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Abstract: With the wide application of autonomous mobile robots (AMRs), the visual inertial odome-
ter (VIO) system that realizes the positioning function through the integration of a camera and inertial
measurement unit (IMU) has developed rapidly, but it is still limited by the high complexity of
the algorithm, the long development cycle of the dedicated accelerator, and the low power supply
capacity of AMRs. This work designs a reconfigurable accelerated core that supports different VIO
algorithms and has high area and energy efficiency, precision, and speed processing characteristics.
Experimental results show that the loss of accuracy of the proposed accelerator is negligible on the
most authoritative dataset. The on-chip memory usage of 70 KB is at least 10× smaller than the
state-of-the-art works. Thus, the FPGA implementation’s hardware-resource consumption, power
dissipation, and synthesis in the 28 nm CMOS outperform the previous works with the same platform.

Keywords: SLAM; VIO; accelerator; reconfigurable; AMRs

1. Introduction

In recent years, AMRs have achieved rapid development driven by practical applica-
tion demands. As the core technology of AMRs, simultaneous localization and mapping
(SLAM) include five parts as Figure 1 shows: sensor data reading, front-end visual odome-
try, backend optimization, loop closure, and mapping. As a single sensor cannot cope with
all situations, the most effective approach is to fuse data from both the camera and IMU, an
algorithm called VIO. Aside from the computational complexity of loop closure and global
optimization, the VIO system can estimate the position and trajectory of a moving object in
real time with lower power consumption, which is very important for lightweight AMRs
with high processing speed requirements.
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Figure 1. Process Diagram of SLAM.

The visual front-end of VIO mainly estimates the robot’s motion through the direct method
or feature point extraction. In 2008, the direct method proposed by Silveira G. et al. [1] used
the difference in light intensity of each pixel in adjacent frame images to estimate the camera’s
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motion. At present, representative open-source projects are DTAM [2], LSD-SLAM [3], and
DSO [4], etc. Compared with feature point extraction, the direct method saves time for calculat-
ing features and can maintain certain robustness when the texture is scarce, but it is difficult
to work in scenes with drastic changes in light. Feature point extraction uses image features
instead of image intensity, which overcomes the shortcomings of the direct method but relies on
the feature extraction results. In recent years, classic features have included SIFT [5], SURF [6],
FAST [7], and so on.

Backend optimization is to optimize the motion pose estimated by the front end to
minimize accumulated errors. The main backend algorithms are divided into filtering
methods using extended Kalman filter (EKF) or other filters and optimization methods
using bundle adjustment (BA) or graph optimization methods. In the case of limited
computing resources and relatively simple quantities to be estimated, the filtering method
represented by EKF is very effective; however, because the storage capacity and state
quantity are in a quadratic growth relationship, there are many feature data, and the
filtering method is less efficient. In addition to KF [8] and EKF [9], there are also information
filters [10,11] and particle filters [12–14]. Contrary to the filtering method, the optimization
method no longer relies on the information at a specific moment but obtains the optimal
global estimation of all landmarks by optimizing the joint error function of all poses and
landmarks. Existing optimization methods include that by Di, K. et al. [15], who studied
an extended BA algorithm that can utilize both 2D and 3D information and is suitable
for RGB-D cameras. Alismail, H. et al. [16] abandoned the minimization of reprojection
error and achieved a significant improvement in accuracy with a photometric BA algorithm
based on maximizing photometric continuity. The incremental, consistent, and efficient BA
proposed by Liu, H. et al. [17] adopts incremental technology, which consumes only about
1/10 of the computing resources of traditional BA under the premise of ensuring accuracy.

In addition to improving algorithms, using SLAM systems also relies on hardware
acceleration. Compared with CPU, GPU has powerful floating-point computing capability,
so GPU is generally used in the early stage of hardware acceleration design research, such
as feature extraction accelerator based on SIFT [18] and SURF [19] features. However, the
GPU system consumes a lot of power. With the development of field programmable gate
arrays (FPGAs), hardware acceleration relies more on FPGA. Yum, J. et al. [20] designed
a complete SIFT hardware accelerator, Wilson, C. et al. [21] proposed a complete FPGA
implementation of the SURF accelerator, and Ulusel, O. [22] showed that feature extraction
on the FPGA platform has great advantages over CPU and GPU.

