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Abstract: The exponential growth in remote sensing, coupled with advancements in integrated
circuits (IC) design and fabrication technology for communication, has prompted the progress
of Wireless Sensor Networks (WSN). WSN comprises of sensor nodes and hubs fit for detecting,
processing, and communicating remotely. Sensor nodes have limited resources such as memory,
energy and computation capabilities restricting their ability to process large volume of data that is
generated. Compressing the data before transmission will help alleviate the problem. Many data
compression methods have been proposed but mainly for image processing and a vast majority
of them are not pertinent on sensor nodes because of memory impediment, energy utilization
and handling speed. To overcome this issue, authors in this research have chosen Run Length
Encoding (RLE) and Adaptive Huffman Encoding (AHE) data compression techniques as they can
be executed on sensor nodes. Both RLE and AHE are capable of balancing compression ratio and
energy utilization. In this paper, a hybrid method comprising RLE and AHE, named as H-RLEAHE,
is proposed and further investigated for sensor nodes. In order to verify the efficacy of the data
compression algorithms, simulations were run, and the results compared with the compression
techniques employing RLE, AHE, H-RLEAHE, and without the use of any compression approach for
five distinct scenarios. The results demonstrate the RLE’s efficiency, as it surpasses alternative data
compression methods in terms of energy efficiency, network speed, packet delivery rate, and residual
energy throughout all iterations.

Keywords: data compression; RLE; adaptive huffman encoding; H-RLEAHE; IoT

1. Introduction and Motivation

The 21st century has been characterised by dramatic shifts in the ways that technology,
commerce, and social patterns are organised. The fourth industrial revolution, often
known as Industry 4.0, is the result of the trend toward automation and the subsequent
reduction in human involvement in production across most sectors [1]. Wireless sensor
networks (WSN) and the Internet of Things will play crucial roles in the Fourth Industrial
Revolution (IR 4.0 or 4IR). Since IoT devices can move, share, and exchange data without
human interaction [2], it enables high flexibility and ease of implementation in a variety of
applications. Wireless sensor networks have a limited lifespan due to the significant impact
power consumption has on their performance [3]. Energy-efficient media access control
and routing protocols [4] are only a couple of the ideas put up to address this problem.
Long-term environmental monitoring is a primary goal of a large number of wireless sensor
network (WSN) applications. As a result, saving battery power for sensor nodes is an
important consideration. Sensor nodes have two main ways to save energy. The use of
node redundancy can be a solution to this problem, as it allows a subset of sensor nodes to
stay active while the others are put to sleep to save energy. All of the monitored areas must
be covered by the subset of active sensor nodes, and the network must remain connected.
Furthermore, these sensors must ensure that the network performs as effectively as it does
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when all the sensors are engaged. We may extend the network’s lifespan by switching
between distinct subsets of sensor nodes that are active at the same time. However, such
sleep-active techniques may not be implemented if node redundancy is not available (for
example, due to network deployment [5,6] or sensor breakdown [7]). Sensor nodes utilise
a lot of energy when transmitting data, therefore a possible approach is to decrease the
amount of data that is delivered. When sensor nodes are required to send their sensing data
to sinks on a regular basis for an extended period, a solution such as this could be extremely
helpful [8]. Data from sensing devices must be compressed to save traffic on the network.
The data compression system is one of the methods recommended for reducing the amount
of data sent through wireless networks. Reduced inter-node communication in wireless
sensor networks is a result of using this strategy. Figure 1 illustrates the three kinds of data
compression schemes: lossy, lossless, and recoverability of data [9]. Energy, memory, and
CPU resources of sensor nodes are extremely restricted; hence, we must choose an efficient
and straightforward data compression approach. In order to overcome these concerns, we
adapt a lossless data compression approach for use in a wireless sensor network.
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Figure 1. Classification of Data Compression Techniques [9].

The term “lossless compression” refers to a compression method in which, following
the execution of the decompression operation, it is possible to recover data that are identical
to those obtained before the execution of the compression operation [10]. Sensors in
commercial nodes benefit more from lossy compression methods than lossless ones because
of the higher compression ratio and lower computational cost that they provide [11]. An
accurate and efficient data processing system was developed in [12] to extend the life of
clustered WSNs using data prediction, compression, and recovery. The primary objective
of this effort is to reduce the cost burden of communication while ensuring the precision
of data processing and prediction. The authors of [13] provide a novel architecture that
includes a unique combination of data prediction, compression, and recovery in their
work. Huffman coding is one of the representative examples for traditional and lifetime
maximization cases. When data is compressed using a method known as lossy compression,
it is possible that some of the data’s more specific and typically less important properties
will be lost as a result of the process. JPEG2000, for example, falls into this family of image
and video compression techniques. Finally, from a compressed file in which some data are
lost, the recovery tools such as error concealment tools are employed to retrieve the lost
data. As shown in Figure 2, there are five broad kinds of WSN data compression algorithms
that we will explore in this work.
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An overview of these methods may be found here [14]. (1) To compress the data, text data
compression strategies are applied to the sensor data in string-based compression approaches.
(2) To handle sensing data, image-based compression approaches first hierarchically arrange
WSNs before adapting the concept from image compression techniques. (3) The Slepian-Wolf
theorem is extended by distributed source coding techniques to encode and decode numerous
correlated data streams independently at sensor nodes. (4) A minimal number of randomised
and nonadaptive linear projection samples is used by compressed sensing techniques for data
compression. (5) Some sensor nodes are responsible for merging data from other sensor nodes
in the network as part of data aggregation procedures.

