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Abstract: Establishing an effective local feature descriptor and using an accurate key point matching
algorithm are two crucial tasks in recognizing and registering on the 3D point cloud. Because
the descriptors need to keep enough descriptive ability against the effect of noise, occlusion, and
incomplete regions in the point cloud, a suitable key point matching algorithm can get more precise
matched pairs. To obtain an effective descriptor, this paper proposes a Multi-Statistics Histogram
Descriptor (MSHD) that combines spatial distribution and geometric attributes features. Furthermore,
based on deep learning, we developed a new key point matching algorithm that could identify more
corresponding point pairs than the existing methods. Our method is evaluated based on Stanford 3D
dataset and four real component point cloud dataset from the train bottom. The experimental results
demonstrate the superiority of MSHD because its descriptive ability and robustness to noise and
mesh resolution are greater than those of carefully selected baselines (e.g., FPFH, SHOT, RoPS, and
SpinImage descriptors). Importantly, it has been confirmed that the error of rotation and translation
matrix is much smaller based on our key point matching algorithm, and the precise corresponding
point pairs can be captured, resulting in enhanced recognition and registration for three-dimensional
surface matching.

Keywords: three-dimensional point cloud; feature descriptor; key point matching algorithm; 3D
surface matching

1. Introduction

As the laser 3D scanning technology has been developed rapidly, the recognition
and registration of three-dimensional objects have also become the active and difficult
problems in the research of computer vision [1]. In different kinds of 3D data description,
retaining details with space-efficient data are the advantages of point cloud, which has been
extensively used in 3D data processing [2]. The descriptor establishment and key point
matching are two important steps of 3D surface matching. As long as the surface matched
well, the accuracy of recognition and registration can be improved [3,4]. In this paper, we
focus on establishing an effective feature descriptor and improving the performance of key
point matching algorithm, finally resulting a satisfied 3D surface matching.

In the process of 3D surface matching, serving as a concise representation of point
cloud, the descriptor is an essential component containing extensive local features. We
also consider the establishment of descriptors as a feature extraction process. Due to the
limitation of scanning equipment and environment, inevitably there are noise, occlusion
and incomplete regions in the collected point cloud. Thus, the geometric and semantic
information would be lost, which would severely affect the performance of descriptors [5].
Therefore, an effective descriptor should have a strong description ability and be robust to
the noise, occlusion and incomplete regions.

In the literature on point cloud, some descriptors construct a Local Reference Frame
(LRF) base on key point, and extract the spatial distribution features (e.g., the number
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of points) in the several partitioned bins. They have a good performance against noise
and incomplete regions [4,6,7], but some of them do not have enough description ability
towards point cloud with high quality. Some other descriptors extract the geometric
attributes features (e.g., normals and curvatures) directly, and these descriptors have a
strong description ability but they are sensitive to noise and incomplete regions in the point
cloud [8,9].

Another important component is key point matching, aiming to build up a correspon-
dence between two 3D point clouds, the most commonly used algorithms include Nearest
Neighbor and Nearest Neighbor Distance Ratio [10], etc. However, they usually considered
up to the top-two similar key points in the target point cloud. In fact, the correctly matched
corresponding key point in the target point cloud might not be any of the top-two similar
key points, which would lead to errors in the calculation of transformation matrix by
Singular Value Decomposition (SVD) method [11]. Thus, the performance of 3D surface
matching based on the above algorithms should be further improved.

In this paper, we mainly study the 3D surface matching problems based on the
local feature descriptor of the point cloud. With the purpose of describing a 3D object
from multiple aspects to enhance the description ability and robustness, we propose a
Multi-statistics Histogram Descriptor (MSHD) that combines the spatial distribution and
geometric attributes features. Furthermore, we propose a key point matching algorithm
that not only considers more similar points when matching a key point, but also handles
the corresponding key points through BP networks. Our methods perform better with
higher accuracy when matching multi-object point clouds with noise, incomplete regions,
and occlusion. The main contributions of this paper can be summarized as follows.

1. First, a descriptor with multi-statistical feature description histogram is proposed. A
Local Reference Frame is constructed, and the normals, curvatures, and distribution
density of the neighboring points are extracted; the descriptor could describes the
features from these three aspects so that it keeps a strong descriptive ability and
robustness to noise and mesh resolution.

2. Second, based on deep learning a new key point matching algorithm is proposed,
which could detect more corresponding key point pairs than the existing methods.
The experimental results show that the proposed algorithm is effective on 3D sur-
face matching.

3. Finally, the matching algorithm based on MSHD is applied to the real component data
of the train bottom. Based on this algorithm, more corresponding key point pairs in
the two point clouds are obtained, resulting in a high accuracy of 3D surface matching.

The rest of this paper is organized as follows. Related work is discussed in Section 2,
and Section 3 introduces the three-dimensional surface matching methods in detail, in-
cluding the Multi-statistics Histogram Descriptor and matching algorithm for key point.
Section 4 shows the experimental results to prove the effectiveness and feasibility of our
methods. Finally, the conclusion is given in Section 5.

2. Related Work

In order to introduce some related work about local descriptors, feature extraction
and some 3D surface matching algorithms in recognition and registration, we divide this
section into two parts: feature description and extraction, and the matching algorithm of
recognition and registration.

2.1. Feature Description and Extraction

Local feature descriptors can be divided into spatial distribution feature descriptors
and geometric attributes feature descriptors, and both of them are established through the
statistics of the neighboring point characteristics.

Spatial distribution feature descriptors usually construct a Local Reference Frame
(LRF) based on the key point, and then divide the neighboring regions into several bins
according to the LRF. Some spatial distribution measurements can be obtained in the bins,
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such as the number of points and density of each spatial bin. For example, as the Unique
Shape Context(USC) [12] shows in Figure 1, an LRF is constructed for the key point p, and
its spherical neighboring region can be divided into N bins along the radius, longitude and
latitude directions, where the red volume is a bin. For each bin, there is a measurement
value, and the value is sorted into a 1× N dimensional array in a certain order. The array
can be regarded as a histogram, and a histogram descriptor is generated.

