Plexiglass 143 GHz 2.60 [26] 0.0050
60~300 GHz 2.581~2.602 [27] 0.0050

Concrete board 1~95.9 GHz 6.2~7 [28] 0.0491

The experimental setup of the D-band millimeter-wave transmission system is shown
in Figure 4. The signal generator (Agilent 83711B, 1–20 GHz) generates an IF signal from
11.4 GHz to 13.5 GHz, which is extended to the D-band (138 GHz to 163.2 GHz) after
passing through a six-multiplier and a two-multiplier. D-band signals are transmitted to
free space via a standard horn antenna (LB-6-25-A). After passing through the artificially
placed shelter, the receiving end is received by the same type of standard horn antenna at
the transmitting end. The received signal is first amplified by an electric amplifier with
a gain of 30 dB (the specific parameters of LNA are shown in Table 2), and then down-
converted to the intermediate frequency (1.2 GHz) in the mixer. At this point, the frequency
range of the signal is already within the effective bandwidth of the digital oscilloscope.
After that, the IF signal is amplified by an electric amplifier with a gain of 26 dB, and finally
captured by a digital oscilloscope (E4407B ESA-E, 9 kHz–26.5 GHz). Therefore, the center
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frequency and received power of the IF signal are observed. The horn antenna operates
from 110 GHz to 170 GHz with a gain of 25 dBi and a half-power beamwidth (HPBW) of
9◦ in the E-plane and 10◦ in the H-plane. The sensitivity of the receiver is −56 dBm. The
photos of the experimental setup at the transmitter and receiver are shown in Figure 5.

Table 2. The parameters of LNA.

Product Type D-LNA 110-170 30 6

RF frequency (GHz) 110-170
Waveguide designator WM-1651 (WR-6.5)

Gain (typ.) (dB) 30
Noise figure (dB) 6

P1dB (dBm) −3
Max RF input power (dBm) −30

Part-no. 03000025
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Figure 5. The photos of the experimental setup at the transmitter and receiver.

This measuring D-band system is implemented in an indoor environment. It is carried
out in the underground garage of Building 2, Jiangwan Campus, Fudan University. The
antenna height of the transceivers is 1 m, the distance between them is 100 m, and the
angle is horizontally aligned. We used a laser pointer to ensure that the antennas on the
Tx-side and Rx-side are aligned. First, no obstructions are placed between the transceivers,
and the signal power received without obstruction is measured, so that it can be used as a
benchmark. Then, the occluders (the details about the occluders are shown in Table 3) are
artificially placed in the space, and the position of the occluders is continuously adjusted to
minimize the power loss, so as to complete the calibration. We repeat the measurement
of the same parameter 10 times at each frequency point to improve the measurement
accuracy, and take the average value as the measurement result at that point. Finally, the
received signal power through different obstacles is subtracted from the reference value to
obtain the penetration attenuation mainly caused by the obstacles. In order to compare the
transmission loss of different materials, the occluders were manually replaced to obtain
different transmission loss results.
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Table 3. The details about the occluders.

Material Size (cm2)

Wood board 49.2 × 35.8
Regular glass 88.2 × 42.9

Slate 59.7 × 39.3

Figure 6 is a schematic diagram of the relative positions of the occluders and the
transceivers in the experiment, including vegetation, a wood board, regular single-layer
glass and slate materials. The vegetation includes potted green plants in the laboratory.
When the number exceeds one pot, all the green plants are stacked together, as shown
in Figure 7.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 5. The photos of the experimental setup at the transmitter and receiver. 

This measuring D-band system is implemented in an indoor environment. It is car-
ried out in the underground garage of Building 2, Jiangwan Campus, Fudan University. 
The antenna height of the transceivers is 1 m, the distance between them is 100 m, and the 
angle is horizontally aligned. We used a laser pointer to ensure that the antennas on the 
Tx-side and Rx-side are aligned. First, no obstructions are placed between the transceivers, 
and the signal power received without obstruction is measured, so that it can be used as 
a benchmark. Then, the occluders (the details about the occluders are shown in Table 3) 
are artificially placed in the space, and the position of the occluders is continuously ad-
justed to minimize the power loss, so as to complete the calibration. We repeat the meas-
urement of the same parameter 10 times at each frequency point to improve the measure-
ment accuracy, and take the average value as the measurement result at that point. Finally, 
the received signal power through different obstacles is subtracted from the reference 
value to obtain the penetration attenuation mainly caused by the obstacles. In order to 
compare the transmission loss of different materials, the occluders were manually re-
placed to obtain different transmission loss results. 