In [15], the authors analyses some of the difficulties that might arise when running a
parallel compression method on a CPU/GPU hybrid platform at the secondary sink node
of a large-scale wireless sensor network (L-SWSN). It uses the matrix matching principle
to dynamically split the compressed data into several dictionary strings and pre-read
strings along the vertical and horizontal axes of the GPU’s various blocks, allowing for the
simultaneous construction of many matrices.

The simulated approach reported in [16] yields reduced Root Mean Square Error
(RMSE) values and larger R2 values (higher coefficient of determination) for varying
compression ratios. This research presents an innovative method for enhancing network
performance by utilizing Distributed Source Coding and Efficient Energy Consumption
while still enabling the delivery of fundamental routing services with reduced traffic delay,
end-to-end latency, and total energy consumption. Experiments on their suggested ap-
proach show that it performs well, consumes little energy, and can handle a large amount
of data [17]. For taking advantage of this spatial relationship, Ref. [18] introduces a joint
sparsity-based compressive sensing approach. Their method uses Bayesian inference to
create a probabilistic model of the signals, and then they apply a belief propagation algo-
rithm as a decoding technique to restore the original sparse signal. As a result, this research
suggests a method for maximizing the usefulness of available sensors by consolidating
and compressing data while maintaining its original quality. The primary goal, then, is to
minimize this redundant data by eliminating some of the data packets and maintaining just
the most crucial ones for the reconstruction. A packet of sensor data was lost during data
aggregation, resulting in slower transmission and fewer packet collisions across the cellular
connection. The redundancy of storing aggregated data is reduced by data compression,
reducing both storage space and transmission bandwidth for use by wireless sensor nodes.
As a result of these findings, the lifespan of the network has been greatly extended. The
raw data is also considered to be of high quality [19].
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The main motivation behind this research is to investigate power consumed during
data compression and transmission. Hence, data compression techniques such as RLE
and AHE and a hybrid of these techniques are investigated and implemented in different
WSN scenarios to achieve higher compression ratio with less power consumption. RLE
relies on correlation at the data sources to achieve compression, but AHE may guarantee a
greater compression ratio even when the data sources are unknown. The primary issue
with RLE is that compression outcomes are affected by the data source. As both the sender
and the receiver start out in the communication process in the dark regarding the source
sequence statistics, adaptive Huffman coding results in a longer compression time. The
H-RLEAHE starts with the compression using RLE technique based on the statistics of the
data sources and compresses the data based on that. Further, the compressed data is given
as input to the AHE algorithm. The compressed data is communicated to the BS, where it
is decompressed using the decompression algorithm.

The outline of the papers is as follows: Section 2 presents the related work for selecting
the techniques. Section 3 discusses the basic data compression techniques. Section 4 details
the hybrid model for data compression. Section 5 establishes the performance measures
and analysis of different data compression algorithms namely RLE, AHE, H-RLEAHE and
H-AHERLE. Section 6 discusses the network setup. Section 7 compares the results of different
data compression models with RLE, AHE, Hybrid-RLEAHE (H-RLEAHE) and un-compressed
data. This paper concludes the entire work with possible avenues of future research.

2. Related Work

Wireless sensors are increasingly being used for a variety of new tasks requiring vision,
surveillance, object detection, tracking, and geolocation [20]. Long-term environmental
monitoring is the primary function of WSN applications, whereas sensor nodes are often
powered by batteries. This necessitates that batteries be conserved in order to extend the
life of the sensors [21]. The majority of energy consumption in sensor nodes occurs during
transmission. Data compression is one way to economise on transmission power. The
development of data compression algorithms has become crucial in a variety of appli-
cations, particularly in multimedia. One of the most challenging aspects of developing
large-scale wireless sensor networks that have real-world applications is coming up with
techniques that will enable the network to function over extended periods of time using
just the minimum amount of energy that can be stored in or acquired by individual wireless
sensor nodes. Since sensor node data transmission is a major drain on the network’s energy
reserves, methods for reducing the quantity of data sent between nodes are highly sought
after. As a result of this study, network data transfer has been reduced by compressing data
locally before it is transferred. In spite of the fact that the topic of data compression has
been around for a considerable amount of time, the vast majority of the known method-
ologies are unable to be immediately transferred to wireless sensor nodes because to the
restricted hardware resources, in particular programmed and data memory. Even though
compression techniques could be implemented on current wireless sensor nodes, doing so
would leave little room for other processes such as sensing and transmission. As a result,
these nodes would be less likely to enter deep sleep states, preventing them from realising
the energy savings that inspired them to choose a compression strategy. There has been a
proliferation of new data compression techniques in recent years for WSNs. Many of these
methods can achieve high compression ratios with minimal computing expense, and they
can also correlate data collected by sensor nodes.