Figure 1. Construction of the bins in USC.

Spatial distribution descriptor reflects the distribution of all neighboring points. The
experiments of Guo et al. [5] show that this kind of descriptors are robust to noise, occlusion,
and incomplete regions, so using this kind of descriptors as the representation of the point
cloud is an effective choice when the quality of the point cloud is not good. Geometric
attributes feature descriptors usually calculate some geometric values, for example, the co-
ordinates, normals, and curvatures of each neighboring point, and the descriptors represent
the specific attributes of each neighboring point [5]. This geometric measurements are more
complex than the number or density of the points in each bin, so a stronger description
ability can be provided. For a high-quality point cloud without too much noise or occlusion,
establishing the geometric attributes feature descriptor is a good choice.

There are some work reported about these two kinds of descriptors. The Spin Image
(SI) algorithm is introduced to establish a cylindrical coordinate system for a local point
cloud and rotate it around the axis to obtain a two-dimensional projection point cloud,
and then a histogram descriptor is constructed [6]. Some work makes a further improve-
ments on the basis of SI. Compared with SI, a global orientation is used for recognizing
different types of objects [7]. The Intrinsic Spin Image (ISI) is invariant to isometric shape
deformations, enjoying the high expressiveness of the nonparametric spin image descrip-
tors [13]. The Point Feature Histograms (PFH) and Fast Point Feature Histograms (FPFH)
are established in Darboux coordinate system for points in the neighborhood that meet the
requirements, then the angles are counted between the normal vector and the direction
vector of the coordinate axis, and finally a statistical histogram is built up [8,14]. The Local
Surface Patch(LSP) algorithm includes two parts: histograms and attributes of points [15].
Sun et al. [16] perform the Laplace–Beltrami calculation on the local surface of 3D point
cloud and obtains the Heat Kernel Signature (HKS) by embedding calculations into the
derived space. The Signature of Histograms of Orientations (SHOT) divides the local spher-
ical neighborhood on the radial, longitude, and latitude direction, and counts the number
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of points that fall into each subspace. In the subspace, the distribution of the cosine values
of the angle between the normal vectors of the neighboring points and those of the center
key point are calculated respectively. Finally, the histogram of the normal vector angle
distribution of each subspace is spliced to form a SHOT descriptor [9]. For the Rotational
Projection Statistics (RoPS) descriptor, an LRF needs to be constructed for the local area,
and then the neighboring points are moved along the three coordinate axes of the LRF.
Rotating and projecting for many times, counting the central moment and Shannon entropy
of the projected image at the same time [4]. Bin Lu et al. [17] proposed a multi-scale feature
and covariance matrix descriptor, including the geometric angle, dimension, projection
length ratio, and curvature difference.

Furthermore, there are many feature extraction methods based on deep learning, such
as those in references [18–21]. The PointNet uses multi-layer perceptrons to perform feature
extraction on the local area of the point cloud. Through the transformation of features,
the network model has the permutation invariance about the input points, and then the
pooling layer is used for realizing the construction of global features so that different tasks
such as classification, semantic segmentation and partial segmentation could be completed
finally [18]. For the first time, point cloud is directly used as the input to realize point cloud
recognition. However, PointNet directly uses all points to participate in feature extraction,
but it can not extract the local features of the points, which limits the ability of recognizing
the detailed patterns in a complex scenes. Therefore, Qi et al. [19] proposed PointNet++ on
this basis. The point cloud is pre-partitioned to improve the ability in extracting the detailed
features the better result has been achieved than PointNet does. This network model is
widely used in segmentation and recognition, which indirectly explains the importance
of local features. However, these methods still have some problems, such as low space
efficiency or space storage, low robustness to noise and resolution, etc.

Considering that learning-based methods required large training data, it is important
to establish an effective and robust feature descriptor for point cloud. We hope it not
only has the advantages of being robust to noise and incomplete regions like spatial
distribution feature descriptors, but also has a well-performed description ability like
geometric attributes feature descriptors; in another words, it combines spatial distribution
features and geometric attributes ones. Therefore, how to establish this descriptor is a
challenge.

2.2. The Algorithm of Recognition and Registration

3D point cloud key point matching algorithms often use the Nearest Neighbor (NN)
and Nearest Neighbor Distance Ratio (NNDR) [10]. As Figure 2 shows, suppose there
is a key point p from the origin point cloud waiting for matching to a key point in the
target point cloud. p1, p2, and p3 are detected as the most three similar key points through
comparing their similarity of descriptors, and they are sorted according to the degree of
similarity. NN directly regards the most similar points p1 and p as a corresponding point
pair. Depending on the ratio of similarity, NNDR chooses p1 or p2 as the corresponding
point to p, and it only considers the top-two similar key points. Sometimes, maybe the true
corresponding point is sorted lower, for example, p3 is actually the correct corresponding
key point to p in Figure 2. Then, a wrongly matched corresponding key point pair might be
caused by these methods, and this would lead to errors in the calculation of transformation
matrix by SVD.