Moreover, accelerators suitable for backend optimization have also been proposed
recently. For example, Tertei, D. T. R. et al. [23] proposed an efficient FPGA SoC hardware
structure using systolic array matrix multiplication to accelerate the EKF-SLAM algorithm.
Wang, J. et al. [24] designed a reconfigurable matrix multiplication coprocessor for accel-
erating matrix multiplication in visual navigation algorithms. However, the hardware
accelerators can only accelerate specific algorithms, or they are incomplete, only accelerat-
ing the feature extraction or matrix multiplication part and lacking pose estimation and
trajectory output.

Currently, the relatively complete acceleration design includes Liu, R. et al. [25] imple-
menting a complete ORB-SLAM system on FPGA. The feature extraction and feature match-
ing parts are accelerated by FPGA, but the trajectory estimation and pose optimization are
completed by ARM. Li, Z. et al. [26] presented an accurate, low-power, real-time CNN-
SLAM processor that implements full-visual SLAM on a single chip. Suleiman, A. et al.
designed a chip that can perform VIO [27], reducing on-chip storage to 1/4 the size through
image compression techniques. Zhang, Z. et al. designed a VIO system that uses Kintex-7
XC7K355T (an FPGA) [28], and Wang, C. et al. designed a visual SLAM system that uses
UltraScale+ XCZU7EV (an FPGA) [29].

This paper proposes a reconfigurable, real-time, low-area, and energy-efficient VIO
accelerator implemented on an FPGA with the following major design features: (i) a
reconfigurable accelerator architecture that adapts to different Kalman-filter-based VIO
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algorithms; (ii) an optimized instruction-based structure supporting the simultaneous work-
flow of fixed-point and floating-point units to accelerate VIO algorithms for real-time usage.
This design can support the post estimation and trajectory output of real-time > 60 Hz
frame input and > 200 Hz of IMU input; and (iii) a computing core with shared memory
and the memory reuse strategy. This works only consumes 70 KB of on-chip memory,
which is at least 10× lower than the previous works. To our knowledge, this is the first
integrated reconfigurable architecture that supports multiple VIO algorithms implemented
in FPGA.

2. Algorithms
2.1. Overall Procedure of the Visual–Inertial Odometry

Figure 2 shows the overall procedure of the visual–inertial odometry, consisting of
IMU pre-integration, feature coordinates optimization, and extended Kalman filter (EKF).
IMU pre-integration computes the prior estimate of pose and the position and other state
variables, such as velocity and feature location of the AMR concerning the IMU. Feature
coordinates optimization optimizes the pre-estimated pixel location of the stored features
by minimizing the 2D reprojection error. Then, measured state variables are estimated
through the location difference between the optimized results and the prior estimated
ones. At last, EKF combines the prior estimation of state variables and the measured state
variables according to the covariance matrix and outputs the post estimation of the state
variables, where pose and position represent the trajectory. Each floating-point function
circuit is assigned a priority level to ensure that each floating-point computation circuit can
be accessed by only one floating-point function circuit at the same clock.
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2.2. IMU Pre-Integration

IMU can measure acceleration and angular velocity through the accelerometer and
gyroscope. Through integration, the rotation and displacement between two frames of
images can be obtained. That is to say, if the position, velocity, and rotation at time k
are known, these values at time k + 1 can be obtained. However, in the optimization
algorithm, these values at each moment are estimated. When optimizing them, the data
between two moments must be re-integrated, which makes the calculation requirements
large. Lupton T. et al. [30] proposed IMU pre-integration to avoid repeated integration,
and Forster, C. [31] made it better.

A schematic diagram of the IMU model is shown in Figure 3, and its formula is shown
in (1). The measured values of linear acceleration and angular velocity are represented
by ˆ(·). Linear acceleration is the resultant vector of gravitational acceleration and object
acceleration, bat and bωt are offsets, na and nω are Gaussian noise.

