
Citation: Tan, Y.; Sun, M.; Deng, H.;

Wu, H.; Zhou, M.; Chen, Y.; Yu, Z.;

Zeng, Q.; Li, P.; Chen, L.; et al. A

Reconfigurable Visual–Inertial

Odometry Accelerated Core with

High Area and Energy Efficiency for

Autonomous Mobile Robots. Sensors

2022, 22, 7669. https://doi.org/

10.3390/s22197669

Academic Editor: Gianni D’Angelo

Received: 2 September 2022

Accepted: 6 October 2022

Published: 9 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Reconfigurable Visual–Inertial Odometry Accelerated Core
with High Area and Energy Efficiency for Autonomous
Mobile Robots
Yonghao Tan 1,†, Mengying Sun 1,†, Huanshihong Deng 1, Haihan Wu 1, Minghao Zhou 1, Yifei Chen 1, Zhuo Yu 1,
Qinghan Zeng 2,*, Ping Li 3 , Lei Chen 1 and Fengwei An 1,*

1 School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
2 Scientific and Technical Center for Innovation, Beijing 100080, China
3 Department of Computing and School of Design, The Hong Kong Polytechnic University, Hong Kong, China
* Correspondence: cqh_zgy@163.com (Q.Z.); anfw@sustech.edu.cn (F.A.)
† These authors contributed equally to this work.

Abstract: With the wide application of autonomous mobile robots (AMRs), the visual inertial odome-
ter (VIO) system that realizes the positioning function through the integration of a camera and inertial
measurement unit (IMU) has developed rapidly, but it is still limited by the high complexity of
the algorithm, the long development cycle of the dedicated accelerator, and the low power supply
capacity of AMRs. This work designs a reconfigurable accelerated core that supports different VIO
algorithms and has high area and energy efficiency, precision, and speed processing characteristics.
Experimental results show that the loss of accuracy of the proposed accelerator is negligible on the
most authoritative dataset. The on-chip memory usage of 70 KB is at least 10× smaller than the
state-of-the-art works. Thus, the FPGA implementation’s hardware-resource consumption, power
dissipation, and synthesis in the 28 nm CMOS outperform the previous works with the same platform.

Keywords: SLAM; VIO; accelerator; reconfigurable; AMRs

1. Introduction

In recent years, AMRs have achieved rapid development driven by practical applica-
tion demands. As the core technology of AMRs, simultaneous localization and mapping
(SLAM) include five parts as Figure 1 shows: sensor data reading, front-end visual odome-
try, backend optimization, loop closure, and mapping. As a single sensor cannot cope with
all situations, the most effective approach is to fuse data from both the camera and IMU, an
algorithm called VIO. Aside from the computational complexity of loop closure and global
optimization, the VIO system can estimate the position and trajectory of a moving object in
real time with lower power consumption, which is very important for lightweight AMRs
with high processing speed requirements.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 18

Figure 1. Process Diagram of SLAM.

The visual front-end of VIO mainly estimates the robot’s motion through the direct
method or feature point extraction. In 2008, the direct method proposed by Silveira G. et
al. [1] used the difference in light intensity of each pixel in adjacent frame images to esti-
mate the camera’s motion. At present, representative open-source projects are DTAM [2],
LSD-SLAM [3], and DSO [4], etc. Compared with feature point extraction, the direct
method saves time for calculating features and can maintain certain robustness when the
texture is scarce, but it is difficult to work in scenes with drastic changes in light. Feature
point extraction uses image features instead of image intensity, which overcomes the
shortcomings of the direct method but relies on the feature extraction results. In recent
years, classic features have included SIFT [5], SURF [6], FAST [7], and so on.

Backend optimization is to optimize the motion pose estimated by the front end to
minimize accumulated errors. The main backend algorithms are divided into filtering
methods using extended Kalman filter (EKF) or other filters and optimization methods
using bundle adjustment (BA) or graph optimization methods. In the case of limited com-
puting resources and relatively simple quantities to be estimated, the filtering method
represented by EKF is very effective; however, because the storage capacity and state
quantity are in a quadratic growth relationship, there are many feature data, and the fil-
tering method is less efficient. In addition to KF [8] and EKF [9], there are also information
filters [10,11] and particle filters [12–14]. Contrary to the filtering method, the optimization
method no longer relies on the information at a specific moment but obtains the optimal
global estimation of all landmarks by optimizing the joint error function of all poses and
landmarks. Existing optimization methods include that by Di, K. et al. [15], who studied
an extended BA algorithm that can utilize both 2D and 3D information and is suitable for
RGB-D cameras. Alismail, H. et al. [16] abandoned the minimization of reprojection error
and achieved a significant improvement in accuracy with a photometric BA algorithm
based on maximizing photometric continuity. The incremental, consistent, and efficient
BA proposed by Liu, H. et al. [17] adopts incremental technology, which consumes only
about 1/10 of the computing resources of traditional BA under the premise of ensuring
accuracy.

In addition to improving algorithms, using SLAM systems also relies on hardware
acceleration. Compared with CPU, GPU has powerful floating-point computing capabil-
ity, so GPU is generally used in the early stage of hardware acceleration design research,
such as feature extraction accelerator based on SIFT [18] and SURF [19] features. However,
the GPU system consumes a lot of power. With the development of field programmable
gate arrays (FPGAs), hardware acceleration relies more on FPGA. Yum, J. et al. [20] de-
signed a complete SIFT hardware accelerator, Wilson, C. et al. [21] proposed a complete
FPGA implementation of the SURF accelerator, and Ulusel, O. [22] showed that feature
extraction on the FPGA platform has great advantages over CPU and GPU.

Moreover, accelerators suitable for backend optimization have also been proposed
recently. For example, Tertei, D. T. R. et al. [23] proposed an efficient FPGA SoC hardware
structure using systolic array matrix multiplication to accelerate the EKF-SLAM algo-
rithm. Wang, J. et al. [24] designed a reconfigurable matrix multiplication coprocessor for
accelerating matrix multiplication in visual navigation algorithms. However, the hard-
ware accelerators can only accelerate specific algorithms, or they are incomplete, only ac-
celerating the feature extraction or matrix multiplication part and lacking pose estimation
and trajectory output.

Sensor Data Front-end
Visual Odometry

Loop Closure

Back-end
Optimization Mapping

Figure 1. Process Diagram of SLAM.

The visual front-end of VIO mainly estimates the robot’s motion through the direct method
or feature point extraction. In 2008, the direct method proposed by Silveira G. et al. [1] used
the difference in light intensity of each pixel in adjacent frame images to estimate the camera’s

Sensors 2022, 22, 7669. https://doi.org/10.3390/s22197669 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197669
https://doi.org/10.3390/s22197669
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1503-0240
https://orcid.org/0000-0002-7554-7938
https://doi.org/10.3390/s22197669
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197669?type=check_update&version=3

Sensors 2022, 22, 7669 2 of 17

motion. At present, representative open-source projects are DTAM [2], LSD-SLAM [3], and
DSO [4], etc. Compared with feature point extraction, the direct method saves time for calculat-
ing features and can maintain certain robustness when the texture is scarce, but it is difficult
to work in scenes with drastic changes in light. Feature point extraction uses image features
instead of image intensity, which overcomes the shortcomings of the direct method but relies on
the feature extraction results. In recent years, classic features have included SIFT [5], SURF [6],
FAST [7], and so on.

Backend optimization is to optimize the motion pose estimated by the front end to
minimize accumulated errors. The main backend algorithms are divided into filtering
methods using extended Kalman filter (EKF) or other filters and optimization methods
using bundle adjustment (BA) or graph optimization methods. In the case of limited
computing resources and relatively simple quantities to be estimated, the filtering method
represented by EKF is very effective; however, because the storage capacity and state
quantity are in a quadratic growth relationship, there are many feature data, and the
filtering method is less efficient. In addition to KF [8] and EKF [9], there are also information
filters [10,11] and particle filters [12–14]. Contrary to the filtering method, the optimization
method no longer relies on the information at a specific moment but obtains the optimal
global estimation of all landmarks by optimizing the joint error function of all poses and
landmarks. Existing optimization methods include that by Di, K. et al. [15], who studied
an extended BA algorithm that can utilize both 2D and 3D information and is suitable
for RGB-D cameras. Alismail, H. et al. [16] abandoned the minimization of reprojection
error and achieved a significant improvement in accuracy with a photometric BA algorithm
based on maximizing photometric continuity. The incremental, consistent, and efficient BA
proposed by Liu, H. et al. [17] adopts incremental technology, which consumes only about
1/10 of the computing resources of traditional BA under the premise of ensuring accuracy.