For solving the effects from wrong corresponding key point pairs, Iterative Closest
Point algorithm (ICP) is often used as a fine calibration after poor surface matching results
in the registration, which has a good performance [10,22]. First, the ICP algorithm requires
the entire point cloud to participate in the iteration, so the computing efficiency is low.
Second, the ICP based on local iterative optimization is susceptible to the influence of
local minimums, so it requires the initial position of the two matching point clouds as
close as possible, the initial overlap rate as high as possible, and only a final result of local
optimality is guaranteed [23]. In recent years, there have been some works concentrated
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on the improvement of ICP algorithm. For example, Velocity Updating ICP(VICP) solved
the problem about the error during the object in movement [24]. Go-ICP has a high
speed for fine registration [25]. The point-to-line ICP (PLICP) takes the distance from the
point to the line as the error, and it has a faster convergence speed [26]. Furthermore,
there is the 3D-NDT method which uses the probability density instead of the feature
extraction and the matching of corresponding points [27]. Chang et al. [28] used the K-
means clustering method to obtain the corresponding point pairs. The method proposed by
Li et al. [29] can extract the overlapping area of two point clouds, which greatly improves
the accuracy of registration. He et al. [30] combined PointNet++ network and the ICP
algorithm for training, and the result of registration was robust with the high speed, but
it has unsatisfactory performance on sparse point clouds, because they cannot provide
enough features. Kamencay et al. [31] use the Scale-Invariant Feature Transform (SIFT)
function for the initial alignment transformation of the point clouds, combining with
the K-nearest neighbor algorithm and using the weighted ICP algorithm for registration.
Aiming to solve problems such as low convergence speed due to uncertainty of initial
transformation matrix and difficulty of accurate matching for corresponding points, Xiong
et al. [32] proposed a novel feature descriptor based on ratio of rotational volume and an
improved coarse-to-fine registration pipeline of point clouds, and experimental results
show that the improved pairwise registration pipeline is effective in pairwise registration.

Figure 2. The process of key points matching in two point clouds.

No matter ICP or its improved algorithms, before using them, the key of registration
is to get more correct corresponding key point pairs, so a better initial position of two point
clouds can be obtain. In the recognition of point cloud, the works in [33,34] use Random
Sampling Consensus Algorithm (RANSAC) for eliminating wrong corresponding point
pairs. RANSAC chooses three groups of corresponding point pairs to make registration
and then calculates the distance of the rest corresponding point pairs after registration to
evaluate the accuracy of the three groups of corresponding point pairs, so as to find the
most accurate three groups of corresponding point pairs by iterations; finally, the accuracy
of correspondence between two point clouds can be improved. However, RANSAC needs
a large number of iterations so that the calculation efficiency is low, and changing the
thresholds will totally affect the final results. In general, the matching algorithm should
find more correct corresponding key point pairs in matching stage to obtain a better
performed 3D surface matching results, which would enhance the accuracy of registration
and recognition.
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3. Methodology
3.1. Multi-Statistics Histogram Descriptors

With the purpose of establishing an effective descriptor, we hope it to have both
the advantages of spatial distribution feature descriptors and geometric attributes feature
descriptors: being robust to noise and incomplete regions with a well-performed description
ability at the same time. Therefore, in this paper we propose a descriptor with multi-
statistical feature description histogram, which combines the spatial distribution and
geometric attributes features. First, we construct an LRF based on the key point, and three
coordinate axis planes can be obtained. All the neighboring points can be projected onto
these axis planes, so we can calculate the density and average curvatures based on the
points falling into each bin, and calculate the normals of the points in each bin. Meanwhile
the values are sorted into a 1XN dimensional array with a certain order. The array can
be regarded as a histogram, and a histogram descriptor is generated. Figure 3 shows the
process of the establishment of the proposed descriptors.

Figure 3. Establishment process of descriptors.

3.1.1. Construct an Local Reference Frame

In the point cloud, if the coordinate system changed, the coordinate of points would
also change. For eliminating the influence of the coordinate system changes on the de-
scription, some related researches use the invariance of three-dimensional rigid body space
transformation, for constructing an Local Reference Frame. First, all the points in the target
regions are translated to the centroid, and rotated around the origin of the new coordinate
system, which is constructed based on centroid, until the original axes of the target region
points are parallel to the three main axes directions. This is the process of Local Reference
Frame being constructed.

Supposed there is a point cloud P = {p1, p2, . . . , pi, . . . , pn} with n points, and any
point pi in P could construct an LRF in the neighborhood of pi. Here, the neighboring
points of pi within a certain radius are defined as nbhd(pi). For eliminating the influence of
the translation, the nbhd(pi) is translated to the coordinate system, which is constructed
based on the centroid of the neighborhood:

pc = ∑
pj∈nbhd(pi)

pj

k
(1)

pj
′ = pj − pc (2)

where pc is centroid of pi neighborhood, pj is all the coordinates of the neighboring points
in the neighborhood of pi, pj

′ is the coordinates of the neighboring points after transforming
to the centroid coordinate system, and k is the number of the neighboring points of pi.

Expect the centroid pc point, and the key point can also be set as the origin of the new
coordinate, the coordinates formula is

pj
′ = pj − pk (3)



Sensors 2022, 22, 417 7 of 23

where the pk is the coordinate of key point. Then, Principal Component Analysis (PCA) is
performed to eliminate the influence of rotation. A covariance matrix cov(pi) is constructed
for the translated nbhd(pi) by the following formula:

cov(pi) =
1
k ∑

pj∈nbhd(pi)

(
pj − pc

)T(pj − pc
)

(4)

If the key point is used as the origin, pc should be replaced with pk here. As cov(pi) is
a symmetric positive semi-definite matrix, we can get three non-negative real eigenvalues
λ1, λ2, λ3, and they satisfy the relation of λ1 ≥ λ2 ≥ λ3. These three eigenvalues corre-
spond to three eigenvectors v1, v2, v3, and build up a set of orthogonal basis. The three
eigenvectors could be used as the three coordinate axes of LRF.

The process of selecting the coordinate axis should be consistent. First, the eigenvector
v1, corresponding to the largest eigenvalue λ1, is chosen as the axis of x. The direction of
axis z is related to eigenvector v3, which is corresponding to the smaller eigenvalue λ3, and
it needs to calculate the vector component of the neighboring points along the direction
of v3. If the number of points with negative coordinates is more than that of points with
positive coordinates, the direction of axis z is the same as v3; otherwise, set axis z as the
opposite direction of v3. Now, the axis of y could be defined since axis x and axis z have
been defined.

Then, the coordinates of the neighboring points after transformation can be calculated
by the following formula:

R = [v1, v3 × v1, v3] (5)

p′′ = p′ · R (6)

where the p′ is the initial coordinate of the neighboring points after translation, R is the
direction of the axis, and p′′ is the coordinate of p′ projected onto the LRF axis planes.