ât = at + bat + Rt
wgw + na,

ω̂t = ωt + bωt + nω
(1)
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The representation of the position, velocity, and rotation (quaternion form) of k + 1
frame can be obtained from k frame, as shown in (2). Here, b represents the body coordinate
system, w represents the world coordinate system, Rw

t represents the rotation matrix from
the body coordinate system to the world coordinate system at time t, qbk

t represents the
rotation of the body coordinate system at time t relative to the body coordinate system at
the time bk, and qw

bk
represents the rotation of the body coordinate system relative to the

world coordinate system at the time bk.

pw
bk+1

= pw
bk
+ νw

bk
∆tk +

s
t∈[k,k+1][R

w
t (ât − bαt)− gw]dt2,

vw
bk+1

= vw
bk
+
∫

t∈[k,k+1][R
w
t (ât − bαt)− gw]dt,

qw
bk+1

= qw
bk
⊗
∫

t∈[k,k+1]
1
2 Ω(ω̂t − bωt)q

bk
t dt

(2)

where

Ω(ω) =

[
−bwc× ω

−ωT 0

]
, bwc× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

. (3)

In (2), PVQ of the body coordinate system at time k + 1 depends on bk. If the PVQ of
the body coordinate system is directly used as a variable to optimize and iteratively update,
it will lead to a large amount of calculation. The idea of IMU pre-integration is to adjust the
reference coordinate system from the world coordinate system w to the body coordinate
system bk of k frame so that the integration result becomes the relative change of bk+1 to
bk. It is realized by multiplying Rbk

w , as shown in (4). The detailed derivation process is
omitted [32].

Rbk
w pw

bk+1
= Rbk

w (pw
bk
+ νw

bk
∆tk − 1

2 gw∆t2
k) + α

bk
bk+1

,

Rbk
w vw

bk+1
= Rbk

w (vw
bk
− gw∆tk) + β

bk
bk+1

,

qbk
w ⊗ qw

bk+1
= γ

bk
bk+1

.

α
bk
bk+1

=
s

t∈[k,k+1] [R
bk
t (ât − bαt)]dt2,

β
bk
bk+1

=
∫

t∈[k,k+1] [R
bk
t (ât − bαt)]dt,

γ
bk
bk+1

=
∫

t∈[k,k+1]
1
2 Ω(ω̂t − bωt)γ

bk
t dt

(4)

2.3. Algorithm of Feature Extraction
2.3.1. FAST-9 Feature Detection

In the feature extraction technology, in addition to FAST [7], there are SIFT [5], SURF [6],
and other algorithms. The features they extracted have strong invariance, but the time con-
sumption is relatively large. In a system, feature extraction is only a part, and subsequent
algorithms such as registration, purification, and fusion are also performed. This makes the
real-time performance not suitable and reduces the system performance. The Fast detector
is very fast because it does not involve complex operations such as scale and gradient. It
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uses the gray value of the pixel in a specific neighborhood to compare the size with the
center point to determine whether it is a corner point.

The proposed accelerated core adapts the FAST-9 feature extraction [7] in the vision
pipeline, a trade-off between accuracy and efficiency since the proposed accelerated core
targets high-performance and low-power design.

Sc→p


darker, P < C− T

similar, C− T ≤ P ≤ C + T
brighter, C + T < P

(5)

Here, S stands for the intensity relationship of the pixels P with the center C, and T
is the user-defined threshold. If there are consecutive nine pixels darker or brighter, the
center pixel is a FAST feature in the accelerated core.

This paper uses pipeline stages for hardware implementation since the FAST algorithm
requires counters, which should be accumulated by clock cycles. However, it is not enough
to implement it in 16 clock cycles, as shown in Figure 4, because a true circle path to access
all pixels in the FAST algorithm should be half a circle. For example, if pixels P1, P2, and
P10–P16 are brighter while others are not, the center pixel should be a FAST feature. How-
ever, the first round only considers seven brighter pixels (P10–P16) which makes an incorrect
judgment. The one-and-a-half circles for detecting solves this problem by redundantly
calculating eight more pixels.
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2.3.2. Gradient-Based Score Calculation

This paper adapts a gradient-based score (Grad score in short) to indicate the quality
of a feature after FAST feature detection, as shown below:

Grad score =
6

∑
i=1

6

∑
j=1

(
Pi,j+1 − Pi,j−1

)2/64 +
(

Pi+1,j − Pi−1,j
)2/64 (6)

Here, the input patch is size 8 × 8, and P stands for the pixel values. Therefore, the
Grad score is calculated with a 6 × 6 window inside the patch. The score will be used in
the rest process in the core.