In addition to improving algorithms, using SLAM systems also relies on hardware
acceleration. Compared with CPU, GPU has powerful floating-point computing capability,
so GPU is generally used in the early stage of hardware acceleration design research, such
as feature extraction accelerator based on SIFT [18] and SURF [19] features. However, the
GPU system consumes a lot of power. With the development of field programmable gate
arrays (FPGAs), hardware acceleration relies more on FPGA. Yum, J. et al. [20] designed
a complete SIFT hardware accelerator, Wilson, C. et al. [21] proposed a complete FPGA
implementation of the SURF accelerator, and Ulusel, O. [22] showed that feature extraction
on the FPGA platform has great advantages over CPU and GPU.

Moreover, accelerators suitable for backend optimization have also been proposed
recently. For example, Tertei, D. T. R. et al. [23] proposed an efficient FPGA SoC hardware
structure using systolic array matrix multiplication to accelerate the EKF-SLAM algorithm.
Wang, J. et al. [24] designed a reconfigurable matrix multiplication coprocessor for accel-
erating matrix multiplication in visual navigation algorithms. However, the hardware
accelerators can only accelerate specific algorithms, or they are incomplete, only accelerat-
ing the feature extraction or matrix multiplication part and lacking pose estimation and
trajectory output.

Currently, the relatively complete acceleration design includes Liu, R. et al. [25] imple-
menting a complete ORB-SLAM system on FPGA. The feature extraction and feature match-
ing parts are accelerated by FPGA, but the trajectory estimation and pose optimization are
completed by ARM. Li, Z. et al. [26] presented an accurate, low-power, real-time CNN-
SLAM processor that implements full-visual SLAM on a single chip. Suleiman, A. et al.
designed a chip that can perform VIO [27], reducing on-chip storage to 1/4 the size through
image compression techniques. Zhang, Z. et al. designed a VIO system that uses Kintex-7
XC7K355T (an FPGA) [28], and Wang, C. et al. designed a visual SLAM system that uses
UltraScale+ XCZU7EV (an FPGA) [29].

This paper proposes a reconfigurable, real-time, low-area, and energy-efficient VIO
accelerator implemented on an FPGA with the following major design features: (i) a
reconfigurable accelerator architecture that adapts to different Kalman-filter-based VIO

Sensors 2022, 22, 7669 3 of 17

algorithms; (ii) an optimized instruction-based structure supporting the simultaneous work-
flow of fixed-point and floating-point units to accelerate VIO algorithms for real-time usage.
This design can support the post estimation and trajectory output of real-time > 60 Hz
frame input and > 200 Hz of IMU input; and (iii) a computing core with shared memory
and the memory reuse strategy. This works only consumes 70 KB of on-chip memory,
which is at least 10× lower than the previous works. To our knowledge, this is the first
integrated reconfigurable architecture that supports multiple VIO algorithms implemented
in FPGA.

2. Algorithms
2.1. Overall Procedure of the Visual–Inertial Odometry

Figure 2 shows the overall procedure of the visual–inertial odometry, consisting of
IMU pre-integration, feature coordinates optimization, and extended Kalman filter (EKF).
IMU pre-integration computes the prior estimate of pose and the position and other state
variables, such as velocity and feature location of the AMR concerning the IMU. Feature
coordinates optimization optimizes the pre-estimated pixel location of the stored features
by minimizing the 2D reprojection error. Then, measured state variables are estimated
through the location difference between the optimized results and the prior estimated
ones. At last, EKF combines the prior estimation of state variables and the measured state
variables according to the covariance matrix and outputs the post estimation of the state
variables, where pose and position represent the trajectory. Each floating-point function
circuit is assigned a priority level to ensure that each floating-point computation circuit can
be accessed by only one floating-point function circuit at the same clock.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 18

Currently, the relatively complete acceleration design includes Liu, R. et al. [25] im-
plementing a complete ORB-SLAM system on FPGA. The feature extraction and feature
matching parts are accelerated by FPGA, but the trajectory estimation and pose optimiza-
tion are completed by ARM. Li, Z. et al. [26] presented an accurate, low-power, real-time
CNN-SLAM processor that implements full-visual SLAM on a single chip. Suleiman, A.
et al. designed a chip that can perform VIO [27], reducing on-chip storage to 1/4 the size
through image compression techniques. Zhang, Z. et al. designed a VIO system that uses
Kintex-7 XC7K355T (an FPGA) [28], and Wang, C. et al. designed a visual SLAM system
that uses UltraScale+ XCZU7EV (an FPGA) [29].

This paper proposes a reconfigurable, real-time, low-area, and energy-efficient VIO
accelerator implemented on an FPGA with the following major design features: (i) a re-
configurable accelerator architecture that adapts to different Kalman-filter-based VIO al-
gorithms; (ii) an optimized instruction-based structure supporting the simultaneous
workflow of fixed-point and floating-point units to accelerate VIO algorithms for real-
time usage. This design can support the post estimation and trajectory output of real-time
> 60 Hz frame input and > 200 Hz of IMU input; and (iii) a computing core with shared
memory and the memory reuse strategy. This works only consumes 70 KB of on-chip
memory, which is at least 10× lower than the previous works. To our knowledge, this is
the first integrated reconfigurable architecture that supports multiple VIO algorithms im-
plemented in FPGA.

2. Algorithms
2.1. Overall Procedure of the Visual–Inertial Odometry

Figure 2 shows the overall procedure of the visual–inertial odometry, consisting of
IMU pre-integration, feature coordinates optimization, and extended Kalman filter (EKF).
IMU pre-integration computes the prior estimate of pose and the position and other state
variables, such as velocity and feature location of the AMR concerning the IMU. Feature
coordinates optimization optimizes the pre-estimated pixel location of the stored features
by minimizing the 2D reprojection error. Then, measured state variables are estimated
through the location difference between the optimized results and the prior estimated
ones. At last, EKF combines the prior estimation of state variables and the measured state
variables according to the covariance matrix and outputs the post estimation of the state
variables, where pose and position represent the trajectory. Each floating-point function
circuit is assigned a priority level to ensure that each floating-point computation circuit
can be accessed by only one floating-point function circuit at the same clock.

Figure 2. The overall procedure of the visual–inertial odometry.

Figure 2. The overall procedure of the visual–inertial odometry.

2.2. IMU Pre-Integration

IMU can measure acceleration and angular velocity through the accelerometer and
gyroscope. Through integration, the rotation and displacement between two frames of
images can be obtained. That is to say, if the position, velocity, and rotation at time k
are known, these values at time k + 1 can be obtained. However, in the optimization
algorithm, these values at each moment are estimated. When optimizing them, the data
between two moments must be re-integrated, which makes the calculation requirements
large. Lupton T. et al. [30] proposed IMU pre-integration to avoid repeated integration,
and Forster, C. [31] made it better.

A schematic diagram of the IMU model is shown in Figure 3, and its formula is shown
in (1). The measured values of linear acceleration and angular velocity are represented
by ˆ(·). Linear acceleration is the resultant vector of gravitational acceleration and object
acceleration, bat and bωt are offsets, na and nω are Gaussian noise.

ât = at + bat + Rt
wgw + na,

ω̂t = ωt + bωt + nω
(1)

Sensors 2022, 22, 7669 4 of 17

Sensors 2022, 22, x FOR PEER REVIEW 4 of 18

2.2. IMU Pre-Integration
IMU can measure acceleration and angular velocity through the accelerometer and

gyroscope. Through integration, the rotation and displacement between two frames of
images can be obtained. That is to say, if the position, velocity, and rotation at time k are
known, these values at time k + 1 can be obtained. However, in the optimization algo-
rithm, these values at each moment are estimated. When optimizing them, the data be-
tween two moments must be re-integrated, which makes the calculation requirements
large. Lupton T. et al. [30] proposed IMU pre-integration to avoid repeated integration,
and Forster, C. [31] made it better.