3.1.2. Normals AND Curvatures

After the LRF has been constructed, the coordinates of neighboring points could not
be directly used as the measurement to generate a descriptor. The accuracy will be seriously
reduced once the sampling points change or some noise invades. Therefore, the normals
and the curvatures might be the better choices as the measurements to generate a descriptor.
The normal of pi could be approximately equal to the tangent plane direction vector of
the surface, which is constituted by pi and the neighboring points. After the covariance
matrix cov(pi) of the nbhd(pi) is eigen-decomposed, the PCA algorithm also can be used
for calculating the normals. The eigenvector v3 corresponded to the smaller eigenvalue
could be regarded as the direction vector of the fitting approximate plane. Therefore, v3
represents the normal of pi approximately, where ni = v3. As the local surface may be
concave or convex, the direction of the normals need to be clarified, and the component
of the neighboring points along the v3 direction is calculated. If the points with negative
coordinates is more than those with positive coordinates, set ni = −v3. In order to make pi
and its neighboring points distribute on the same plane approximately, the tangent plane
could be replaced with an approximate plane, and the radius r of the neighborhood should
not be too large. In this paper, we search the neighboring points by kNN algorithm to
calculate the normals, the number of neighboring points for detecting is set as 50.

The measurements of curvature represents the steepness of the surface that constituted
by the point and its neighboring points. In a word, if the curvatures of points were larger,
the variation of the surface would be larger, and more features could be obtained. Otherwise
the smaller curvatures that the points have, the smoother that the surface is, and fewer
features could be obtained.
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The curvature formula of y in two-dimensional coordinate system is as follows:

c =
y′′

(1 + y′2)
3
2

(7)

where y means the ordinate of the point, the curvature c is proportional to the second
derivative of y, and thus the curvature is sensitive to the changes of the object surface, also
it is susceptible to the interference of noise.

Based on the three eigenvalues λ1, λ2, λ3 in the covariance matrix cov(pi), we could
estimate the complexity of the surface. The curvature ci of pi can be defined as

c =
λ3

λ1 + λ2 + λ3
(8)

where c is curvature of the point, but it is an curvature approximation of the surface
constituted by nbhd(pi).

3.1.3. Generate the Descriptors

The specific process of the descriptor generation is as follows:
(1) Preparation: Detecting the key points of the point cloud P, the key points are

denoted as KP (the curvature c and the normal n of each point are calculated in the point
cloud P).

(2) Construction of LRF: Searching the neighborhood of the key point pi ∈ KPin
the point cloud P, then an LRF based on the key point pi can be constructed, and the
coordinates of nbhd(pi) can be translated into LRF.

(3) Projection along the axis of LRF: The nbhd(pi) is projected along the three LRF
coordinate axes, respectively, three frames of the projected point cloud can be obtained.

(4) Generation of the grid statistical map about the projected point cloud: Dividing the
projected point cloud into NP×NP grids, the points and their coordinates could be obtained
in each grid, and thus a discrete projection statistical map ñbhd(pi) could be obtained.

(5) Construction of the normal histogram: nj is defined as the normals of neighboring
points, and ni is the normal of center point pi. The angle

〈
ni, nj

〉
between ni and nj can be

calculated. Then the value range of
〈
ni, nj

〉
with [0, π] can be divided into Nθ subintervals,

and the points distributed in each subinterval of the grid can be counted. As Figure 4a
shows, each sub-interval of the grid can be regarded as a bin, Nθ bins in each grid. With
one measurement in each bin, and there is Nθ bins in each grid. The gird map are expanded
to a 1× Nθ × NP × NP dimensional array in a certain order, and after normalization, the
histogram Hn is generated.

(6) Construction of the curvature histogram: Calculating the average curvature of each
grid in the projected statistical map ñbhd(pi), the values with the average curvature are
assigned to each grid. Value 1 is assigned for the grid with no points. With one measure-
ment in each grid, as the Figure 4b shows, the gird map are expanded to a 1× NP × NP
dimensional array in a certain order, and after normalization, the histogram Hc is generated.

(7) Construction of the average density of the points histogram: Calculating the
average density of the points in each grid in the projected statistical map ñbhd(pi), the
average density values of the points are assigned to each grid, and value 1 is assigned for
the grid with no points. The gird map are expanded to a 1× NP × NP dimensional array in
a certain order, and after normalization, the histogram Hd is generated.

(8) Splicing the feature histogram: The arrays of Hn, Hc and Hd from three frames can
be spliced in together, so the descriptor histogram can be generated as follows:

H = [k1Hn, k2Hc, k3Hd] (9)
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where H is the final feature histogram descriptor, k1, k2 and k3 are weights that have
been presented for adjusting the proportion of the normal, curvature and density in the
feature description.

In order to evaluate the descriptor conveniently and get the values of k1, k2 and k3, we
make Hn, Hc, and Hd the same proportions temporarily in the description.

(a) (b)

Figure 4. Generation of the histogram. (a) Grids and bins are expanded to an array. (b) Grids are
expanded to an array.

3.2. Matching Algorithm

In the stage of key points matching, the key points in the model point cloud would
directly match the most similar ones in the scene point cloud with NN algorithm. While the
NNDR algorithm only considered the top-two similar key points in the target point cloud.
In fact, the correct matching key point in the target point cloud may be not any of them,
leading to errors in the calculation of transformation matrix. Both of the two matching
algorithms would cause the wrong corresponding key point pairs, especially in the point
cloud with low quality. Therefore, for getting more precise corresponding key points pairs
effectively, we proposed a novel key point matching algorithm that not only considers
more similar points, but also handles the corresponding key points through BP networks.
This algorithm is divided into two parts:

(1) In the first part, suppose there are i key points in the model point cloud and j key
points in the scene point cloud. We use the proposed descriptor in this paper to extract
the features one by one from the key points KPi

m, (i = 1, 2, 3, . . . , i), and the same operation
is also carried out on the key points KPj

s , (j = 1, 2, 3, . . . , j) in the scene point cloud. We
choose a key point KPi

m in the model randomly, and set the number of similar points to
be found as k. Therefore, key points as KPi,k

s , where i means the key point from the scene
matching KPi

m. KPi,1
s means the first similar key point, and KPi,2

s means the second similar
key point, etc. Defining d f {P1, P2} as the similarity of features descriptors between these
two points P1 and P2, calculated by kNN methods. Now, consider the following formula:

d f
{

KPi
m, KPi,1

s

}
< 0.5 ∗

d f
{

KPi
m, KPi,2

s

}
+ d f

{
KPi

m, KPi,3
s

}
+ . . . + d f

{
KPi

m, KPi,k
s

}
k− 1

(10)

where KPi
m and KPi,1

s are a pair of corresponding key points. If the most similar point KPi,1
s

does not satisfy the above equation, we take all the k similar points KPi,1
s , KPi,2

s , . . . , KPi,k
s

into the second part to consider which key point is matched with KPi
m precisely.

(2) In the second part, we handle the corresponding key points with BP networks.
The reasons of using BP network is that it could fit the mapping relationship between the
independent variables x1, x2, . . . , xn and the dependent variable y through enough data
training. The structure of a conventional BP neural network is shown in Figure 5.
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Figure 5. Structure of a conventional BP neural network.

The number of neurons in the hidden layer can be set based on experience as follows:

nl =
√

n + m + b (11)

where nl is the number of neurons in the hidden layer, n is the number of neurons in the
input layer, m is the number of neurons in the output layer, and b is a constant within [0, 10].

In general, the transfer function of the hidden layer adopts the Sigmoid function, so
that the BP network could achieve arbitrary approximation to any function, while the
output layer adopts a linear function. For the choice of learning rate, a learning rate that is
too large will lead to ups and downs in network training; also, it will easily skip the global
optimal solution and enter the local optimal solution. There have been many methods in
designing the learning function, and the Levenberg–Marquardt Backpropagation learning
algorithm is more commonly used with a good performance and high training speed.

We can calculate some spatial features such as the distance between two key points and
the angles formed by three key points. These spatial features and angles can be used as the
input independent variables x1, x2, . . . , xn to BP networks for training. Here, dist{P1, P2}
is defined as the Euclidean distance difference between two points, angle{P1, P2, P3} is
defined as the angle of three points with P2 as the vertex between P1 and P3. As Figure 6
shows, suppose there is a key point KPi

m in the model point cloud and three nearest
neighboring key points of it; they are KPi

m,1, KPi
m,2, KPi

m,3. Furthermore, suppose we have

found k similar key points to KPi
m in the scene point cloud, one of which is KPi,k

s , and
the three nearest neighboring key points of KPi,k

s are KPi,k
s,1, KPi,k

s,2 and KPi,k
s,3. Then, we can

calculate the spatial distance features from KPi
m and KPi,k

s as follows:

d1 =
∣∣∣dist

{
KPi

m, KPi
m,1

}
− dist

{
KPi,k

s , KPi,k
s,1

}∣∣∣ (12)

d2 =
∣∣∣dist

{
KPi

m, KPi
m,2

}
− dist

{
KPi,k

s , KPi,k
s,2

}∣∣∣ (13)

d3 =
∣∣∣dist

{
KPi

m, KPi
m,3

}
− dist

{
KPi,k

s , KPi,k
s,3

}∣∣∣ (14)

and the spatial angle features from KPi
m and KPi,k

s as follows:

θ1 =
∣∣∣angle

{
KPi

m,1, KPi
m, KPi

m,2

}
− angle

{
KPi,k

s,1, KPi,k
s , KPi,k

s,2

}∣∣∣ (15)

θ2 =
∣∣∣angle

{
KPi

m,1, KPi
m,3, KPi

m,2

}
− angle

{
KPi,k

s,1, KPi,k
s,3, KPi,k

s,2

}∣∣∣ (16)

as well as the differences of descriptors from KPi
m and KPi,k

s :

d f1 =
∣∣∣d f
{

KPi
m, KPi

m,1

}
− d f

{
KPi,k

s , KPi,k
s,1

}∣∣∣ (17)

d f2 =
∣∣∣d f
{

KPi
m, KPi

m,2

}
− d f

{
KPi,k

s , KPi,k
s,2

}∣∣∣ (18)

d f3 =
∣∣∣d f
{

KPi
m, KPi

m,3

}
− d f

{
KPi,k

s , KPi,k
s,3

}∣∣∣ (19)
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As long as there are enough precisely matched corresponding key point pairs and
wrong matched corresponding key point pairs, we can get enough independent variables
d1, d2, d3, θ1, θ2 and d f1, d f2, d f3. Then, we could use these independent variables as the
input data to BP networks. The label of the precise corresponding key point pairs is 1, and
that of the wrong matched key point pairs is 0. Therefore, we hope the BP networks can
predict a value of the input data, whether the two key points represent the corresponding
key point pairs or not.

Figure 6. Spatial features of the corresponding key points in the model and scene point cloud.

We trained the BPnet1 by using d1, d2, d3, θ1, θ2 as the input data, and defined the
output variable as y. We trained BPnet2 by using d f1, d f2, d f3, and defined the output
variable as v. After trained with a huge number of data, these two BP networks performed
well in validation. We combined them with the second part to judge whether the two key
points are the corresponding pairs.

Defining two thresholds τ1 and τ2, and suppose we have calculated the d1, d2, d3, θ1, θ2

from KPi
m, KPi,k

s and their neighboring key points. Then, we input d1, d2, d3, θ1, θ2 into
BPnet1. If the output is y > τ1, we consider KPi

m, KPi,k
s as a corresponding key point pair.