2.4. Algorithm of Feature Coordinates Alignment

Feature coordinates calculated from IMU pre-integration and feature prediction are
corrected by photometric error, which is based on the difference in pixel data between the
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old feature patches in the last frame and the new feature patches extracted in the current
frame. The photometric error is defined by:

el,j = Pl

(
pj

)
− Il

(
psl + Wpj

)
−m (7)

where the scalar factor sl = 0.5l stands for the down-sampling number of layers of the
image pyramid. W stands for the warping transform matrix in [33], pj is the patch pixel in
the patch Pl , and p is the feature coordinate.

This paper adapts the QR-decomposition method in [33], which stacks all error terms
together for given estimated coordinates p̂:

b( p̂) = A( p̂)δp (8)

Here, A( p̂) is based on the patch intensity gradients along the X and Y axes. The
QR-decomposition of A( p̂) obtains an equivalent reduced linear equation system:

b( p̂) = A( p̂)δp (9)

The iteration will be user-defined and ten times in the proposed core. If the photo-
metric error is still higher than a certain threshold, the feature will be marked as bad and
abandoned, while others could be used in the EKF update.

2.5. Supported Operations in SLAM Algorithms

Most SLAM algorithms require not only basic operations, such as the addition or
multiplication of scalars, but also operations of rotation dynamics, including rotation
matrix, quaternion, and lie algebra. The proposed VIO accelerated core provides full
functionality to support the abovementioned operations, shown in Table 1.

Table 1. Supported operations by the accelerated core.

Operation Description Time Consumption

Scalar add/sub Scalar addition/subtraction 5 clock cycles
Scalar mul Scalar multiplication 2 clock cycles
Scalar reci Scalar reciprocal 10 clock cycles

Scalar sqrt_slow Scalar square root with high accuracy 27 clock cycles
Scalar sqrt_fast Scalar square root with low latency 10 clock cycles

Sin_Cos Sine and cosine function for input
in radians 52 clock cycles

M_inv Matrix inversion 31 clock cycles
Li2R Transform lie algebra to a rotation matrix 73 clock cycles
Li2Q Transform lie algebra to quaternion 65 clock cycles
R2Q Transform rotation matrix to quaternion 53 clock cycles
Q2R Transform quaternion to a rotation matrix 14 clock cycles
Q_q Quaternion multiplication 14 clock cycles

3. Hardware Design

This section introduces the overall hardware architecture of the proposed VIO acceler-
ated core and details four important submodules and techniques adapted in the design.

3.1. Overall Hardware Architecture

Figure 5 shows the proposed accelerator’s overall architecture constructed by four
sub-modules, including a fixed-point vision pipeline, a memory interface, a programmable
computation core, and layers for the EKF engine.
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The vision pipeline receives input data from the image sensor to perform new and
predicted feature extraction. The memory interface uses a shared memory strategy to store
intermediate values and output data. The programmable computation core pre-loads three
programs to perform the computation of IMU pre-integration and the computation of the
Jacobian matrix. This core can satisfy the pose estimation of a sample class of Kalman-
filter-based SLAM algorithms. In the EKF engine, layer 1 contains a finite state machine
in charge of the whole process. The layer of the feature processing engine scores and
sorts the features received from the feature extraction engine then compares the best 25
of them with the features stored in the feature manager and replaces the old ones with
them if the new features are better. The feature processing engine also computes the 2D
location difference of the same feature in the last and current frames. Then, the EKF engine
completes the update process of the EKF process with the help of a specific mission layer
and FP arithmetic. The specific mission layer shares the floating-point arithmetic with the
computation core for higher hardware utilization.