A schematic diagram of the IMU model is shown in Figure 3, and its formula is
shown in (1). The measured values of linear acceleration and angular velocity are repre-
sented by (⋅)෢ . Linear acceleration is the resultant vector of gravitational acceleration and
object acceleration, 𝑏௔೟ and 𝑏ఠ೟ are offsets, 𝑛௔ and 𝑛ఠ are Gaussian noise.

Figure 3. Diagram of IMU model.

𝑎ො௧ = 𝑎௧ + 𝑏௔೟ + 𝑅௪௧ 𝑔௪ + 𝑛௔, 𝜔ෝ௧ = 𝜔௧ + 𝑏ఠ೟ + 𝑛ఠ
(1)

The representation of the position, velocity, and rotation (quaternion form) of 𝑘 + 1
frame can be obtained from 𝑘 frame, as shown in (2). Here, 𝑏 represents the body coor-
dinate system, 𝑤 represents the world coordinate system, 𝑅௧௪ represents the rotation
matrix from the body coordinate system to the world coordinate system at time 𝑡, 𝑞௧௕ೖ
represents the rotation of the body coordinate system at time 𝑡 relative to the body coor-
dinate system at the time 𝑏௞, and 𝑞௕ೖ௪ represents the rotation of the body coordinate sys-
tem relative to the world coordinate system at the time 𝑏௞. 𝑝௕ೖశభ௪ = 𝑝௕ೖ௪ + 𝜈௕ೖ௪ Δ𝑡௞ + ∬ ൣ𝑅௧௪൫𝑎ො௧ − 𝑏ఈ೟൯ − 𝑔௪൧ 𝑑𝑡ଶ௧∈ሾ௞,௞ାଵሿ , 𝑣௕ೖశభ௪ = 𝑣௕ೖ௪ + ׬ ൣ𝑅௧௪൫𝑎ො௧ − 𝑏ఈ೟൯ − 𝑔௪൧ 𝑑𝑡௧∈ሾ௞,௞ାଵሿ , 𝑞௕ೖశభ௪ = 𝑞௕ೖ௪ ⊗ ׬ ଵଶ 𝛺൫𝜔ෝ௧ − 𝑏ఠ೟൯𝑞௧௕ೖ 𝑑𝑡௧∈ሾ௞,௞ାଵሿ . (2)

where

𝛺(𝜔) = ൤−⌊𝑤⌋× 𝜔−𝜔் 0൨, ⌊𝑤⌋× = ቎ 0 −𝜔௭ 𝜔௬𝜔௭ 0 −𝜔௫−𝜔௬ 𝜔௫ 0 ቏. (3)

In (2), PVQ of the body coordinate system at time 𝑘 + 1 depends on 𝑏௞. If the PVQ
of the body coordinate system is directly used as a variable to optimize and iteratively
update, it will lead to a large amount of calculation. The idea of IMU pre-integration is to
adjust the reference coordinate system from the world coordinate system 𝑤 to the body
coordinate system 𝑏௞ of 𝑘 frame so that the integration result becomes the relative
change of 𝑏௞ାଵ to 𝑏௞. It is realized by multiplying 𝑅௪௕ೖ, as shown in (4). The detailed der-
ivation process is omitted [32].

k k+1

IMU

IMU

Vision

Vision

Figure 3. Diagram of IMU model.

The representation of the position, velocity, and rotation (quaternion form) of k + 1
frame can be obtained from k frame, as shown in (2). Here, b represents the body coordinate
system, w represents the world coordinate system, Rw

t represents the rotation matrix from
the body coordinate system to the world coordinate system at time t, qbk

t represents the
rotation of the body coordinate system at time t relative to the body coordinate system at
the time bk, and qw

bk
represents the rotation of the body coordinate system relative to the

world coordinate system at the time bk.

pw
bk+1

= pw
bk
+ νw

bk
∆tk +

s
t∈[k,k+1][R

w
t (ât − bαt)− gw]dt2,

vw
bk+1

= vw
bk
+
∫

t∈[k,k+1][R
w
t (ât − bαt)− gw]dt,

qw
bk+1

= qw
bk
⊗
∫

t∈[k,k+1]
1
2 Ω(ω̂t − bωt)q

bk
t dt

(2)

where

Ω(ω) =

[
−bwc× ω

−ωT 0

]
, bwc× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

. (3)

In (2), PVQ of the body coordinate system at time k + 1 depends on bk. If the PVQ of
the body coordinate system is directly used as a variable to optimize and iteratively update,
it will lead to a large amount of calculation. The idea of IMU pre-integration is to adjust the
reference coordinate system from the world coordinate system w to the body coordinate
system bk of k frame so that the integration result becomes the relative change of bk+1 to
bk. It is realized by multiplying Rbk

w , as shown in (4). The detailed derivation process is
omitted [32].

Rbk
w pw

bk+1
= Rbk

w (pw
bk
+ νw

bk
∆tk − 1

2 gw∆t2
k) + α

bk
bk+1

,

Rbk
w vw

bk+1
= Rbk

w (vw
bk
− gw∆tk) + β

bk
bk+1

,

qbk
w ⊗ qw

bk+1
= γ

bk
bk+1

.

α
bk
bk+1

=
s

t∈[k,k+1] [R
bk
t (ât − bαt)]dt2,

β
bk
bk+1

=
∫

t∈[k,k+1] [R
bk
t (ât − bαt)]dt,

γ
bk
bk+1

=
∫

t∈[k,k+1]
1
2 Ω(ω̂t − bωt)γ

bk
t dt

(4)

2.3. Algorithm of Feature Extraction
2.3.1. FAST-9 Feature Detection

In the feature extraction technology, in addition to FAST [7], there are SIFT [5], SURF [6],
and other algorithms. The features they extracted have strong invariance, but the time con-
sumption is relatively large. In a system, feature extraction is only a part, and subsequent
algorithms such as registration, purification, and fusion are also performed. This makes the
real-time performance not suitable and reduces the system performance. The Fast detector
is very fast because it does not involve complex operations such as scale and gradient. It

Sensors 2022, 22, 7669 5 of 17

uses the gray value of the pixel in a specific neighborhood to compare the size with the
center point to determine whether it is a corner point.

The proposed accelerated core adapts the FAST-9 feature extraction [7] in the vision
pipeline, a trade-off between accuracy and efficiency since the proposed accelerated core
targets high-performance and low-power design.

Sc→p


darker, P < C− T

similar, C− T ≤ P ≤ C + T
brighter, C + T < P

(5)

Here, S stands for the intensity relationship of the pixels P with the center C, and T
is the user-defined threshold. If there are consecutive nine pixels darker or brighter, the
center pixel is a FAST feature in the accelerated core.

This paper uses pipeline stages for hardware implementation since the FAST algorithm
requires counters, which should be accumulated by clock cycles. However, it is not enough
to implement it in 16 clock cycles, as shown in Figure 4, because a true circle path to access
all pixels in the FAST algorithm should be half a circle. For example, if pixels P1, P2, and
P10–P16 are brighter while others are not, the center pixel should be a FAST feature. How-
ever, the first round only considers seven brighter pixels (P10–P16) which makes an incorrect
judgment. The one-and-a-half circles for detecting solves this problem by redundantly
calculating eight more pixels.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 18

Figure 4. The hardware-friendly pipeline FAST algorithm.

2.3.2. Gradient-based Score Calculation
This paper adapts a gradient-based score (Grad score in short) to indicate the quality

of a feature after FAST feature detection, as shown below:

𝐺𝑟𝑎𝑑 𝑠𝑐𝑜𝑟𝑒 = ෍ ෍(𝑃௜,௝ାଵ − 𝑃௜,௝ିଵ)ଶ/64଺
௝ୀଵ

଺
௜ୀଵ + (𝑃௜ାଵ,௝ − 𝑃௜ିଵ,௝)ଶ/64 (6)

Here, the input patch is size 8 × 8, and P stands for the pixel values. Therefore, the
Grad score is calculated with a 6 × 6 window inside the patch. The score will be used in
the rest process in the core.