Table 3. The details about the occluders. 

Material Size (cm2) 
Wood board 49.2 × 35.8 
Regular glass 88.2 × 42.9 

Slate 59.7 × 39.3 

Figure 6 is a schematic diagram of the relative positions of the occluders and the 
transceivers in the experiment, including vegetation, a wood board, regular single-layer 
glass and slate materials. The vegetation includes potted green plants in the laboratory. 
When the number exceeds one pot, all the green plants are stacked together, as shown in 
Figure 7. 

 
Figure 6. Schematic diagrams of the relative position of the occluders and the transceiver in the 
experiment. 

Figure 6. Schematic diagrams of the relative position of the occluders and the transceiver in
the experiment.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 7. The separation of the pots. 

3. Results 
Figure 8 and Table 4 show the experimental measurement results of placing occlud-

ers of different materials in the 100-m D-band mmWave wireless transmission experi-
ment. It can be observed from the experimental results that the attenuation of the D-band 
millimeter-wave signal transmission by obstacles is positively correlated with the thick-
ness or number of obstacles. Signal attenuation increases with the thickness and number 
of obstacles. 

  

(a) (b) 

  
(c) (d) 

Figure 8. The attenuation loss of D-band millimeter-wave signal through different obstructions 
measured experimentally. The obstructions are listed as: (a) the relationship between penetration 
loss and frequency under the shielding of different numbers of vegetation; (b) the relationship be-
tween penetration loss and frequency under the shielding of different thicknesses of wooden 
boards; (c) the relationship between penetration loss and frequency under the shielding of different 
thicknesses of glass; (d) the relationship between penetration loss and frequency under the shielding 
of 5 cm-thick slate. 
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3. Results

Figure 8 and Table 4 show the experimental measurement results of placing occluders
of different materials in the 100-m D-band mmWave wireless transmission experiment. It
can be observed from the experimental results that the attenuation of the D-band millimeter-
wave signal transmission by obstacles is positively correlated with the thickness or number
of obstacles. Signal attenuation increases with the thickness and number of obstacles.

For example, in Figure 8a, the penetration loss of one pot of vegetation is about 12 dB,
the penetration loss of two pots of vegetation is about 16 dB, and the penetration loss of
three pots of vegetation is greater than 21 dB. Due to the irregular distribution of vegetation
stems and leaves, the power of the signal transmission path is greatly reduced when
the signal transmission path is blocked by vegetation. It is important to emphasize that
attenuation varies greatly with the irregular nature of the vegetative medium, which means
that penetration losses depend on a wide range of vegetation types, densities, and the
actual amount of water contained.
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Figure 8. The attenuation loss of D-band millimeter-wave signal through different obstructions
measured experimentally. The obstructions are listed as: (a) the relationship between penetration
loss and frequency under the shielding of different numbers of vegetation; (b) the relationship
between penetration loss and frequency under the shielding of different thicknesses of wooden
boards; (c) the relationship between penetration loss and frequency under the shielding of different
thicknesses of glass; (d) the relationship between penetration loss and frequency under the shielding
of 5 cm-thick slate.

Table 4. The attenuation loss of D-band millimeter-wave signal through different obstructions
measured experimentally.

Material Thickness
(m)/Number

Penetration
Loss (dB)
140 GHz

Penetration
Loss (dB)
145 GHz

Penetration
Loss (dB)
150 GHz

Penetration
Loss (dB)
155 GHz

Penetration
Loss (dB)
160 GHz

Vegetation
One pot 11.9 11.8 11.8 11.7 12.1
Two pots 16.0 16.0 15.9 16.1 17.0

Three pots 21.7 21.5 21.6 21.3 22.0

Glass
0.005 4.5 4.6 4.3 4.1 5.0
0.01 9.0 8.9 8.8 8.7 10.1

Wood board
0.003 2.5 2.4 2.4 2.5 2.5
0.006 6.0 6.2 5.9 7.5 6.4
0.0175 24.9 25.1 23.1 25.1 26.5

Slate 0.05 22.0 19.9 19.2 21.9 22.9
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In Figure 8b, the loss of the 0.3 cm-thick board is about 2 dB, the loss of the 0.6 cm-thick
board is about 6 dB, and the loss of the 1.75 cm-thick board is greater than 23 dB. Penetration
loss may be proportional to the thickness of the occluded board, and D-band mmWave
signals cannot penetrate boards thicker than 1.75 cm.