Otherwise, we calculate d f1, d f2, d f3 from KPi
m, KPi,k

s and their neighboring key points.
Taking d f1, d f2, d f3 into BPnet2, if the output v > τ2, we can also consider KPi

m, KPi,k
s as a

corresponding key point pair. If the output v < τ2, let k = k + 1, and we judge the next
similar key point from the scene point cloud. If all the k similar key points KPi,k

s to KPi
m are

not the corresponding key points, let i = i + 1, and we continue to consider the next key
point KPi

m in the model point cloud, whether there is a corresponding key points in or not
in the scene point cloud. Finally, the corresponding key point pairs can be obtained. Here
setting the threshold τ1 = 0.95 and threshold τ2 = 0.7. The BP networks would have a best
performance according to the experience of validation, and surely they can be adjusted
according to the specific data.

4. Experimental Results
4.1. Multi-Statistics Histogram Descriptor
4.1.1. Data and Testing Environment

There are six different models and thirty-six scenes in the dataset of Random Views,
which is established on the basis of Stanford 3D dataset, and as shown in Figure 7 [5], there
are some occlusion and incomplete regions in the scenes. The models are generated by
registration on the multi-view point clouds, and they are from Stanford University point
cloud library, including the famous Armadillo, Bunny, Happy Buddha, Asian Dragon, Thai
Statue, etc. Because the mesh resolution of the laser scanning that scanned these dataset
is the same, so each point cloud is scaled to the same size, and it is convenient to set the
neighborhood radius r for the descriptor. All experiments are performed under windows10
operating system, Intel i5-9400 and 16 GB RAM with the simulation software.
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Figure 7. Part of the point cloud in Random Views.

As Figure 7 shows, the quality of the model point cloud is really high. In contrast, the
scenes are single-view point cloud with occlusion and noise, and each scene includes three
to five models, but the quality of the scene point cloud is quite low.

4.1.2. Evaluation Criteria of the Descriptor

The Precision and Recall curve (P−R curve) is often used to evaluating the description
ability of the local feature descriptors. The process of evaluating the descriptors are as
following shows.

First of all, the key points are detected by the Intrinsic Shape Signatures (ISS) algo-
rithm [35] in the model and the scene point cloud, and the ISS is commonly used in key
point detection. Then, the descriptors are generated for each key point from the model and
scene point cloud, and the feature sets Fmodel and Fscene can be obtained.

Next, the key point matching algorithm NNDR would be used for feature matching.
In brief, the most similar descriptor f i

scene and the second similar descriptor f ii
scene in the

scenes would be detected for each descriptor f i
model in the models. The ratio of the distance

can be calculated as follows:

τ =
| f i

scene − f i
model |

| f ii
scene − f i

model |
(20)

It can also be understood as the ratio of the similarity between f i
model with f i

scene
and f ii

scene.
Only if the ratio τ is less than the threshold τth, and the descriptor f i

model and descriptor
f i
scene are matched, the key points of these two descriptors are a corresponding key point

pair. After that, by using SVD method, the transformation matrix is calculated through the
corresponding key point pairs between the model point cloud and the scene point cloud.
Finally, the model point cloud can be transformed to the scene point cloud.

Ideally, all the corresponding key point pairs completely overlap point to point. Due
to the limitation of NNDR algorithm and the difference between the description ability
of the descriptors, some wrong matched corresponding key point pairs would be caused.
It should be pointed out that the wrong matched corresponding key point pairs would
take some errors when calculating the transformation matrix, leading to the distance after
transformation between the key point from model with the key point from scene. Therefore,
we can use the same key point matching algorithm NNDR to evaluate the description
ability of different kinds of descriptors.
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After transformation, if the distance between two correctly matched corresponding
key points is less than 0.5 r, these two corresponding key points will be regarded as
the true positive correspondence; otherwise, they will be regarded as the false positive
correspondence. Moreover, if the distance of wrong matched corresponding key points is
more than 0.5 r, these two corresponding key points will be regarded as the false negative
correspondence.

Many groups of precision and recall can be obtained by changing the ratio threshold
τth in NNDR, so the P− R curve can be generated as follows:

precision =
TP

TP + FP
(21)

recall =
TP

TP + FN
(22)

where TP is the number of true positive correspondences, FP is the number of the false
positive correspondences, and FN is the number of false negative correspondences.

According to the principle of NNDR, more corresponding key point pairs will be
obtained when the threshold τth is raised, but the precision will be decreased, and more
true positive correspondences will also be obtained, so the recall will be increased. By
contrast, fewer corresponding key point pairs will be obtained due to the threshold τth is
reduced, while the precision will be increased, and some correctly matched corresponding
key point pairs can not be obtained, so the recall will be decreased. Thus, the P− R curve
should be a decreasing curve. In general, if the precision remains high when the recall
increasing, it is an effective descriptor.

4.1.3. Robustness to Noise

For evaluating the robustness of the descriptor to noise, the Gaussian noise is added,
respectively, with the peak intensity of 0.05 r, 0.1 r, and 0.2 r to the scene point cloud. Then,
the feature descriptors based on the key points are calculated in the scenes. The feature
descriptors of the model point cloud without noise are also calculated. The key point
matching experiment are made for generating the P− R curve, our descriptor would be
contrasted with FPFH, RoPS, SHOT, and SpinImage. Here, with different peak intensity
Gaussian noise, two examples of the scene point clouds are shown in Figure 8.

(a) (b) (c)

Figure 8. Examples of the scenes with different peak intensity of Gaussian noise. (a) 0.05 r. (b) 0.1 r.
(c) 0.2 r.

The steps of the experiments are as follows.
(1) First, the key points from the model and the scene point cloud are detected and,

respectively, recorded as KPm and KPs. The feature descriptors are generated based on
KPm and KPs. The feature set Fmodel is built up by all the model descriptors, and the scene
feature set Fscene is built up by all the scene descriptors.

(2) Based on the Fscene, a KD tree can be constructed. Through the kNN searching
algorithm, each descriptor in Fmodel can detect several similar descriptors in Fscene.
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(3) Finally, the correspondences between KPm and KPs can be constructed by using
NNDR. As it was mentioned in Section 4.1.2, many groups of precision and recall can be
obtained by changing the ratio threshold τth in NNDR, so the P− R curve can be generated.