2.4. Algorithm of Feature Coordinates Alignment
Feature coordinates calculated from IMU pre-integration and feature prediction are

corrected by photometric error, which is based on the difference in pixel data between the
old feature patches in the last frame and the new feature patches extracted in the current
frame. The photometric error is defined by: 𝑒௟,௝ = 𝑃௟൫𝒑௝൯ − 𝐼௟൫𝒑𝑠௟ + 𝑾𝒑௝൯ − 𝑚 (7)

where the scalar factor 𝑠௟ = 0. 5௟ stands for the down-sampling number of layers of the
image pyramid. 𝑾 stands for the warping transform matrix in [33], 𝒑௝ is the patch pixel
in the patch 𝑃௟, and 𝒑 is the feature coordinate.

This paper adapts the QR-decomposition method in [33], which stacks all error terms
together for given estimated coordinates 𝑝̂: 𝑏(𝑝̂) = 𝐴̅(𝑝̂)𝛿𝑝 (8)

Here, 𝐴̅(𝑝̂) is based on the patch intensity gradients along the X and Y axes. The QR-
decomposition of 𝐴̅(𝑝̂) obtains an equivalent reduced linear equation system: 𝑏(𝑝̂) = 𝐴(𝑝̂)𝛿𝑝 (9)

The iteration will be user-defined and ten times in the proposed core. If the photo-
metric error is still higher than a certain threshold, the feature will be marked as bad and
abandoned, while others could be used in the EKF update.

Figure 4. The hardware-friendly pipeline FAST algorithm.

2.3.2. Gradient-Based Score Calculation

This paper adapts a gradient-based score (Grad score in short) to indicate the quality
of a feature after FAST feature detection, as shown below:

Grad score =
6

∑
i=1

6

∑
j=1

(
Pi,j+1 − Pi,j−1

)2/64 +
(

Pi+1,j − Pi−1,j
)2/64 (6)

Here, the input patch is size 8 × 8, and P stands for the pixel values. Therefore, the
Grad score is calculated with a 6 × 6 window inside the patch. The score will be used in
the rest process in the core.

2.4. Algorithm of Feature Coordinates Alignment

Feature coordinates calculated from IMU pre-integration and feature prediction are
corrected by photometric error, which is based on the difference in pixel data between the

Sensors 2022, 22, 7669 6 of 17

old feature patches in the last frame and the new feature patches extracted in the current
frame. The photometric error is defined by:

el,j = Pl

(
pj

)
− Il

(
psl + Wpj

)
−m (7)

where the scalar factor sl = 0.5l stands for the down-sampling number of layers of the
image pyramid. W stands for the warping transform matrix in [33], pj is the patch pixel in
the patch Pl , and p is the feature coordinate.

This paper adapts the QR-decomposition method in [33], which stacks all error terms
together for given estimated coordinates p̂:

b(p̂) = A(p̂)δp (8)

Here, A(p̂) is based on the patch intensity gradients along the X and Y axes. The
QR-decomposition of A(p̂) obtains an equivalent reduced linear equation system:

b(p̂) = A(p̂)δp (9)

The iteration will be user-defined and ten times in the proposed core. If the photo-
metric error is still higher than a certain threshold, the feature will be marked as bad and
abandoned, while others could be used in the EKF update.

2.5. Supported Operations in SLAM Algorithms

Most SLAM algorithms require not only basic operations, such as the addition or
multiplication of scalars, but also operations of rotation dynamics, including rotation
matrix, quaternion, and lie algebra. The proposed VIO accelerated core provides full
functionality to support the abovementioned operations, shown in Table 1.

Table 1. Supported operations by the accelerated core.

Operation Description Time Consumption

Scalar add/sub Scalar addition/subtraction 5 clock cycles
Scalar mul Scalar multiplication 2 clock cycles
Scalar reci Scalar reciprocal 10 clock cycles

Scalar sqrt_slow Scalar square root with high accuracy 27 clock cycles
Scalar sqrt_fast Scalar square root with low latency 10 clock cycles

Sin_Cos Sine and cosine function for input
in radians 52 clock cycles

M_inv Matrix inversion 31 clock cycles
Li2R Transform lie algebra to a rotation matrix 73 clock cycles
Li2Q Transform lie algebra to quaternion 65 clock cycles
R2Q Transform rotation matrix to quaternion 53 clock cycles
Q2R Transform quaternion to a rotation matrix 14 clock cycles
Q_q Quaternion multiplication 14 clock cycles

3. Hardware Design

This section introduces the overall hardware architecture of the proposed VIO acceler-
ated core and details four important submodules and techniques adapted in the design.

3.1. Overall Hardware Architecture

Figure 5 shows the proposed accelerator’s overall architecture constructed by four
sub-modules, including a fixed-point vision pipeline, a memory interface, a programmable
computation core, and layers for the EKF engine.

Sensors 2022, 22, 7669 7 of 17Sensors 2022, 22, x FOR PEER REVIEW 8 of 18

Figure 5. Overall hardware architecture of the proposed accelerated core. (a) Hardware architecture
of the proposed VIO accelerated core; (b) control and dataflow of the three-layer circuits; (c) shared
memory for the storage of vectors and matrices.

The vision pipeline receives input data from the image sensor to perform new and
predicted feature extraction. The memory interface uses a shared memory strategy to store
intermediate values and output data. The programmable computation core pre-loads
three programs to perform the computation of IMU pre-integration and the computation
of the Jacobian matrix. This core can satisfy the pose estimation of a sample class of Kal-
man-filter-based SLAM algorithms. In the EKF engine, layer 1 contains a finite state ma-
chine in charge of the whole process. The layer of the feature processing engine scores and
sorts the features received from the feature extraction engine then compares the best 25 of
them with the features stored in the feature manager and replaces the old ones with them
if the new features are better. The feature processing engine also computes the 2D location
difference of the same feature in the last and current frames. Then, the EKF engine com-
pletes the update process of the EKF process with the help of a specific mission layer and
FP arithmetic. The specific mission layer shares the floating-point arithmetic with the com-
putation core for higher hardware utilization.

Figure 5. Overall hardware architecture of the proposed accelerated core. (a) Hardware architecture
of the proposed VIO accelerated core; (b) control and dataflow of the three-layer circuits; (c) shared
memory for the storage of vectors and matrices.

The vision pipeline receives input data from the image sensor to perform new and
predicted feature extraction. The memory interface uses a shared memory strategy to store
intermediate values and output data. The programmable computation core pre-loads three
programs to perform the computation of IMU pre-integration and the computation of the
Jacobian matrix. This core can satisfy the pose estimation of a sample class of Kalman-
filter-based SLAM algorithms. In the EKF engine, layer 1 contains a finite state machine
in charge of the whole process. The layer of the feature processing engine scores and
sorts the features received from the feature extraction engine then compares the best 25
of them with the features stored in the feature manager and replaces the old ones with
them if the new features are better. The feature processing engine also computes the 2D
location difference of the same feature in the last and current frames. Then, the EKF engine
completes the update process of the EKF process with the help of a specific mission layer
and FP arithmetic. The specific mission layer shares the floating-point arithmetic with the
computation core for higher hardware utilization.

3.2. Fixed-Point Vision Pipeline

Figure 6 details the structure of the fixed-point vision pipeline, including a Gaussian
pyramid-image half sample engine, a FAST feature identifier, a Grad score-based patch
extractor, and a patch controller.

Sensors 2022, 22, 7669 8 of 17

Sensors 2022, 22, x FOR PEER REVIEW 9 of 18

3.2. Fixed-Point Vision Pipeline
Figure 6 details the structure of the fixed-point vision pipeline, including a Gaussian

pyramid-image half sample engine, a FAST feature identifier, a Grad score-based patch
extractor, and a patch controller.

Figure 6. Detailed structure of the fixed-point vision pipeline.

The architecture workflow is pipelined with line buffers, thus reducing memory con-
sumption and increasing processing throughput. The operation provides a foundation for
the following process by interpreting images at multiple resolutions and different scales
with a Gaussian sampling pyramid of the input grayscale image. The half-sampled pixels
are transferred through an asynchronous FIFO, followed by a group of 11 line buffers. The
rest processes are based on an area-reused 12 × 12 sliding window where pixel data can
be available for three layers.