Among the most popular compression techniques are run-length encoding (RLE),
Huffman encoding, Golomb-rice encoding, Lempel-ziv-welch (LZW), and wavelet com-
pression [22]. Text, images, video, and audio are just some of the forms of data that sensors
may capture [23]. It is possible that various compression techniques will need to be applied
to various forms of telemetry data. Kattan et al. [24] combined LZW and Flate algorithms
with JPEG coding and discrete Fourier transforms (DFTs) for textual data compression. For
the telemetry data generated by hyperspectral sensors mounted on a satellite, two nearly
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lossless compression techniques have been presented [25]. Using combined source and
channel coding, David et al. [26] developed a distributed compression architecture. Both
quantized and correlated side information are used to reduce the amount of inter-node
communication required for compression in this method. Qian et al. [27] present an ar-
chitecture for distributed matched source-channel communication and an algorithm for
reconstructing noisy random projections from the data. A similar approach can be found
in [28], which uses a gossip communication system. Power-distortion-latency trade-offs
exist, despite the fact that universality is stated. In addition, there is no consideration given
to the correlation that exists between the data. It was proposed by Logeswaran et al. [29]
and Rong et al. [30] that a dis-tributed wavelet analysis architecture be developed that
does not rely on grid regularity. How to decide on the optimal path for compression is
unclear, and the spatial relationship has not been well investigated. Sensor data from
satellite launch vehicles is compressed using a two-stage Lempel-Ziv lossless data com-
pression technique [31]. Launch vehicle data is compressed using a modified version of
the Rice compression method [32], resulting in a 2:1 compression ratio. A high compres-
sion ratio can be achieved by combining different data compression techniques [33]. It
is also critical to implement data compression correctly in hardware in order to improve
compression performance [34,35]. To balance hardware costs with a feasible compression
ratio, Kao et al. [36] proposed a modularized strategy. Using a two-stage hardware design,
Hashempour et al. [37] predicted an increase in compression and decompression rates.

However, in most cases, the objective of deploying a WSN is to monitor a specific
occurrence that is of interest. An algorithmic approach that employs both Run Length En-
coding (RLE) and basic Huffman encoding to produce compression ratios that outperform
current state-of-the art techniques has been suggested in this study.

Large-scale wireless sensor networks (WSNs) that can be used in everyday life head
one of the biggest challenges in making mechanisms that allow the network to run for
long periods of time despite the fact that wireless sensor nodes can only store or gather a
limited amount of energy [38]. Since sensor node data transmission is a major drain on the
network’s energy reserves, approaches to limit the quantity of data sent between nodes are
of particular importance. Compressing data locally before transmitting it is the primary
goal of this study to minimise network traffic.

Though the field of data compression has been around for a long time, most existing
techniques can’t be simply translated to wireless sensor nodes because of the restricted
hardware resources, notably programme and data memory [39]. Even though current
wireless sensor nodes might run many of the time-consuming compression techniques,
this would leave the nodes with limited resources for other functions such as sensing and
communication. Using a compression approach meant that these nodes would be less likely
to go into deep sleep, which is essential for maximising energy efficiency. WSN-specific
data compression algorithms have been presented recently. High compression ratios can
be achieved by using algorithms that are computationally cheap, however many of these
approaches rely on correlation of data collected by sensor nodes.

3. Data Compression Techniques

The following section elaborates the basics of the constituent algorithms, i.e., RLE and AHE.

3.1. RLE (Run Length Encoding)

Run Length Encoding (RLE) is a frequently used compression method. This algo-
rithm’s basic premise is laid forth in [40]. In the case that a data item d appears in the input
stream n times in a row, we replace each occurrence n with a single pair of data items (n, d).
The RLE method [41] is shown graphically in Figure 3. However, the findings of RLE are
dependent on the data source because it is based on the same sequential input stream.
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3.2. Adaptive Huffman Encoding

Huffman coding involves an analysis of the source sequence’s probability. In the case
that this information is not easily accessible, the Huffman encoding process transforms into
a two-step procedure: in the first step, the statistics are gathered, and in the second step, the
source is encoded. Adaptive algorithms based on statistics of previously encountered sym-
bols were created independently to transform this technique into a one-pass approach [35].
To encode the (k + 1)th symbol, we might theoretically recompute the code each time a
symbol is delivered by utilizing the Huffman coding process. However, because of the high
amount of work required, this strategy would be impractical.

Adaptive Huffman coding employs a technique where neither the transmitter nor
the receiver knows the source sequence’s statistics prior to transmission. Nodes in both
transmitter and receiver have a weight of 0 and correspond to all symbols that have not yet
transmitted (NYT). To keep track of the symbols that have been broadcast, the tree will be
updated by adding new nodes to the tree as transmission occurs. Before the transmission
begins, the transmitter and receiver agree on a set code for each symbol. In Adaptive
Huffman coding, this process becomes a one-pass procedure. NYT are represented by a
single node with a weight of zero in both the transmitter and receiver’s trees. Symbols
are added to the tree as they are broadcast, and the tree is rearranged using an update
mechanism while the transmission continues. Each end of the signal has the same root
node as the other. Both the transmitter and the receiver utilize the same method for updates.
As a result, the encoding and decoding operations are kept synchronized [42].

(a) Encoding Procedure: Initially, there is just one node in the tree at both the encoder and
the decoder, which is the NYT node. As a result, the very first symbol that emerges has
a predetermined code-word. When encoding a symbol for the second time, we transmit
the code for the NYT node, followed by the fixed code for the symbol that was already
agreed upon, unless we are dealing with the very first symbol again. By following
the Huffman tree from its root to the NYT node, we may retrieve its corresponding
code. This notifies the receiver that the Huffman tree does not yet include a node
corresponding to the symbol whose code is about to be received. If a symbol has to be
encoded and there is an external node in the tree that corresponds to it, a path from the
root node to the external node can be used to produce the symbol’s code.