3.2. Fixed-Point Vision Pipeline

Figure 6 details the structure of the fixed-point vision pipeline, including a Gaussian
pyramid-image half sample engine, a FAST feature identifier, a Grad score-based patch
extractor, and a patch controller.
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The architecture workflow is pipelined with line buffers, thus reducing memory
consumption and increasing processing throughput. The operation provides a foundation
for the following process by interpreting images at multiple resolutions and different scales
with a Gaussian sampling pyramid of the input grayscale image. The half-sampled pixels
are transferred through an asynchronous FIFO, followed by a group of 11 line buffers. The
rest processes are based on an area-reused 12 × 12 sliding window where pixel data can be
available for three layers.

The FAST identifier is a feature extractor adapting the FAST-16 algorithm where if a
pixel differs greatly from enough pixels in its surrounding neighborhood, the pixel may be
a corner. Adapting the FAST algorithm for every pixel indicates a continually analyzed
16 pixels, i.e., whether the pixel is brighter/darker than the center pixel as the last pixel
does. In the hardware implementation, the algorithm is processed in a pipeline which takes
24 periods. At every stage, the circuit will detect the brightness for both the current and
last pixels and increase or reset the counters. In Figure 6, BrightCnt means the number of
continuing pixels with a grey value more significant than the grey value of the center plus
threshold, while DarkCnt stands for the opposite. If BrightCnt or DarkCnt is larger than 9,
the pixel is identified as a FAST feature, and the result will be passed to the patch controller
by a line buffer.

The FAST identifier is optional, considering the patch extractor has already been
attached with a Grad score comparator which adapts only the front-computing. Input pixel
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data from the 8 × 8 window generates their gradient values which are used to calculate the
Grad score according to (6).

The patch controller temperately stores the information of a maximum of 100 patches
in sub-patch controllers, where a patch is defined by the feature pixel and its surround-
ing 12 × 12 window of pixels. In order to avoid the extracted feature points being too
concentrated, this paper proposed a patch extract strategy, which constructs banned rows
and banned columns. When a new feature/patch is extracted, its surrounding 16 rows
and columns will be banned for the subsequent extraction unless the new feature has a
higher Grad score. The 100 sub-patch controllers are awakened one by one to reduce power
consumption and send write to enable signal to the patch controller for patch storing,
which is implemented by dual-port rams. If the maximum feature limit (100) is reached, a
special sub-patch controller will be used to cover the patch with the least Grad score if the
new feature has a higher score, ensuring the extracted patches are high quality for the rest
process. At the end of a frame, the vision pipeline sends a signal to the top state machine,
indicating the available feature patches.

3.3. Programmable Computation Core

Figure 7 details the structure of the programmable computation core realized by
instruction control, which is an extension of the previous work [34]. A matrix computation
core performs the matrix operation and controls the program workflow, and a special
computation core performs quaternion, angle-axis, and scalar operations. The computation
core is controlled by a proposed instruction set architecture (ISA). Operation instructions
store the offset address of operands, source, and target address, transpose or generate
antisymmetric matrix, and the operation types. The PC reads instructions from IRMEM
and sends them to the corresponding instruction decoder for operation instructions. Each
core has its own 38-bit instruction set and an 8-bit address instruction memory but shares a
4 × 7-bit address, 32-bit per data, memory for operators. Each core has and only has access
to its own nine adders, nine multipliers, one floating sqrt, and one reciprocal computation
circuit. Compared with the matrix core, the special core has some unique computation
circuits, such as cosine and sine. Two instructions for matrix core, bubble and sync, and one
for special core, bubble, are used to synchronize the cores and secure the computation order.
An interface and matched instructions for 16-bit per address, 38-bit per data memory are
kept for the potential memory. The operations required by different Kalman-filter-based
algorithms can be programmed into the instruction and operator memory blocks. What is
more, Table 2 shows the supported operations by the computation core, including normal
scalar operations and special operations required by most SLAM algorithms.

Table 2. Description and time consumption of operations supported by the computation core.