The FAST identifier is a feature extractor adapting the FAST-16 algorithm where if a
pixel differs greatly from enough pixels in its surrounding neighborhood, the pixel may
be a corner. Adapting the FAST algorithm for every pixel indicates a continually analyzed
16 pixels, i.e., whether the pixel is brighter/darker than the center pixel as the last pixel
does. In the hardware implementation, the algorithm is processed in a pipeline which
takes 24 periods. At every stage, the circuit will detect the brightness for both the current

Figure 6. Detailed structure of the fixed-point vision pipeline.

The architecture workflow is pipelined with line buffers, thus reducing memory
consumption and increasing processing throughput. The operation provides a foundation
for the following process by interpreting images at multiple resolutions and different scales
with a Gaussian sampling pyramid of the input grayscale image. The half-sampled pixels
are transferred through an asynchronous FIFO, followed by a group of 11 line buffers. The
rest processes are based on an area-reused 12 × 12 sliding window where pixel data can be
available for three layers.

The FAST identifier is a feature extractor adapting the FAST-16 algorithm where if a
pixel differs greatly from enough pixels in its surrounding neighborhood, the pixel may be
a corner. Adapting the FAST algorithm for every pixel indicates a continually analyzed
16 pixels, i.e., whether the pixel is brighter/darker than the center pixel as the last pixel
does. In the hardware implementation, the algorithm is processed in a pipeline which takes
24 periods. At every stage, the circuit will detect the brightness for both the current and
last pixels and increase or reset the counters. In Figure 6, BrightCnt means the number of
continuing pixels with a grey value more significant than the grey value of the center plus
threshold, while DarkCnt stands for the opposite. If BrightCnt or DarkCnt is larger than 9,
the pixel is identified as a FAST feature, and the result will be passed to the patch controller
by a line buffer.

The FAST identifier is optional, considering the patch extractor has already been
attached with a Grad score comparator which adapts only the front-computing. Input pixel

Sensors 2022, 22, 7669 9 of 17

data from the 8 × 8 window generates their gradient values which are used to calculate the
Grad score according to (6).

The patch controller temperately stores the information of a maximum of 100 patches
in sub-patch controllers, where a patch is defined by the feature pixel and its surround-
ing 12 × 12 window of pixels. In order to avoid the extracted feature points being too
concentrated, this paper proposed a patch extract strategy, which constructs banned rows
and banned columns. When a new feature/patch is extracted, its surrounding 16 rows
and columns will be banned for the subsequent extraction unless the new feature has a
higher Grad score. The 100 sub-patch controllers are awakened one by one to reduce power
consumption and send write to enable signal to the patch controller for patch storing,
which is implemented by dual-port rams. If the maximum feature limit (100) is reached, a
special sub-patch controller will be used to cover the patch with the least Grad score if the
new feature has a higher score, ensuring the extracted patches are high quality for the rest
process. At the end of a frame, the vision pipeline sends a signal to the top state machine,
indicating the available feature patches.

3.3. Programmable Computation Core

Figure 7 details the structure of the programmable computation core realized by
instruction control, which is an extension of the previous work [34]. A matrix computation
core performs the matrix operation and controls the program workflow, and a special
computation core performs quaternion, angle-axis, and scalar operations. The computation
core is controlled by a proposed instruction set architecture (ISA). Operation instructions
store the offset address of operands, source, and target address, transpose or generate
antisymmetric matrix, and the operation types. The PC reads instructions from IRMEM
and sends them to the corresponding instruction decoder for operation instructions. Each
core has its own 38-bit instruction set and an 8-bit address instruction memory but shares a
4 × 7-bit address, 32-bit per data, memory for operators. Each core has and only has access
to its own nine adders, nine multipliers, one floating sqrt, and one reciprocal computation
circuit. Compared with the matrix core, the special core has some unique computation
circuits, such as cosine and sine. Two instructions for matrix core, bubble and sync, and one
for special core, bubble, are used to synchronize the cores and secure the computation order.
An interface and matched instructions for 16-bit per address, 38-bit per data memory are
kept for the potential memory. The operations required by different Kalman-filter-based
algorithms can be programmed into the instruction and operator memory blocks. What is
more, Table 2 shows the supported operations by the computation core, including normal
scalar operations and special operations required by most SLAM algorithms.

Table 2. Description and time consumption of operations supported by the computation core.

Operation Description Time Consumption

Scalar add/sub Scalar addition/subtraction 5 clock cycles
Scalar mul Scalar multiplication 2 clock cycles
Scalar reci Scalar reciprocal 10 clock cycles

Scalar sqrt_slow Scalar square root with high accuracy 27 clock cycles
Scalar sqrt_fast Scalar square root with low latency 10 clock cycles

Sin_Cos Sine and cosine function for input
in radians 52 clock cycles

M_inv Matrix inversion 31 clock cycles
Li2R Transform lie algebra to a rotation matrix 73 clock cycles
Li2Q Transform lie algebra to quaternion 65 clock cycles
R2Q Transform rotation matrix to quaternion 53 clock cycles
Q2R Transform quaternion to a rotation matrix 14 clock cycles
Q_q Quaternion multiplication 14 clock cycles

Sensors 2022, 22, 7669 10 of 17
Sensors 2022, 22, x FOR PEER REVIEW 11 of 18

Figure 7. Modules and processing flow of the programmable computation core.

Table 2. Description and time consumption of operations supported by the computation core.

Operation Description Time Consumption
Scalar add/sub Scalar addition/subtraction 5 clock cycles

Scalar mul Scalar multiplication 2 clock cycles
Scalar reci Scalar reciprocal 10 clock cycles

Scalar sqrt_slow Scalar square root with high accuracy 27 clock cycles
Scalar sqrt_fast Scalar square root with low latency 10 clock cycles

Sin_Cos Sine and cosine function for input in radians 52 clock cycles
M_inv Matrix inversion 31 clock cycles
Li2R Transform lie algebra to a rotation matrix 73 clock cycles
Li2Q Transform lie algebra to quaternion 65 clock cycles
R2Q Transform rotation matrix to quaternion 53 clock cycles
Q2R Transform quaternion to a rotation matrix 14 clock cycles
Q_q Quaternion multiplication 14 clock cycles

3.4. Feature Processing Engine
Figure 8 shows the structure of the feature processing engine, which includes a

memory interface, a feature manager, a floating-point patch workspace, a coordinates
alignment circuit, and interaction with the EKF engine. During the process of VIO, after
IMU pre-integration, the pose of the feature concerning the last frame is exported out of
the operator memory.

Figure 7. Modules and processing flow of the programmable computation core.

3.4. Feature Processing Engine

Figure 8 shows the structure of the feature processing engine, which includes a mem-
ory interface, a feature manager, a floating-point patch workspace, a coordinates align-
ment circuit, and interaction with the EKF engine. During the process of VIO, after IMU
pre-integration, the pose of the feature concerning the last frame is exported out of the
operator memory.

The patch workspace requests the 12 × 12 feature patch in a fixed-point format whose
center locates where the feature is in the last frame from the feature extraction engine in the
fixed-point vision pipeline, converts it to the floating-point format, and stores it temporarily
into the dual-port rams. A bilinear interpolation is performed to sample an 8 × 8 patch
from the original 12 × 12 patches according to the warping matrix and the updated patch
coordinates [33]. Then, the patch workspace measures the difference between the old and
the new patches, which are the gray value difference and grad difference along the X and Y
axes. The information will be output to the coordinate alignment circuit.

The coordinates alignment circuit generates matrix A and vector b according to
(7) and (9). The least-square equation optimizes the feature location and output to patch
the workspace for resampling. The process ends when the iteration reaches the time limit
or the 2D reprojection error is lower than a specific threshold. If the reprojection error
is acceptable, the feature processing engine computes and stores the Jacobian matrix of
measured results and noise in memory. EKF engine performs the update of the Kalman
filter. After finishing the update, the feature processing engine sorts and compares the
newly extracted features with the old ones. The feature processing engine replaces the old
feature information and patches with the new one if the new feature is better.

Sensors 2022, 22, 7669 11 of 17
Sensors 2022, 22, x FOR PEER REVIEW 12 of 18

Figure 8. Detailed structure of the feature processing engine.