(b) Update Procedure: To perform the update method, the nodes must be arranged in a
predetermined order. Using node numbers, this order is maintained.
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4. Hybrid Model for Run Length Encoding with Adaptive Huffman Encoding

It is evident that the traditional Huffman algorithm necessitates probability distri-
bution in order to generate the Huffman code which may not always be available. In
addition, it may not be suitable in scenarios when the probabilities of the input symbols
are dynamic. To address the limitations of Huffman coding, researchers have proposed
Adaptive Huffman coding technique that uses a novel approach referred to as sibling
property to form Huffman tree. As per adaptive Huffman code, the tree initially contains
0-node and maintains a counter for each symbol. As the tree is dynamically created, the
generated codes are more effective than Huffman code. As the adaptive Huffman tree is
dynamically created, it requires only 1 pass through the input data. Further, as discussed
previously, RLE is one of the simplest compression methods that works most effectively for
data that contains repeated symbols. However, the most concerning limitation of RLE is
that the size of output can be twice to that of input in the worst case. Hence, to address this
limitation, we propose a method that combines RLE with AHE as demonstrated in Figure 3.

4.1. Hybrid Run Length Encoding with Adaptive Huffman Encoding (H-RLEAHE) Algorithm

The hybrid algorithm works in two phases. First phase involves the encoding through
RLE, where the data item d occurs n consecutive times in the input stream and is replaced
with the single pair (n, d). The H-RLEAHE is shown graphically in Figure 3. However, the
findings of RLE are dependent on the data source because it is based on the same sequential
input stream. RLE provides the ST file. In the second phase of the tree, both the transmitter
and the receiver employ a single node to represent all unsent symbols NYT with a weight of
zero. New nodes will be added to the tree when transmission happens in order to maintain
track of the symbols that have been transmitted. To begin transmission, the sender and
receiver must first settle on a code for each symbol. NYT node codes are transmitted first,
followed by the symbol’s standard code. The symbol is then removed from the NYT list and
given its own node. The tree structure of both the transmitter and receiver is same. Both
the transmitter and the receiver utilise the same technique for software updates. Encoding
and decoding are therefore always carried out at the same time. Nodes must be arranged
in a specific order for the update operation to work. Nodes are sequentially numbered to
maintain this hierarchy. The root of the tree is given the highest node number, and the
NYT node is given the smallest number. Starting with the NYT node and working our way
down the tree, the numbers are allocated in ascending order from lower to higher levels.
A block is a collection of nodes with the same weight makes up a block.

4.2. Hybrid Algorithm

The proposed hybrid algorithm works in two phases: Initially the data is compressed
using RLE algorithm, then in the second phase, AHE algorithm is applied on the com-
pressed data received from RLE. The parameters used in the proposed H-RLEAHE al-
gorithm are given in Table 1. Further, the compression technique using the proposed
algorithm and decompression is discussed thereafter.

Table 1. Parameters that were used in the data compression algorithm.

Parameter Description

Din A sequence of sensor data
Pk Packet size
NYT Not Yet Transmitted
Rcode Repeat count in RLE
Length Length of the stream
Unique Unique data in the stream
Final stream Output stream packet
Loc Location of the Pointer
Info () Information about the node
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The Algorithm 1 for the H-RLEAHE model is given below:

Algorithm 1: H-RLEAHE Compression Algorithm
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34:        New_Node = Weight_Increment() 

35:                 end 

36:          if    New_Node in Root Node: 

37:        Final_Stream(Loc) = New_Node 

38:        Loc + + 

39:        exit () 

    Go to parent node in step A 

40:                   else  

41:    

42:                   end  

43:           end  

44:  Output: Final_Stream 

In the H-RLEAHE algorithm, in step 1, data packet is initialized in bits. From step 2 to step 5, RLE algorithm is initialized. During step 6, the 
for-loop is setup and examines to see whether there are any characters that are identical to those in the next index. The count increments to 1 if the 
characters are identical. If not, the count and character are concatenated. Step 10 checks for unique code and matches and stores it in the location. 
In step 11, Adaptive Huffman encoding is applied. The Algorithm 2 for decompression is given below. 

Algorithm 2: Decompression algorithm for H-RLEAHE 

1:   loop = 1 

2:       While (loop < length (Final_Stream)) 

3:       Temp= Final_Stream(loop) 

4:        If (Temp = = NYT) 

5:        Val = Freq_increment(Temp) 

6:        Update (Tree) 

7:        else 

8:        Readbits_(NewNYT) 
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In the H-RLEAHE algorithm, in step 1, data packet is initialized in bits. From step 2 to
step 5, RLE algorithm is initialized. During step 6, the for-loop is setup and examines to
see whether there are any characters that are identical to those in the next index. The count
increments to 1 if the characters are identical. If not, the count and character are concatenated.
Step 10 checks for unique code and matches and stores it in the location. In step 11, Adaptive
Huffman encoding is applied. The Algorithm 2 for decompression is given below.

Algorithm 2: Decompression algorithm for H-RLEAHE
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5. Performance Measures and Analysis

Analyses of data compression techniques are carried out using the following metrics.

A. Compression Ratio (CR): The compression algorithms factor is the ratio of the size of
the uncompressed data in bits (buc) to the size of the compressed data in bits (bc) [43].

CR =
buc

bc
(1)

B. Compression Time (CT): The time it takes to compress the original data [43].
C. Consumption of CPU resources or power used during data compression: An investi-

gation on data compression’s impact on energy use.
D. Transmission cost: The amount of energy consumed to transmit compressed data.