Operation Description Time Consumption

Scalar add/sub Scalar addition/subtraction 5 clock cycles
Scalar mul Scalar multiplication 2 clock cycles
Scalar reci Scalar reciprocal 10 clock cycles

Scalar sqrt_slow Scalar square root with high accuracy 27 clock cycles
Scalar sqrt_fast Scalar square root with low latency 10 clock cycles

Sin_Cos Sine and cosine function for input
in radians 52 clock cycles

M_inv Matrix inversion 31 clock cycles
Li2R Transform lie algebra to a rotation matrix 73 clock cycles
Li2Q Transform lie algebra to quaternion 65 clock cycles
R2Q Transform rotation matrix to quaternion 53 clock cycles
Q2R Transform quaternion to a rotation matrix 14 clock cycles
Q_q Quaternion multiplication 14 clock cycles
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3.4. Feature Processing Engine

Figure 8 shows the structure of the feature processing engine, which includes a mem-
ory interface, a feature manager, a floating-point patch workspace, a coordinates align-
ment circuit, and interaction with the EKF engine. During the process of VIO, after IMU
pre-integration, the pose of the feature concerning the last frame is exported out of the
operator memory.

The patch workspace requests the 12 × 12 feature patch in a fixed-point format whose
center locates where the feature is in the last frame from the feature extraction engine in the
fixed-point vision pipeline, converts it to the floating-point format, and stores it temporarily
into the dual-port rams. A bilinear interpolation is performed to sample an 8 × 8 patch
from the original 12 × 12 patches according to the warping matrix and the updated patch
coordinates [33]. Then, the patch workspace measures the difference between the old and
the new patches, which are the gray value difference and grad difference along the X and Y
axes. The information will be output to the coordinate alignment circuit.

The coordinates alignment circuit generates matrix A and vector b according to
(7) and (9). The least-square equation optimizes the feature location and output to patch
the workspace for resampling. The process ends when the iteration reaches the time limit
or the 2D reprojection error is lower than a specific threshold. If the reprojection error
is acceptable, the feature processing engine computes and stores the Jacobian matrix of
measured results and noise in memory. EKF engine performs the update of the Kalman
filter. After finishing the update, the feature processing engine sorts and compares the
newly extracted features with the old ones. The feature processing engine replaces the old
feature information and patches with the new one if the new feature is better.
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In order to save resources and reduce power consumption, 3 × 3 operation cores are
used for matrix-vector operations of any size. To this end, this paper innovatively adopts
the idea of vectorization, which is in matrix multiplication, the left matrix is input to the
column from left to right, and the right matrix is input to the row from top to bottom. Each
set of operations completes an M33 matrix, calculates a new M33 matrix every three rows
and three columns, as shown in Figure 9, and finally, calculates the entire large matrix with
low resource and power consumption.
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4. Implementation Results
4.1. Accuracy of Datasets Compared with Software Platform

A comparison to the software platform on a dataset is performed to verify the func-
tionality and accuracy of the proposed VIO accelerator. The following were the main
parameters of the PC: Ubuntu 18.04 (64-bit), Intel(R) Core (TM) i5-8265U CPU with 8G
RAM. Moreover, we translate the ROVIO [33] algorithm into the ISA proposed by this paper.
The dataset used in the evaluation is EuRoC, which is one of the most authoritative and
challenging datasets. We translate the EKF process of ROVIO into the proposed ISA and
evaluate them on EuRoC. As shown in Table 3, the accuracy loss is neglectable, indicating
the high accuracy of the proposed accelerated core.

Table 3. Evaluation of accuracy.

Dataset ROVIO (Software) The Proposed Core

MH_1 0.19% 0.19%
MH_2 0.23% 0.23%
MH_3 0.47% 0.49%
MH_4 0.55% 0.52%
MH_5 0.78% 0.79%
V1_1 0.28% 0.26%
V1_2 0.35% 0.34%
V1_3 0.27% 0.25%
V2_1 0.26% 0.26%
V2_2 0.37% 0.40%
V2_3 0.61% 0.61%

4.2. Evaluation Platform and Experiments

The evaluation platform is constructed by a four-wheeled platform that can move
smoothly, carrying the Xilinx XCVU 440 FPGA evaluation board with monocular camera
mt9v034 and MPU9250, as shown in Figure 10. Figure 11 illustrates the measured experi-
ence map over frames during a typical SLAM operation in a flat corridor, which is about
70 m in total. The evaluation platform starts from one of the corners and moves smoothly
at a speed of 0.35 m/s on average. After a loop of testing, we find that the trajectory is
only slightly shifted, indicating the robust functionality and relatively high accuracy of the
proposed accelerated core.