The patch workspace requests the 12 × 12 feature patch in a fixed-point format whose
center locates where the feature is in the last frame from the feature extraction engine in
the fixed-point vision pipeline, converts it to the floating-point format, and stores it tem-
porarily into the dual-port rams. A bilinear interpolation is performed to sample an 8 × 8
patch from the original 12 × 12 patches according to the warping matrix and the updated
patch coordinates [33]. Then, the patch workspace measures the difference between the
old and the new patches, which are the gray value difference and grad difference along
the X and Y axes. The information will be output to the coordinate alignment circuit.

The coordinates alignment circuit generates matrix A and vector b according to (7)
and (9). The least-square equation optimizes the feature location and output to patch the
workspace for resampling. The process ends when the iteration reaches the time limit or
the 2D reprojection error is lower than a specific threshold. If the reprojection error is ac-
ceptable, the feature processing engine computes and stores the Jacobian matrix of meas-
ured results and noise in memory. EKF engine performs the update of the Kalman filter.
After finishing the update, the feature processing engine sorts and compares the newly
extracted features with the old ones. The feature processing engine replaces the old feature
information and patches with the new one if the new feature is better.

In order to save resources and reduce power consumption, 3 × 3 operation cores are
used for matrix-vector operations of any size. To this end, this paper innovatively adopts
the idea of vectorization, which is in matrix multiplication, the left matrix is input to the
column from left to right, and the right matrix is input to the row from top to bottom. Each
set of operations completes an M33 matrix, calculates a new M33 matrix every three rows
and three columns, as shown in Figure 9, and finally, calculates the entire large matrix
with low resource and power consumption.

Figure 8. Detailed structure of the feature processing engine.

In order to save resources and reduce power consumption, 3 × 3 operation cores are
used for matrix-vector operations of any size. To this end, this paper innovatively adopts
the idea of vectorization, which is in matrix multiplication, the left matrix is input to the
column from left to right, and the right matrix is input to the row from top to bottom. Each
set of operations completes an M33 matrix, calculates a new M33 matrix every three rows
and three columns, as shown in Figure 9, and finally, calculates the entire large matrix with
low resource and power consumption.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 18

Figure 9. Schematic diagram of vectorized matrix multiplication strategy.

4. Implementation Results
4.1. Accuracy of Datasets Compared with Software Platform

A comparison to the software platform on a dataset is performed to verify the func-
tionality and accuracy of the proposed VIO accelerator. The following were the main pa-
rameters of the PC: Ubuntu 18.04 (64-bit), Intel(R) Core (TM) i5-8265U CPU with 8G RAM.
Moreover, we translate the ROVIO [33] algorithm into the ISA proposed by this paper.
The dataset used in the evaluation is EuRoC, which is one of the most authoritative and
challenging datasets. We translate the EKF process of ROVIO into the proposed ISA and
evaluate them on EuRoC. As shown in Table 3, the accuracy loss is neglectable, indicating
the high accuracy of the proposed accelerated core.

Table 3. Evaluation of accuracy.

Dataset ROVIO (Software) The Proposed Core
MH_1 0.19% 0.19%
MH_2 0.23% 0.23%
MH_3 0.47% 0.49%
MH_4 0.55% 0.52%
MH_5 0.78% 0.79%
V1_1 0.28% 0.26%
V1_2 0.35% 0.34%
V1_3 0.27% 0.25%
V2_1 0.26% 0.26%
V2_2 0.37% 0.40%
V2_3 0.61% 0.61%

4.2. Evaluation Platform and Experiments
The evaluation platform is constructed by a four-wheeled platform that can move

smoothly, carrying the Xilinx XCVU 440 FPGA evaluation board with monocular camera
mt9v034 and MPU9250, as shown in Figure 10. Figure 11 illustrates the measured
experience map over frames during a typical SLAM operation in a flat corridor, which is
about 70 m in total. The evaluation platform starts from one of the corners and moves

Figure 9. Schematic diagram of vectorized matrix multiplication strategy.

Sensors 2022, 22, 7669 12 of 17

4. Implementation Results
4.1. Accuracy of Datasets Compared with Software Platform

A comparison to the software platform on a dataset is performed to verify the func-
tionality and accuracy of the proposed VIO accelerator. The following were the main
parameters of the PC: Ubuntu 18.04 (64-bit), Intel(R) Core (TM) i5-8265U CPU with 8G
RAM. Moreover, we translate the ROVIO [33] algorithm into the ISA proposed by this paper.
The dataset used in the evaluation is EuRoC, which is one of the most authoritative and
challenging datasets. We translate the EKF process of ROVIO into the proposed ISA and
evaluate them on EuRoC. As shown in Table 3, the accuracy loss is neglectable, indicating
the high accuracy of the proposed accelerated core.

Table 3. Evaluation of accuracy.

Dataset ROVIO (Software) The Proposed Core

MH_1 0.19% 0.19%
MH_2 0.23% 0.23%
MH_3 0.47% 0.49%
MH_4 0.55% 0.52%
MH_5 0.78% 0.79%
V1_1 0.28% 0.26%
V1_2 0.35% 0.34%
V1_3 0.27% 0.25%
V2_1 0.26% 0.26%
V2_2 0.37% 0.40%
V2_3 0.61% 0.61%

4.2. Evaluation Platform and Experiments

The evaluation platform is constructed by a four-wheeled platform that can move
smoothly, carrying the Xilinx XCVU 440 FPGA evaluation board with monocular camera
mt9v034 and MPU9250, as shown in Figure 10. Figure 11 illustrates the measured experi-
ence map over frames during a typical SLAM operation in a flat corridor, which is about
70 m in total. The evaluation platform starts from one of the corners and moves smoothly
at a speed of 0.35 m/s on average. After a loop of testing, we find that the trajectory is
only slightly shifted, indicating the robust functionality and relatively high accuracy of the
proposed accelerated core.

4.3. Discussions

Table 4 illustrates the implementation results of the proposed reconfigurable VIO
accelerator. ASIC synthesis is performed to better compare with state-of-the-art ASIC
implementation results. This work operates in the highest frequency both in FPGA and
ASIC synthesis. Nevertheless, the on-chip memory usage is the lowest among these works
for occupying only 70 KB when [29] is lower but with the usage of build-in SoC. Compared
with FPGA implementations, slice LUTs and FFs consumed by the accelerator are 2.05×
and 2.35× less than [28]. DSP consumption in this work is 8.03× and 1.8× less than [28]
and [29]. As illustrated in Table 4, the core area in 28 nm CMOS technology is only 3 mm2,
which is 6.67× and 3.64× smaller in comparison to [27] and [26]. This work supports
reconfigurable SLAM architecture, while others do not.

Sensors 2022, 22, 7669 13 of 17

Sensors 2022, 22, x FOR PEER REVIEW 14 of 18

smoothly at a speed of 0.35 m/s on average. After a loop of testing, we find that the
trajectory is only slightly shifted, indicating the robust functionality and relatively high
accuracy of the proposed accelerated core.

Figure 10. Demo evaluation platform. (a) VU440 FPGA board with mt9v034 image sensor and
MPU9250 IMU. (b) New features are shown through the HDMI display. (c) Trajectory output in the
x, y, and z axes (three dimensions).

Figure 10. Demo evaluation platform. (a) VU440 FPGA board with mt9v034 image sensor and
MPU9250 IMU. (b) New features are shown through the HDMI display. (c) Trajectory output in the x,
y, and z axes (three dimensions).

Table 4. Hardware implementation results. The outstanding work in the comparison is bold.

MIT 2017 [28] ICFPT 2021 [29] JSSC 2019 [27] ISSCC 2019 [26] This Work

Type VIO SLAM VIO SLAM VIO

Odometry IMU Visual IMU Visual IMU

FPGA Platform Kintex-7
XC7K355T

UltraScale +
XCZU7EV N/A N/A UltraScale +

XCVU440

Technology N/A N/A 65 nm 28 nm 28 nm *

Resolution N/A 640 × 480 752 × 480 640 × 480 640 × 480

Speed 20 fps 15.5 fps 171 fps 80 fps 160 fps

Frequency 100 MHz 100 MHz 62.5 MHz/
83.3 MHz 240 MHz 160 MHz

(250 MHz *)

SoC No Yes No No No

On-chip Memory 2048 KB 61 KB 854 KB 1126 KB 70 KB

LUTs 192,000 146,572 N/A N/A 91,802

FFs 144,000 74,166 N/A N/A 61,107

DSPs 771 173 N/A N/A 96

Power 1.46 W Not Given 24 mW 243.6 mW 0.683 W
(179.52 mW)

Area N/A N/A 20 mm2 10.92 mm2 3 mm2

Reconfigurable No No No No Yes

Application Nano and
pico robots

Autonomous
navigation AR, VR and UAVs AMRs

*: Synthesis results in 28 nm CMOS technology.