As shown in Figure 8c, the loss of 5 mm-thick glass is about 4 dB, and the loss of
10 mm-thick glass is about 9 dB. Path loss can be positively related to the thickness of the
shielding glass. From this result, it can be observed that the penetration loss of the D-band
in thin glass is not very large.

The loss of the D-band signal as it passes through the 5 cm-thick slate is about 20 dB
in Figure 8d, indicating that the D-band millimeter wave signal can hardly penetrate the
5 cm-thick slate.

However, in the four cases, under the same obstacle, the penetration loss does not
change much with the increase in the signal frequency. It can be observed that the penetra-
tion loss of the D-band is independent of frequency.

4. Discussion

Next, we explore the transmission rate in our conducted D-band transmission system
as a function of transmission frequency, thickness and type of blocking material. The
theoretical penetration rate is calculated according to the above-modified theoretical model
and compared with it, as shown in Figure 9. The experimental measurements are basically
consistent with the theoretical values.
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Figure 9. Theoretical and actual transmittance of D-band millimeter-wave signal passing through
the obstruction: (a) the relationship between the actual transmittance and the amount of vegetation
at different frequencies; (b) the relationship between the theoretical and actual transmittance and
the thickness of board at different frequencies; (c) the relationship between the theoretical and actual
transmittance and the thickness of glass at different frequencies; (d) the relationship between the
theoretical and actual transmittance and the thickness of slate at different frequencies.
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Since vegetation is not comparable the other three typical building materials, pa-
rameters such as relative permittivity can be queried, so the theoretical transmittance of
vegetation is not listed here. In Figure 9a, only the transmittance of vegetation measured
experimentally is plotted.

As shown in Figure 9b,c, for both the experimental value and the theoretical value, with
the increase in the thickness of the board and glass, the penetration rate will decrease and
the loss will increase. However, the experimentally measured transmittance is greater than
the theoretical value. This is caused by multipath propagation effects. This phenomenon
is related to factors such as the location of the obstacle and the surrounding environment.
Since this experiment was conducted in an indoor environment, the received interference
included reflections from walls and objects around the experimental site, diffraction from
occluders, and scattering from vegetation. Moreover, although the amplitude of the signal
that reaches the receiving antenna is small under the occlusion of obstacles, the system
error is still relatively large in the case of small signal reception. This error can be improved
by reducing the measurement error by increasing the measurement accuracy of the system.

In Figure 9d, for both the experimental measurement and the theoretical analysis, the
calculated transmittance of slate is extremely low, and it can be observed that the D-band
millimeter wave can hardly penetrate 5 cm-thick slate. According to the general theory, the
shielding effect of the material includes the following two parts: reflection shielding and
absorption shielding, and the penetration loss effect of slate combines these two factors.
Reflective shielding is caused by the impedance mismatch of propagating waves, and
absorbing shielding is caused by heat loss from hydrates inside the concrete and steel mesh.

5. Conclusions

This paper discusses the penetration loss of D-band millimeter waves when shielded
by various materials, such as vegetation, board, glass, and slate, as well as blocking
measurement experiments in an indoor environment. The experimental results show that,
under the given experimental conditions, the average transmission attenuation of D-band
millimeter waves caused by a pot of vegetation is about 12 dB, implying that the receiving
antenna receives only about 6.5 percent of the transmit power. As the number of vegetation
increases, the attenuation of the D-band millimeter-wave signal increases sharply. In our
experiment, when the amount of vegetation is increased to three pots, the receiving end
can hardly receive the D-band millimeter-wave signal. For the measurement of the wooden
board, the transmittance decreases with the increase in the thickness of the wooden board.
Millimeter waves can penetrate thin boards, but when the thickness of the boards exceeds
1 cm, D-band millimeter waves can hardly penetrate obstacles. The average transmission
attenuation coefficient of the thin glass shield to the D-band millimeter wave is about 4.4 dB,
that is, only about 35% of the transmitted power is received by the receiving antenna. The
loss of the D-band signal that passes through 5 cm-thick slate is about 20 dB, indicating
that it can barely penetrate 5 cm-thick slate. The experimental measurement values are
consistent with the theoretical value in general. The experimental measurement results
of various materials show that the influence of occlusions on D-band millimeter-wave
transmission cannot be ignored, which has a potential application prospect for estimating
the channel attenuation characteristics of 5G or 6G systems with obstructions. In addition,
we will explore the transmission loss of more frequency points and more materials in
future work.
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