Analysis of RLE, AHE, H-RLEAHE and H-AHERLE Algorithm

In this section we have used real world data [44] to analyze the compression ratio of
different algorithms with varying data size. Suppose the length of original data is L and the
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length of compressed data is K. We have formulated the energy consumption of different
algorithms and used the TIMSP430 [45] microcontroller which has a 16-bit CPU designed for
systems with minimal resources. VCC = 3.3 V, FCLK = 3.3 MHz, and IMSP430 = 1.85 mA is the
current consumption of the TIMSP430 while in active mode. As a result, Equation (2) provides
the power consumption per clock cycle of the MSP430 microcontroller. Equation (3) shows
how much energy is used to send and receive one bit of data [45,46].

ECLK = Vcc × IMSP430/FCLK = 1.85nJ (2)

Sbit = Vcc × ITX / Dr = 230nJ (3)

where Vcc = 3.3 V, ITX = 17.4 mA and Dr = 250 kbps
Table 2 shows how basic CPU activity cycles may be utilised to indicate the energy

required to transport data while using compression.

Table 2. CPU cycles for the TIMSP430 microocntroller [45].

Operations Number of CPU Cycles

Addition 184
Subtraction 177
Multiplication 395
Division 405
Comparison 37

Finally, we use the design components to figure out the computational complexity (in
number of clock cycles) of different data compression algorithms for compressing the input
data using the ECalgo (L1, K).

Where ECalgo is the energy consumption of algorithms (RLE, AHE, H-RLEAHE an
H-AHERLE), L1 is the actual input data size and K is the compressed data.

We have used actual data input of 1500 bits and the data compressed for difference
algorithms is mentioned below. Further, we have evaluated the CPU and transmission cost.

(a) CPU cost for RLE is formulated as in Equation (4)

ECRLE = (((2 × 184) + (1 × 37))× L1)× 1.85 × 10−9 (4)

where L1 is the compressed data of RLE and compressed bits is 70 bits, CPU cost is
0.00018731 J and transmission cost is Sbit × 70 bits is 1.61 × 10−5 J. RLE algorithim
uses two addition operators and one comparison operator.

(b) CPU cost for AHE is formulated as in Equation (5)

ECAHE =

((
(9 × 184) + (4 × 177) + (1 × 395)+

(1 × 405) + (14 × 37)

)
× L1

)
× 1.85 × 10−9 (5)

where L1 is the compressed data of AHE and compressed data is 330 bits, CPU cost
is 0.0017029 J and transmission cost is Sbit × 30 bits is 7.59 × 10−5 J. In Equation (5)
there are 9 addition operators 4 subtratctions, 1 multiplication, 1 division and 14
comaprison operators.

(c) CPU cost for H-RLEAHE is formulated as in Equation (6)

ECH−RLEAHE =

(
((2 × 184) + (1 × 37))× L1+

((9 × 184) + (4 × 177) + (1 × 395) + (1 × 405) + (14 × 37))× KH1

)
× 1.85 × 10−9 (6)

where L1 is the compressed data of RLE, the KH1 is the compressed data of H-RLEAHE
and data compressed is 82, CPU cost is 0.00025543 J and transmission cost is Sbit × 82 bits is
1.886 × 10−5 J. From equation 6 we can observe that there are two addition operators,
one compariosn, 23 addition operators, 4 subtractions, 1 division and multiplication
and 1 compariosn operators.
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(d) CPU cost for H-AHERLE is formulated as in Equation (7)

ECH−AHERLE =

(
((9 × 184) + (4 × 177) + (1 × 395) + (1 × 405) + (14 × 37))× L1

+((2 × 184) + (1 × 37))× KH2

)
× 1.85 × 10−9 (7)

where L1 is the compressed data of AHE, KH2 is the compressed data of H-AHERLE and
data compressed is 1360, CPU cost is 0.0019502 J and transmission cost is Sbit × 1360 bits
is 0.0003128 J. Operators used in Equation (7) is 23 additions, 4 subtractions, 1 multiplica-
tion and division, and 1 comparison. It can be clearly seen that the transmission cost
and CPU cost for RLE is better than the other data compression algorithms.

Hence based on the above equations we have analysed the compression ratio of
different algorithms with varying data size from 0 to 1500 bits as shown in Figure 4. It can
be clearly seen that the compression ratio of RLE is better than Hybrid-RLEAHE, AHE
and Hybrid-AHERLE. For instance, the compression ratio for 1500 bits for RLE is 21.42,
H-AHERLE is 18.29, AHE is 4.54 and H-AHERLE is 1.1. Hence from the analysis and
compression ratio results we have considered only RLE, AHE and H-RLEAHE in our
further studies.
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6. Network Setup and Scenario Analysis

Different network setup parameters that have been used for investigating data com-
pression algorithm as shown in Table 3. and the assumptions are as follows:

Table 3. Network parameter setup.

Base station location

2 × 4, 100 nodes (Centre, left edge, top edge and corner)
4 × 4, 100 nodes
4 × 4, 200 nodes (Centre, left edge, top edge and corner)
10 × 10, 625 nodes
10 × 10, 1250 nodes

Number of Rounds 1500 rounds

Assumptions

• Consider all sensor nodes to be stationary.
• The study assumes that the data gathered from source IoT nodes is destined for a

single BS.
• SNs that have similar processing and communication capabilities are considered homo-

geneous. It also takes into account the fact that all SNs have the same initial energy.
• The x and y coordinates of SNs released randomly are always in the topological region.
• Applying Euclidean distance, the separation between two near-neighboring SNs is calculated.