Sensors 2022, 22, 7669 14 of 17
Sensors 2022, 22, x FOR PEER REVIEW 15 of 18

Figure 11. Measured experience map over frames during SLAM process.

4.3. Discussions
Table 4 illustrates the implementation results of the proposed reconfigurable VIO ac-

celerator. ASIC synthesis is performed to better compare with state-of-the-art ASIC im-
plementation results. This work operates in the highest frequency both in FPGA and ASIC
synthesis. Nevertheless, the on-chip memory usage is the lowest among these works for
occupying only 70 KB when [29] is lower but with the usage of build-in SoC. Compared
with FPGA implementations, slice LUTs and FFs consumed by the accelerator are 2.05×
and 2.35× less than [28]. DSP consumption in this work is 8.03× and 1.8× less than [28] and
[29]. As illustrated in Table 4, the core area in 28 nm CMOS technology is only 3 mm2,
which is 6.67× and 3.64× smaller in comparison to [27] and [26]. This work supports re-
configurable SLAM architecture, while others do not.

Table 4. Hardware implementation results. The outstanding work in the comparison is bold.

 MIT 2017 [28] ICFPT 2021 [29] JSSC 2019 [27] ISSCC 2019 [26] This Work
Type VIO SLAM VIO SLAM VIO

Odometry IMU Visual IMU Visual IMU

FPGA Platform Kintex-7
XC7K355T

UltraScale +
XCZU7EV N/A N/A UltraScale +

XCVU440

Figure 11. Measured experience map over frames during SLAM process.

The power consumption on the FPGA platform is about 0.683 W, which is lower
than the 1.46 W on the Kintex-7 XC7K355T [28]. The power proportion of each module is
shown in Figure 12. Based on the synthesis results in the 28 nm CMOS process, the power
consumption is only 179.52 mW, which is much better than that in [26] with the same 28
nm CMOS technology, but still worse than that in [27] with 65 nm CMOS technology.

Due to the lightweight characteristic of the EKF optimization and FAST-based features,
the proposed accelerated core essentially reduces the consumption of LUTs, FFs, and
DSPs. Secondly, compared with other backend optimization techniques, such as bundle
adjustment, EKF does not require storing the entire image, significantly reducing a large
amount of on-chip memory. Finally, the delicate design improves the peak performance of
the proposed accelerated core.

Sensors 2022, 22, 7669 15 of 17

Sensors 2022, 22, x FOR PEER REVIEW 16 of 19

Technology N/A N/A 65 nm 28 nm 28 nm *

Resolution N/A 640 × 480 752 × 480 640 × 480 640 × 480

Speed 20 fps 15.5 fps 171 fps 80 fps 160 fps

Frequency 100 MHz 100 MHz
62.5 MHz/

83.3 MHz
240 MHz

160 MHz

(250 MHz*)

SoC No Yes No No No

On-chip Memory 2048 KB 61 KB 854 KB 1126 KB 70 KB

LUTs 192,000 146,572 N/A N/A 91,802

FFs 144,000 74,166 N/A N/A 61,107

DSPs 771 173 N/A N/A 96

Power 1.46 W Not Given 24 mW 243.6 mW
0.683 W

(179.52 mW)

Area N/A N/A 20 mm2 10.92 mm2 3 mm2

Reconfigurable No No No No Yes

Application
Nano and

pico robots

Autonomous

navigation
AR, VR and UAVs AMRs

*: Synthesis results in 28 nm CMOS technology.

The power consumption on the FPGA platform is about 0.683 W, which is lower than

the 1.46 W on the Kintex-7 XC7K355T [28]. The power proportion of each module is shown

in Figure 12. Based on the synthesis results in the 28 nm CMOS process, the power

consumption is only 179.52 mW, which is much better than that in [26] with the same 28

nm CMOS technology, but still worse than that in [27] with 65 nm CMOS technology.

Figure 12. Power proportion of each module. (a) on-chip power; (b) dynamic utilization; (c)

utilization details.

Due to the lightweight characteristic of the EKF optimization and FAST-based

features, the proposed accelerated core essentially reduces the consumption of LUTs, FFs,

Clocks

0.26%

Signals

39.58%

BRAM

8.59%

Logic

23.96%

DSP

0.26%

I/O

0.53%

MMCM

26.82%

UTILIZATION DETAILS

Dynamic

60%

Device Static

40%

ON-CHIP POWER

(a) (b)

IMG

51%

Video_Stream

27%

Patch Process

4%

core

4%

IMU

4%

Feature_Process

4%

Others

6%

DYNAMIC ULTILIZATION

(c)

Figure 12. Power proportion of each module. (a) on-chip power; (b) dynamic utilization;
(c) utilization details.

5. Conclusions

This paper proposed a reconfigurable visual inertial odometer (VIO) for the simulta-
neous localization and mapping (SLAM) application in autonomous mobile robots. The
proposed accelerated core leveraged a lightweight feature extraction algorithm with the
extended Kalman filter (EKF) update algorithm to provide high energy efficiency while
achieving appropriate SLAM results. Furthermore, the reconfigurability of the accelerated
core brings more potential downstream exploration for AMR applications.

The main hardware architecture of the VIO accelerator consisted of four sub-modules:
(1) fixed-point vision pipeline, (2) memory interface, (3) programmable computation core,
and (4) layers for the EKF engine. We first evaluated the accuracy both on benchmark
datasets and real experimental tests. As shown in the implementation results, the on-chip
memory usage of 70 KB was the lowest among the standalone works for SLAM. Meanwhile,
the hardware-resource usage and power dissipation on the FPGA implementation and the
synthesis of 28 nm CMOS technology also outperformed the state-of-the-art works on the
same condition.

Author Contributions: Conceptualization, F.A. and Y.T.; methodology, H.D.; validation, Y.T. and
H.W.; formal analysis, H.D.; investigation, Y.T., M.S. and Y.C.; data curation, Y.T., M.Z. and Z.Y.;
writing—original draft preparation, Y.T. and M.S.; writing—review and editing, F.A., Q.Z., Y.T.
and M.S.; visualization, Y.T. and H.D.; supervision, P.L., L.C. and F.A.; project administration, F.A.;
funding acquisition, F.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by the Science, Technology, and Innovation Commission
of Shenzhen Municipality under grants JSGG20200102162401765, K2021390006, and K2021390007.
This work was partially funded by the Special field pre-research foundation under grant 30121603,
Guangdong College Students’ Scientific and Technological Innovation pdjh2022b0456, and College
Students’ Innovative Entrepreneurial Training Plan Program 2022S20.

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Silveira, G.; Malis, E.; Rives, P. An Efficient Direct Approach to Visual SLAM. IEEE Trans. Robot. 2008, 24, 969–979. [CrossRef]
2. Newcombe, R.A.; Lovegrove, S.J.; Davison, A.J. DTAM: Dense tracking and mapping in real-time. In Proceedings of the IEEE

International Conference on Computer Vision, ICCV 2011, Barcelona, Spain, 6–13 November 2011.
3. Engel, J.; Stuckler, J.; Cremers, D. Large-scale direct SLAM with stereo cameras. In Proceedings of the 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015.

http://doi.org/10.1109/TRO.2008.2004829

Sensors 2022, 22, 7669 16 of 17

4. Engel, J.; Koltun, V.; Cremers, D. Direct Sparse Odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 40, 611–625. [CrossRef]
[PubMed]

5. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
6. Herbert, B.; Andreas, E.; Tinne, T.; LucVan, G. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110,

346–359.
7. Rosten, E.; Porter, R.; Drummond, T. Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern Anal.