The P− R curve in Figure 9 shows the performance of these different descriptors. It
can be seen that our descriptor is more robust to noise than other descriptors, and SHOT
has the second best performance. This occurs because the proposed descriptor extracts
the features from multiple aspects especially from the density and generates a statistical
histogram. After projection, the histogram generated by the local point density is not
sensitive to noise, so the robustness and description ability of descriptor is guaranteed.
However, it can be seen from Figure 9c that the description ability of our descriptor is also
reduced. Because the average curvature histogram is used in our descriptor, it improves
the description ability while reducing the robustness to Gaussian noise.

(a)

(b)

Figure 9. Cont.
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(c)

Figure 9. P− R curves in different noise scenes. (a) Gaussian noise σ = 0.05 r. (b) Gaussian noise
σ = 0.1 r. (c) Gaussian noise σ = 0.2 r.

4.1.4. Robustness to Varying Mesh Resolution

In order to evaluate the robustness of the descriptor to varying mesh resolution,
25%, 50%, and 75% downsampling are used, respectively, in the scene point cloud. Then,
the feature descriptors based on the key points are calculated in the scenes. The feature
descriptors of the model point cloud without noise are also calculated. The key point
matching experiment are made for generating the P− R curve, and our descriptor would
be contrasted with FPFH, RoPS, SHOT, and SpinImage through the experimental results.
Here, with different mesh resolution, two examples of the scene point clouds are shown in
Figure 10.

(a) (b) (c)

Figure 10. Examples of scenes with different mesh resolution. (a) 75%. (b) 50%. (c) 25%.

Here, the steps of the experiments are approximately identical to those of the previous
section, except that the scenes are downsampled instead of adding noise.

The P− R curve in Figure 11 shows the performance of these different descriptors
with different mesh resolution. It can be seen that our descriptor is more robust than other
descriptors under different mesh resolution, and RoPS has the second best performance.
As the proposed descriptor extracts the geometric attributes features of the points, such
as the normals and curvatures, even if there are low mesh resolution, occlusion and
incomplete regions in the scene point cloud, the description ability of our descriptor can
be guaranteed. Although our descriptor does not perform well when the point clouds are
downsampled to 25%, it is rare for this degree of mesh resolution in actual work. Moreover,
our feature descriptor performs well when the mesh resolution downsampling to 75% and
50%. Therefore, our feature descriptor is robust to varying mesh resolution.
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(a)

(b)

(c)

Figure 11. P-R curves in different mesh resolution. (a) Downsampling 75%. (b) Downsampling 50%.
(c) Downsampling 25%.

4.1.5. Key Point Matching Based on Descriptors with Single Model

In this experiment, we use six point cloud models from the Stanford University dataset
as the model point cloud. For the scene point cloud, the Gaussian noise (σ = 0.1 r) is
added into each model, and then these point clouds are rotated and translated to a new
position, so we can regard them as the scene point cloud. Moreover, the model point cloud
without noise is still at the initial position. Now the experiment is to make the pairwise
registration between the model point cloud and the scene point cloud. After the extraction
of feature descriptors and the feature matching by NNDR, the correspondences have been
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constructed between the model point cloud and the scene point cloud. Figure 12 shows
the examples about the results of the key point matching between the model point cloud
(in green) and the scene point cloud (in blue). The red lines are used for connecting the
corresponding key points.

In general, the more parallel red lines there are, the more correctly matched corre-
sponding key point pairs there are. If a red line is not parallel to most other red lines, it
represents the wrong matched corresponding key point pairs.

(a) (b) (c)

Figure 12. Examples of matching results between models and Gaussian noise models. (a) Cor-
responding key point pairs in Armadillo. (b) Corresponding key point pairs in Asian Dragon.
(c) Corresponding key point pairs in Happy Buddha.

According to the results of the corresponding key point pairs, the SVD method is used
for calculating the rotation matrix Rd and the translation matrix Td. The wrong matched
corresponding key point pairs will cause errors to the rotation and translation matrix.
Therefore, an effective feature descriptor can obtain more correctly matched corresponding
key point pairs. For the scene point cloud at the above paragraph, and the real rotation
matrix is defined as Rgt, and the translation matrix is defined as Tgt. If the error between
Rd and Rgt is small and the error between Td and Tgt is also small, it means there are many
correctly matched corresponding key point pairs, also it can reflect that the descriptor have
a good performance in pairwise registration. The rotation error θr and the translation error
θt can be defined as follows:

θr = arccos(
trace(RdR−1

gt − 1)

2
) ∗ 180

π
(23)

θt =

∥∥Td − Tgt
∥∥

dr
(24)

Here, trace is the sum of the diagonal elements of the matrix and dr is set as 0.5 r.
Base on different descriptors, Table 1 shows the error of the rotation and translation

after feature matching. The error of the rotation and translation calculated by the proposed
descriptor is smaller than that of other descriptors. Thus, it can further prove that the
description ability of our descriptor MSHD is better than other descriptors, and it can also
reflect the robustness and effectiveness about our descriptor.

4.2. Matching Algorithm for Key Points between Model and Multi-Object Scene

As the real point cloud data are usually collected by the laser scanner, it is inevitable
that there will be occlusion, incomplete regions, etc. in the collected point cloud with
multiple objects. As shown in Figure 13, for reflecting the characteristics of these real
data, three models in Random View are selected: the Bunny, the Dragon, and the Happy
Buddha (in green). Moreover, three scene point clouds containing these models are also
selected (in blue). Furthermore, two models in Space Time dataset [5] are selected: the
Mario and the Rex (in green). Two scene point clouds containing these models are selected
(in blue). Therefore, there are five models and five scenes totally for the experiment. It can
be seen that there are many occlusion, truncation, incomplete regions, and other problems
in the each scene point cloud, while the model point cloud from Space Time dataset are
single-view point cloud. These selected point clouds can restore the characteristics of real
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data, such as the multi-objects scenes and some single-view real data, which can help us to
evaluate the effectiveness of our key point matching algorithm in this paper.