6.1. Results and Discussion

As indicated in Table 4. the research is further examined in multiple scenarios with
varied network area, number of grids/clusters, and total number of nodes. The number
of grids varies between 8 and 100, while the total number of nodes spans from 100 to
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1250 dependent on the network area. Table 4 provides further information on each of these
potential outcomes. The hybrid routing protocol, it is parameter settings and network
structure form the basis for different scenarios as reported in [47].

Table 4. Different simulation network configurations [47].

Case Study Network Area Number of Grids Total Number of Nodes

1 100 m × 100 m 2 × 4 100
2 100 m × 100 m 4 × 4 100
3 200 m × 200 m 4 × 4 200
4 500 m × 500 m 10 × 10 650
5 500 m × 500 m 10 × 10 1250

The entire setup is in an area with the base station located at various locations as
shown in Table 3. The conventional data compression algorithm RLE and AHE is compared
with H-RLEAHE and without compression with the parametric settings given in Table 3
and the grid formation is shown in Table 4. Total packets sent to base station (BS), nodes
alive, residual energy in network, packet delivery ratio (PDR), and throughput are used
to evaluate performance. In the next sections, we will see how various grid and network
settings affect performance.

6.2. Case Study 1-1: 2 × 4, 100 Nodes, BS at Center

Figure 5 shows the results of Case Study 1-1: 2 × 4 grids, 100 Nodes, where the base
station is placed at the center. Figure 5a depicts the network architecture, which consists of
16 grids with the numbered cluster heads connected by a black line. Figure 5b compares the
findings of many different performance metrics and shows that a network with 100 nodes
may survive for 118 (AHE), 484 (without compression), 740 (H-RLEAHE), and 982 (RLE)
cycles. Compared to RLE, the network lifetime reduces by 87.98%, 50.71% and 24.64%,
respectively, for AHE, WC and H-RLEAHE. The increase in the number of rounds for which
the network remains alive can be safely attributed to the lesser data to be communicated to
the BS as the compression techniques reduce the data significantly. The visualization of
average energy in the nodes can be seen from Figure 5c, validating the higher energy in
the nodes in the RLE method vis-à-vis other strategies. Further, packet delivery ratio also
demonstrates an improvement as shown in Figure 5d. Similarly, Figure 5e demonstrates an
improvement in throughput by sending packets up to 982 rounds. The average packets
sent to BS/round is also increased significantly as shown in Figure 5f.
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6.3. Case Study 1-2: 2 × 4, 100 Nodes, BS at Top Edge

This scenario demonstrated in Figure 6 considers placement of BS at top edge. Here,
the alive nodes show that with 100 nodes, the network remains alive up to 111 (AHE), 480
(without compression), 733 (H-RLEAHE) and 968 (RLE) rounds, respectively. Compared to
RLE, the network lifetime reduces by 88.53%, 50.41% and 24.27%, respectively for AHE,
WC and H-RLEAHE. In addition, the throughput reduces for AHE by 88.25%, without
compression by 51.28% and for H-RLEAHE it reduces by 25.64% compared to RLE.



Sensors 2022, 22, 7685 14 of 28

Sensors 2022, 22, x FOR PEER REVIEW 15 of 29 
 

 

WC and H-RLEAHE. In addition, the throughput reduces for AHE by 88.25%, without 

compression by 51.28% and for H-RLEAHE it reduces by 25.64% compared to RLE. 

 
(a) (b) 

 
(c) (d) 

 
(e) 

Figure 6. Results of Case Study 1-2: 2 × 4, 100 Nodes, BS at top edge. (a) Alive Nodes in Case Study 

1-2, (b) Energy in Case Study 1-2. (c) PDR in Case Study 1-2, (d) Throughput in Case Study 1-2, (e) 

Packets sent to BS in Case Study 1-2. 

6.4. Case Study 1-3: 2 × 4, 100 Nodes, BS at Left Edge 

The scenario demonstrated in Figure 7 considers placement of BS at left edge. Here, 

the alive nodes for AHE, without compression and H-RLEAHE techniques reduces by 

88.56%, 49.84% and 24.51% rounds, respectively, compared to RLE. In addition, the 

throughput for AHE, without compression and H-RLEAHE technique is reduced by 

88.36%, 50.67% and 25.10%, respectively, compared to RLE. 
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1-2, (b) Energy in Case Study 1-2. (c) PDR in Case Study 1-2, (d) Throughput in Case Study 1-2,
(e) Packets sent to BS in Case Study 1-2.
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6.4. Case Study 1-3: 2 × 4, 100 Nodes, BS at Left Edge

The scenario demonstrated in Figure 7 considers placement of BS at left edge. Here, the
alive nodes for AHE, without compression and H-RLEAHE techniques reduces by 88.56%,
49.84% and 24.51% rounds, respectively, compared to RLE. In addition, the throughput for
AHE, without compression and H-RLEAHE technique is reduced by 88.36%, 50.67% and
25.10%, respectively, compared to RLE.
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6.5. Case Study 1-4: 2 × 4 Grids, 100 Nodes, BS at Corner

The scenario demonstrated in Figure 8 places BS at a corner. Here, the network
lifetime for AHE, without compression and H-RLEAHE techniques reduces by 88.02%,
48.63% and 21.81%, respectively, compared to RLE. In addition, the throughput for AHE,
without compression and H-RLEAHE technique is 88.01%, 50.82% and 24.89%, respectively,
compared to RLE.
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6.6. Case Study 2: 4 × 4 Grids, 100 Nodes, BS at Center