4.3. Discussions

Table 4 illustrates the implementation results of the proposed reconfigurable VIO
accelerator. ASIC synthesis is performed to better compare with state-of-the-art ASIC
implementation results. This work operates in the highest frequency both in FPGA and
ASIC synthesis. Nevertheless, the on-chip memory usage is the lowest among these works
for occupying only 70 KB when [29] is lower but with the usage of build-in SoC. Compared
with FPGA implementations, slice LUTs and FFs consumed by the accelerator are 2.05×
and 2.35× less than [28]. DSP consumption in this work is 8.03× and 1.8× less than [28]
and [29]. As illustrated in Table 4, the core area in 28 nm CMOS technology is only 3 mm2,
which is 6.67× and 3.64× smaller in comparison to [27] and [26]. This work supports
reconfigurable SLAM architecture, while others do not.
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Table 4. Hardware implementation results. The outstanding work in the comparison is bold.

MIT 2017 [28] ICFPT 2021 [29] JSSC 2019 [27] ISSCC 2019 [26] This Work

Type VIO SLAM VIO SLAM VIO

Odometry IMU Visual IMU Visual IMU

FPGA Platform Kintex-7
XC7K355T

UltraScale +
XCZU7EV N/A N/A UltraScale +

XCVU440

Technology N/A N/A 65 nm 28 nm 28 nm *

Resolution N/A 640 × 480 752 × 480 640 × 480 640 × 480

Speed 20 fps 15.5 fps 171 fps 80 fps 160 fps

Frequency 100 MHz 100 MHz 62.5 MHz/
83.3 MHz 240 MHz 160 MHz

(250 MHz *)

SoC No Yes No No No

On-chip Memory 2048 KB 61 KB 854 KB 1126 KB 70 KB

LUTs 192,000 146,572 N/A N/A 91,802

FFs 144,000 74,166 N/A N/A 61,107

DSPs 771 173 N/A N/A 96

Power 1.46 W Not Given 24 mW 243.6 mW 0.683 W
(179.52 mW)

Area N/A N/A 20 mm2 10.92 mm2 3 mm2

Reconfigurable No No No No Yes

Application Nano and
pico robots

Autonomous
navigation AR, VR and UAVs AMRs

*: Synthesis results in 28 nm CMOS technology.
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The power consumption on the FPGA platform is about 0.683 W, which is lower
than the 1.46 W on the Kintex-7 XC7K355T [28]. The power proportion of each module is
shown in Figure 12. Based on the synthesis results in the 28 nm CMOS process, the power
consumption is only 179.52 mW, which is much better than that in [26] with the same 28
nm CMOS technology, but still worse than that in [27] with 65 nm CMOS technology.

Due to the lightweight characteristic of the EKF optimization and FAST-based features,
the proposed accelerated core essentially reduces the consumption of LUTs, FFs, and
DSPs. Secondly, compared with other backend optimization techniques, such as bundle
adjustment, EKF does not require storing the entire image, significantly reducing a large
amount of on-chip memory. Finally, the delicate design improves the peak performance of
the proposed accelerated core.
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5. Conclusions

This paper proposed a reconfigurable visual inertial odometer (VIO) for the simulta-
neous localization and mapping (SLAM) application in autonomous mobile robots. The
proposed accelerated core leveraged a lightweight feature extraction algorithm with the
extended Kalman filter (EKF) update algorithm to provide high energy efficiency while
achieving appropriate SLAM results. Furthermore, the reconfigurability of the accelerated
core brings more potential downstream exploration for AMR applications.

The main hardware architecture of the VIO accelerator consisted of four sub-modules:
(1) fixed-point vision pipeline, (2) memory interface, (3) programmable computation core,
and (4) layers for the EKF engine. We first evaluated the accuracy both on benchmark
datasets and real experimental tests. As shown in the implementation results, the on-chip
memory usage of 70 KB was the lowest among the standalone works for SLAM. Meanwhile,
the hardware-resource usage and power dissipation on the FPGA implementation and the
synthesis of 28 nm CMOS technology also outperformed the state-of-the-art works on the
same condition.
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