Table 1. Errors of Stanford 3D models.

Model Error FPFH RoPS RoPS SI Ours

Armadillo θr 5.459 0.209 0.835 1.439 0.039
θt 0.933 0.011 0.548 0.337 0.056

Bunny θr 2.345 0.372 0.308 0.912 0.106
θt 0.670 0.013 0.147 0.156 0.003

Dragon θr 0.308 0.142 0.328 1.059 0.003
θt 0.221 0.004 0.079 0.105 0.053

Happy Buddha θr 3.301 0.095 0.061 1.575 0.017
θt 1.639 0.010 0.006 0.217 0.073

Asian Dragon θr 3.063 0.076 1.065 0.815 0.925
θt 0.239 0.076 0.015 0.006 0.004

Thai Statue θr 4.024 1.239 1.220 1.408 0.772
θt 0.237 0.014 0.039 0.012 0.006

Figure 13. Point clouds that were selected in the experiment.

In this experiment, based on our descriptor, the key point matching algorithm is used
for obtaining the corresponding key point pairs between the models and scenes, and then
the rotation and translation matrix is calculated for 3D surface matching. Therefore, the
models can be matched into the scene point cloud. The experimental results of our key
point algorithm are compared with the commonly used NN and NNDR. Here, according
to the principle, τth is set as 0.5 in NNDR, based on which the best performance can be
got. All experiments are performed on the five model point clouds and the five scene point
clouds that have been mentioned above.

The results of 3D surface matching are shown in Figure 14. It can be seen from the
results of NN and NNDR, the model and the scene do not match well. Because the NN
directly matches the most similar key point, and NNDR only considers the top-two similar
key points in scenes. Many wrong matched corresponding key point pairs are obtained
due to the limitation of these two algorithms, leading to the errors of transformation matrix
which is calculated based on all the correspondences between the model and the scene
point cloud, so the results of 3D surface matching are unsatisfied. Moreover, due to its
strict conditions and the limitation of only considering the top-two similar points, in some
situations, NNDR can not get enough or even any matched corresponding key point pairs.
Less than three groups of corresponding point pairs will lead the transformation matrix can
not be calculated, and the position of models also can not be transformed. In contrast, the
3D surface matching results of our key point matching algorithm are much better, which
means there are much more correctly matched corresponding key point pairs.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 14. Surface matching results of three methods tested on the selected datasets. The models
(in green) and the scenes (in blue) to be matched (a,e,i,m,q). NN results (b,f,j,n,r), NNDR results
(c,g,k,o,s), and our method results (d,h,l,p,t).
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Furthermore, it also can be seen from Table 2 that the error of our method is much
smaller than NN. The word “matched” in the table means the number of the correspond-
ing key point pairs. Analyzing from the results that combining with the errors of θr
and θt, based on our method, the number of correctly matched corresponding key point
pairs is greater than that of NN and NNDR. NNDR cannot even get any matched corre-
sponding key points pair in the data of Bunny, Happy Buddha, and Rex. Therefore, our
method is more robust and effective in processing the data with occlusion, truncation, and
incomplete regions.

Table 2. Errors of three key point matching algorithms on models and scenes.

Model Error NN NNDR Ours

Bunny
θr 73.748 0.3858
θt 0.857 None 0.0534

matched 42 10

Dragon
θr 14.497 0 0
θt 5.548 4.0426 × 10−7 2.7387 × 10−7

matched 318 6 8

Happy Buddha
θr 18.082 1.1706
θt 7.643 None 0.0806

matched 418 8

Mario
θr 35.933 0.0115 0.3260
θt 39.396 3.0640 × 10−7 0.1596

matched 28 3 7

Rex
θr 112.570 0.0115
θt 33.651 None 2.4963 × 10−7

matched 100 4

4.3. Matching Algorithm for Real Data

In this experiment, some real component point cloud data from the train bottom are
used, and they are collected by the 3D laser scanning with a three-million pixel industrial
camera, including the part of wheel hub, edge of base, tie rod, and bolts (Figure 15). All
the real data have been preprocessed to improve the quality. The results of 3D surface
matching are shown in Figure 15, and from Table 3 we can see that the error of our method
is still much smaller than that of NN. NNDR is effective as ours, but more corresponding
key point pairs can be obtained by our method, which is good for the last fine registration.

Figure 15. Results of 3D surface matching on real data. The up column is the initial position of these
components. The down column is the results of 3D surface matching.
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Table 3. Errors of the real data.

Model Error NN NNDR Ours

Wheel hub
θr 2.233 0 0
θt 1.818 8.555 × 10−15 1.711 × 10−14

matched 512 9 21

Edge of base
θr 3.625 0 0
θt 4.806 1.711 × 10−14 1.711 × 10−14

matched 512 8 12

Tie rod
θr 1.252 0 1.1706
θt 0.995 2.851 × 10−15 5.704 × 10−15

matched 512 10 15

Bolts
θr 0.534 0 0
θt 0.511 1.083 × 10−13 5.703 × 10−15

matched 512 3 98

5. Conclusions

This paper introduces a 3D point cloud surface matching method, including a multi-
statistics histogram descriptor that combines spatial distribution features and geometric
attributes features, and a novel key point matching algorithm based on deep learning,
which identifies more corresponding point pairs than the existing methods. Experimental
results on Stanford dataset show that MSHD performs better than the baselines in the data
with noise, occlusion, and incomplete regions. Meanwhile, MSHD has a strong robustness
against noise and mesh resolution, and it also reflects a strong description ability. Our key
point matching algorithm is evaluated on Stanford 3D dataset and four real component
point clouds from the train bottom. From the results of the experiment about 3D surface
matching, more corresponding key point pairs can be obtained. Combined with the results
of errors in the rotation and translation matrix, it has been confirmed that the error of our
methods is much smaller, and more number of precisely matched corresponding key point
pairs can be captured, resulting in enhanced recognition and registration.
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