Figure 9 shows the results of Case Study 2: 4 × 4 grids, 100 nodes, where the network
structure is divided into 16 grids with the different cluster heads deployed at random
locations and connected to the BS at the center. The results of alive nodes in Figure 9a
shows that with 100 nodes, the network remains alive up to 111 (AHE), 475 (without
compression), 719 (H-RLEAHE) and 964 (RLE) rounds, respectively. Compared to RLE,
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the network lifetime reduces by 88.48%, 50.62% and 25.41%, respectively, for AHE, WC
and H-RLEAHE. Further, RLE demonstrates an overall increase in the average energy of
the network as shown in Figure 9b. The results in Figure 9c illustrates that packet delivery
ratio is higher in RLE as compared to other techniques. Similarly, the total throughput in
the network is improved in the RLE as can be visualized in Figure 9d. Finally, packets sent
to the BS is also increased for a greater number of rounds in RLE as compared to AHE, no
compression and H-RLEAHE, respectively, as shown in Figure 9e.
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Comparing Case study 1: 2 × 4 grids, 100 nodes to this, it is clear that while the
total number of nodes in both cases is the same, there is a significant distinction in the
grid layout. The network performs better in terms of the examined parameters when it
is constructed with a 4 × 4 grid. For example, data compression extends network life by
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980 rounds as compared to no data compression. Additionally, the network’s topology has
shown some improvement in other metrics.

6.7. Case Study 3-1: 4 × 4, 200 Nodes, BS at Center

Results from Case Study 3-1: 4 × 4 grids, 200 nodes with the BS at the center of
the network are shown in Figure 10. For RLE compression technique the network is
alive for 968 rounds compared to 118 rounds, 478 rounds and 722 rounds for AHE, no
compression and H-RLEAHE, respectively. This shows alive nodes in Figure 10a for
AHE, without compression (WC) and H-RLEAHE reduces by 87.80%, 50.61% and 25.41%,
respectively, compared to RLE. Further, the average energy in the network is improved
as the compression technique reduces the data leading to lesser transmission of data and
thereby more energy in the network Figure 10b. Figure 10c,d also demonstrate similar
trends with respect to PDR and throughput. Figure 10e further demonstrates the efficacy
of RLE in terms of average packets sent to the BS compared to AHE, no compression and
H-RLEAHE techniques, respectively.
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sent to BS for Case Study 3-1.
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To draw the comparison of performance metrics with respect to the case study 2, where
the number of grids is same, i.e., 16 but the number of nodes is higher, i.e., 200 nodes, the
network remains alive for 968 rounds. Moreover, from Figure 8c–e, minimal improvement
in other parameters is witnessed.

6.8. Case Study 3-2: 4 × 4, 200 Nodes, BS at Top Edge

The scenario demonstrated in Figure 11 places BS at top edge. Here, the network stays
alive for 111 (AHE), 474 (without compression), 722 (H-RLEAHE), and 971 (RLE) rounds.
The network lifetime reduces by 88.56%, 51.18% and 25.64% for AHE, WC and H-RLEAHE,
respectively, compared to RLE. In addition, the throughput for AHE, without compression and
H-RLEAHE technique reduces by 87.95%, 51.69% and 25.95%, respectively, compared to RLE.
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Figure 11. Results of Case Study 3-2: 4 × 4, 200 Nodes, BS at top edge. (a) Alive Nodes for Case Study 3-2,
(b) Energy for Case Study 3-2, (c) PDR for Case Study 3-2, (d) Throughput for Case Study 3-2, (e) Packets
sent to BS for Case Study 3-2.
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6.9. Case Study 3-3: 4 × 4, 200 Nodes, BS at Left Edge

The scenario demonstrated in Figure 12 places BS at the left edge. Here, the network
lifetime for AHE, without compression and H-RLEAHE techniques reduces by 87.89%,
50.05% and 25.12%, respectively, when compared to RLE. In addition, the throughput
for AHE, without compression and H-RLEAHE model is reduced by 88.33%, 51.97% and
25.10%, respectively, compared to RLE.
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6.10. Case Study 3-4: 4 × 4, 200 Nodes, BS at Corner

The scenario demonstrated in Figure 13 places BS at a corner. Here, the network
lifetime for AHE, without compression and H-RLEAHE techniques reduces by 87.80%,
51.01% and 25.80%, respectively, compared to RLE. In addition, the throughput for AHE,
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without compression and H- RLEAHE techniques reduces by 87.86%, 52.48% and 25.20%,
respectively, compared to RLE.
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6.11. Case Study 4: 10 × 10, 650 Nodes, BS at Center

Figure 14 illustrates the findings of Case Study 4, which was conducted with a grid
size of 10 × 10 and 650 nodes. The network topology consisted of 100 grids, and the BS was
situated in the center. The results of performance metrics show that the network remains
alive for 111 (AHE), 478 (without compression), 722 (H-RLEAHE) and 967 (RLE) rounds,
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respectively, as shown in Figure 14a. Compared to RLE, the network lifetime reduces by
88.52%, 50.56% and 25.33%, respectively, for AHE, without compression and H-RLEAHE.
The average energy in the network is depicted in Figure 14b for the RLE, H-RLEAHE, no
compression and AHE technique, respectively. In Figure 14c, the simulation for PDR is
demonstrated which shows trivial improvement as compared to previous case studies.
Further, in Figure 14d,e RLE demonstrated the increase in residual energy and throughput
of the network compared to AHE, no compression and H-RLEAHE.
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In case study 4 the performance of the system is still very similar to the performance
of the network in the earlier case studies.