Mach. Intell. 2008, 32, 105–119. [CrossRef]
8. Castellanos, J.A.; Montiel, J.; Neira, J.; Tardós, J.D. The SPmap: A probabilistic framework for simultaneous localization and map

building. IEEE Trans. Robot. Autom. 1999, 15, 948–952. [CrossRef]
9. Huang, G.P.; Mourikis, A.I.; Roumeliotis, S.I. Analysis and improvement of the consistency of extended Kalman filter based SLAM.

In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008.
10. Eustice, R.M.; Singh, H.; Leonard, J.J. Exactly Sparse Delayed-State Filters for View-Based SLAM. IEEE Trans. Robot. 2007, 22,

1100–1114. [CrossRef]
11. Thrun, S.; Liu, Y.; Koller, D.; Ng, A.Y.; Ghahramani, Z.; Durrant-Whyte, H. Simultaneous Localization and Mapping With Sparse

Extended Information Filters. Int. J. Robot. Res. 2004, 23, 693–716. [CrossRef]
12. Montemarlo, M. FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem. In Proceedings of the

Theaaai National Conference on Artificial Intelligence, Edmonton, AB, Canada, 28 July–1 August 2002.
13. Hähnel, D.; Burgard, W.; Fox, D.; Thrun, S. An Efficient {FastSLAM} Algorithm for Generating Maps of Large-Scale Cyclic

Environments from Raw Laser Range Measurements. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2003, Las Vegas, NV, USA, 27–31 October 2003.

14. Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters. IEEE
Trans. Robot. 2007, 23, 34–46. [CrossRef]

15. Di, K.; Zhao, Q.; Wan, W.; Wang, Y.; Gao, Y. RGB-D SLAM Based on Extended Bundle Adjustment with 2D and 3D Information.
Sensors 2016, 16, 1285. [CrossRef] [PubMed]

16. Alismail, H.; Browning, B.; Lucey, S. Photometric Bundle Adjustment for Vision-Based SLAM. In Proceedings of the Asian
Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016.

17. Liu, H.; Chen, M.; Zhang, G.; Bao, H.; Bao, Y. ICE-BA: Incremental, Consistent and Efficient Bundle Adjustment for Visual-Inertial
SLAM. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City,
UT, USA, 18–23 June 2018.

18. Chao, J.; Geng, Z.X.; Wei, X.F.; Shen, C. SIFT implementation based on GPU. In Proceedings of the ISPDI 2013—Fifth International
Symposium on Photoelectronic Detection and Imaging, Beijing, China, 25–27 June 2013.

19. Cornelis, N.; Gool, L.V. Fast scale invariant feature detection and matching on programmable graphics hardware. In Proceedings
of the IEEE International Conference on Technologies for Practical Robot Applications, Woburn, MA, USA, 9–10 November 2009.

20. Yum, J.; Lee, C.H.; Kim, J.S.; Lee, H.J. A Novel Hardware Architecture with Reduced Internal Memory for Real-Time Extraction of
SIFT in an HD Video. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 1. [CrossRef]

21. Wilson, C.; Zicari, P.; Craciun, S.; Gauvin, P.; Lam, H. A power-efficient real-time architecture for SURF feature extraction. In
Proceedings of the International Conference on ReConFigurable mputing and FPGAs (ReConFig14), Riviera Maya, Mexico,
7–9 December 2015.

22. Ulusel, O.; Picardo, C.; Harris, C.B.; Reda, S.; Bahar, R.I. Hardware acceleration of feature detection and description algorithms on
low-power embedded platforms. In Proceedings of the International Conference on Field Programmable Logic & Applications,
FPL 2016, Lausanne, Switzerland, 29 August–2 September 2016.

23. Tertei, D.T.R.; Piat, J.; Devy, M. FPGA design of EKF block accelerator for 3D visual SLAM. Comput. Electr. Eng. 2016, 55, 123–137.
[CrossRef]

24. Wang, J.; Zhan, Y.; Wang, Z.; Peng, Z.; Xu, J.; Liu, B.; Yu, G.; An, F.; Wang, C.; Zou, X. A Reconfigurable Matrix Multiplication
Coprocessor with High Area and Energy Efficiency for Visual Intelligent and Autonomous Mobile Robots. In Proceedings of the
2021 IEEE Asian Solid-State Circuits Conference, A-SSCC 2021, Busan, Korea, 7–10 November 2021.

25. Liu, R.; Yang, J.; Chen, Y.; Zhao, W. eSLAM: An Energy-Efficient Accelerator for Real-Time ORB-SLAM on FPGA Platform. In
Proceedings of the 56th Annual Design Automation Conference, Las Vegas, NV, USA, 2–6 June 2019.

26. Li, Z.; Chen, Y.; Gong, L.; Liu, L.; Kim, H.S. An 879GOPS 243mW 80fps VGA Fully Visual CNN-SLAM Processor for Wide-Range
Autonomous Exploration. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco,
CA, USA, 17–21 February 2019.

27. Suleiman, A.; Zhengdong, Z.; Carlone, L.; Karaman, S.; Sze, V. Navion: A 2-mW Fully Integrated Real-Time Visual-Inertial
Odometry Accelerator for Autonomous Navigation of Nano Drones. IEEE J. Solid-State Circuits 2019, 54, 1106–1119. [CrossRef]

28. Zhang, Z.; Suleiman, A.Z.; Carlone, L.; Sze, V.; Karaman, S. Visual-Inertial Odometry on Chip: An Algorithm-and-Hardware
Co-design Approach. In Proceedings of the Robotics: Science and Systems, Cambridge, MA, USA, 12–16 July 2017.

29. Wang, C.; Liu, Y.; Zuo, K.; Tong, J.; Ding, Y.; Ren, P. ac2SLAM: FPGA Accelerated High-Accuracy SLAM with Heapsort and
Parallel Keypoint Extractor. In Proceedings of the 2021 International Conference on Field-Programmable Technology (ICFPT),
Auckland, New Zealand, 6–10 December 2021.

http://doi.org/10.1109/TPAMI.2017.2658577
http://www.ncbi.nlm.nih.gov/pubmed/28422651
http://doi.org/10.1023/B:VISI.0000029664.99615.94
http://doi.org/10.1109/TPAMI.2008.275
http://doi.org/10.1109/70.795798
http://doi.org/10.1109/TRO.2006.886264
http://doi.org/10.1177/0278364904045479
http://doi.org/10.1109/TRO.2006.889486
http://doi.org/10.3390/s16081285
http://www.ncbi.nlm.nih.gov/pubmed/27529256
http://doi.org/10.1109/TCSVT.2015.2489458
http://doi.org/10.1016/j.compeleceng.2016.05.003
http://doi.org/10.1109/JSSC.2018.2886342

Sensors 2022, 22, 7669 17 of 17

30. Lupton, T.; Sukkarieh, S. Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial
Conditions. IEEE Trans. Robot. 2012, 28, 61–76. [CrossRef]

31. Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-
Posteriori Estimation. In Proceedings of the Robotics: Science and Systems XI, Rome, Italy, 13–17 July 2015.

32. Tong, Q.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2017,
34, 1–17.

33. Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct EKF-based approach. In
Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany,
28 September–2 October 2015.

34. Tan, Y.; Deng, H.; Sun, M.; Zhou, M.; Chen, Y.; Chen, L.; Wang, C.; An, F. A Reconfigurable Coprocessor for Simultaneous
Localization and Mapping Algorithms in FPGA. IEEE Trans. Circuits Syst. II Express Briefs 2022, in press.

http://doi.org/10.1109/TRO.2011.2170332

	Introduction
	Algorithms
	Overall Procedure of the Visual–Inertial Odometry
	IMU Pre-Integration
	Algorithm of Feature Extraction
	FAST-9 Feature Detection
	Gradient-Based Score Calculation

	Algorithm of Feature Coordinates Alignment
	Supported Operations in SLAM Algorithms

	Hardware Design
	Overall Hardware Architecture
	Fixed-Point Vision Pipeline
	Programmable Computation Core
	Feature Processing Engine

	Implementation Results
	Accuracy of Datasets Compared with Software Platform
	Evaluation Platform and Experiments
	Discussions

	Conclusions
	References