6.12. Case Study 5: 10 × 10, 1250 Nodes, BS at Center

The findings of Case Study 5 with 10 × 10 grids and 1250 nodes are shown in Figure 15.
The network topology consists of 100 grids, and the BS is located at the center. Here the
network remains alive for 111 (AHE), 484 (without compression), 726 (H-RLEAHE) and
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972 (RLE) rounds, respectively. Compared to RLE, the network lifetime reduces by 88.58%,
50.20% and 25.30%, respectively, for AHE, WC and H-RLEAHE.
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6.13. Case Study 6: Study of Data Compression with Elliptic Curve Cryptography (ECC) for 2 × 4,
100 Nodes, BS at the Center

As mentioned earlier, the author also investigated network lifetime while including Elliptic
Curve Cryptography (ECC) that can be considered as an alternative for public-key cryptography.

The detailed description of ECC is given by authors in [48,49]. Adding ECC for 2 × 4
and 100 nodes, with BS in the centre, will allow us to fully analyse the data compression
technique. This case study illustrates how the compression method performs when the
base station is situated on the edge of a 2 × 4 configuration with 100 nodes. The RLE shows
a significant increase in different performance indicators in this scenario. Figure 16a shows
that the network remains alive for 111 (AHE), 477 (without compression), 719 (H-RLEAHE)
and 967 (RLE) rounds, respectively. Compared to RLE, the network lifetime reduces by
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88.52%, 50.67% and 25.64%, respectively, for AHE, WC and H-RLEAHE. As shown in
Figure 16b–e, RLE achieves an improvement in all the other performance metrics.
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7. Comparative Analysis with Respect to Alive Nodes

A comparative analysis of alive nodes for the various scenarios is illustrated in Figure 17.
From the graphical representation, it is evident that RLE data compression technique

outperforms the other models (Without compression, AHE and H-RLEAHE) for all the
scenarios. This strengthens the effectiveness and efficiency of RLE data compression model
thus advocating its widespread deployment.
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8. Conclusions and Future Work

In this paper we have reported the investigative analysis of energy cost of data com-
pression algorithms in WSN for IoT applications. The study includes evaluation of the
effectiveness of the established compression techniques, Run Length Encoding (RLE) and
Adaptive Huffman Encoding (AHE) for saving energy and thus prolonging lifetime of
WSNs. While evaluating energy costs, other metrics such as Packet Delivery Rate (PDR)
and throughput have also been considered for the various compression techniques.

While RLE and AHE compression techniques have different strengths and advantages,
they also have some drawbacks. This has motivated the authors to embark on proposing
and evaluating a hybrid model combining RLE and AHE, named H-RLEAHE. After the
compressed data is obtained from RLE, adaptive Huffman encoding is applied to further
compress it. The application of RLE ensures that the correlation of data is considered which
AHE does not. It is evident from analysis that AHE consumes more energy for compression.

Simulation was carried out for different scenarios wherein the total number of sensor
nodes, number of grids and the position of the base station was varied. Compressing
the data before transmitting, using any technique, increases the network lifetime when
compared to uncompressed data. This is in spite of the extra energy cost of the compression
algorithm itself, establishing the efficacy of compression.

Our findings about RLE and AHE conforms with the findings of other researchers
who have compared RLE with AHE [50]. RLE requires much smaller memory than AHE.
To derive the benefits of each method, in our research we have extended previous research
by evaluating the efficacy of combining RLE with AHE. We conclude that for H-RLEAHE
the performance metrics are vastly improved over AHE; however, RLE shows the best per-
formance for all the metrics that have been measured. In those scenarios where the sensor
data does not have repeatability, AHE performs better that RLE. Hence in applications
where data repeatability is less, but the sensor node has sufficient memory, the proposed
hybrid model will be most effective.

The modern era of IoT has brought new obstacles for WSNs. Critical information is
shared between a wide variety of networked devices, each of which may use a different
set of resources that are, in general, limited. The need to meet stringent constraints, such
as real-time reaction, high compression ratio, and data transmission efficiency, has mo-
tivated designers to create hybrid algorithms that make the most of the devices’ limited
resources [51]. This research aims to offer a hybrid data compression approach by fusing
Run-Length Encoding and Adaptive Huffman Coding, two well-known loss-less compres-
sion methods. If you are trying to cut down on the quantity of data you have to send across
a network for medical purposes, this integrated solution is a great option [52].
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In addition to efficiency of data transmission, the protection and security of these IoT
based sensor applications from malicious adversary are also important. The study is completed
by incorporating data encryption and evaluating its implications on energy costs and network
lifetime. This is important for practical WSNs where the sensed data needs to be secured
before compression and transmission. In terms of security, ECC is studied, and simulation
results show that it does not add any significant overheads which can cause the network
lifetime to increase. However, if more complex encryption algorithms, such as Elliptic Curve
Digital Signature (ECDSA) and Elliptic Curve Diffie-Hellman (ECDH) [53] are used, the effect
is likely to be significant. This would form part of future investigative research.

In the future, efforts may broaden towards data aggregation to further enhance the
network’s efficiency. Data aggregation involves combining data packets using various
bio-inspired routing strategies [54,55]. To do this, the minimum, maximum, and/or mean
of sets of data obtained from sensor nodes are manipulated before being sent on to the sink.
It is important to use routing algorithms and data compression techniques for effective
data aggregation [56].
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