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Abstract: This paper presents a constrained Kalman filter for Wi-Fi-based indoor localization. The
contribution of this work is to introduce constraints on the object speed and to provide a numerically
optimized form for fast computation. The proposed approach is suitable to flexible space organization,
as in warehouses, and when objects can be spun around, for example barcode readers in a hand.
We experimented with the proposed technique using a robot and three devices, on five different
journeys, in a 6000 m2 warehouse equipped with six Wi-Fi access points. The results highlight that
the proposed approach provides a 19% improvement in localization accuracy.

Keywords: constrained Kalman filtering; Wi-Fi; Localization Based Service (LBS); flexible indoor
organization

1. Introduction

Nowadays, a wide-scale proliferation of wireless devices can be observed. This phe-
nomenon is due to multiple factors, such as more and more efficient, small and low energy
consumption electronic components and widespread wireless communication technolo-
gies. Among the services allowed by this technological progress, LBS (Localization Based
Service) is facing a continuously increasing interest, notably due to dedicated smartphone
applications. According to the statistics, 80% of LBS are for indoor purposes [1], for ex-
ample for guidance of persons with mobility problems, emergency evacuation or goods
localization in warehouses.

In the past decade, plenty of research has been conducted about LBS [2,3], in particular
using wireless techniques [4–6] such as ultra-wideband, Bluetooth, or Wi-Fi. Wi-Fi has
the advantage to be cost-advantageous. Nowadays, it is also very widespread, which
avoids the installation of new antennas or additional transponders as for RFID (Radio
Frequency IDentification) for example. Position information can be obtained through
the wireless signal RSSI (Received Signal Strength Indication) [7] or the waves’ AoA
(Angle of Arrival) [8], knowing the position of the emitters. However, such information is
generally insufficient to provide accurate localization, especially using Wi-Fi. Thus, wireless
localization is traditionally coupled to additional techniques such as fingerprinting [9];
the use of space grids [10,11]; or of additional sensors like smartphone ones, namely
accelerometers, gyroscopes, or magnetometers [12]. This last technique is usually named
inertial navigation and includes a variant called PDR (Pedestrian Dead Reckoning).

To fuse information coming from Wi-Fi and from one or several additional technique(s),
Kalman filtering is the most popular approach [13]. Many improvements to the baseline
Kalman Filter (KF) have been used, such as the extended (EKF) or unscented KF (UKF) to
deal with the orientation nonlinearity, multi-stage, and adaptive or robust versions. In [14],
landmarks were used as inputs of a limited complexity KF to improve the accuracy. In [15],
two EKF were used to fuse the measurements and to update a fingerprinting database.
In [16], an adaptive UKF was used to improve the PDR with a map-matching technique.
In [17], particle swarm optimization was used to improve the correction step accuracy.
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In [18], several movement scenarios were considered with an adaptive and robust filter.
In [19], a two-stage version was introduced to improve the robustness by separately dealing
with attitude determination and tracking.

Another improvement in KF is state constraints. State constraints are all additional
equations that do not fit into the structure of a KF [20]. For example, when estimating a
quaternion, it is known that its Euclidian norm is equal to one. Taking into account such
additional knowledge in the estimation process contributes to improving the localization
and tracking accuracy.

1.1. Related Work

Extensive research has been conducted to incorporate state constraint equations into
the structure of a state estimator—through model reparameterization or model reduction,
pseudo-observation methods, gain modification techniques, projection approaches, etc. If
both the system and constraints are linear, all these approaches result in the same state
estimate [21]. For LBS purposes, constraints about the heading were taken into account
in [1,22], allowing for a reduction of the state space-tracking model to a four-order linear one.
In [23], the heading was constrained according to the type of environment: narrow passages
like corridors versus wide scenes with an azimuth wheel. In [24], position constraints were
considered in an UKF when at most four anchors contributed to the localization. In [25],
nonlinear inequality constraints were considered for the measurements, in particular RSSI
and AoA. However, it should be noted that no work has been done to consider speed
constraints in KF-based LBS.

1.2. Contribution

In this paper, the contribution is to develop a Kalman filter for Wi-Fi-based indoor
LBS with constraints on the moving object speed. This contribution arises from the kind of
indoor environment under consideration in this work: a warehouse with flexible topology
and space organization, according to the products stored. The nature of the products can
badly affect Wi-Fi coverage, impacting localization. Moreover, small IMU chips with a
limited cost usually have larger drifts and errors, which do not contribute to improving
the positioning. State constraints are thus considered to compensate for this accuracy
decrease. The flexible topology implies that the paths can evolve with time, making
position constraints unsuitable. Moreover, the objects to localize can be spun around
anywhere, preventing the consideration of heading constraints. We thus introduce speed
constraints according to the limited knowledge we have about the flexible organization.
A corresponding Kalman LBS algorithm is developed in this paper and the constraint
stage is detailed to provide fast computation with a minimal amount of scalar additions
and multiplications.

1.3. Outline

This paper is organized as follows. The problem to solve is first stated in Section 2.
Then, the proposed approach to deal with the problem under consideration is depicted in
Section 3. The results obtained on several practical case studies in a warehouse are given in
terms of plots and figures in Section 4. These results are then analyzed and discussed in
Section 5. Finally, concluding remarks and the outlook of this work are given in Section 6.

2. Problem Statement

Let us consider a device moving into an indoor environment. The movement is
supposed to be horizontal. The device is equipped with an IMU (Inertial Measurement
Unit). The objective is to track the device, that is to say to estimate its position in real time.
The device movement can be modeled by Equation (1).
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
rx,k
ry,k
Vx,k
Vy,k
θk

 =


1 0 Ts 0 0
0 1 0 Ts 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




rx,k−1
ry,k−1
Vx,k−1
Vy,k−1
θk−1

+


0 0 0
0 0 0

cos(θk−1) − sin(θk−1) 0
sin(θk−1) cos(θk−1) 0

0 0 1


 ∆Vx,k

∆Vy,k
∆θk

, (1)

where k ∈ N∗ is the discrete time; Ts is the sampling time;
(

rx,k; ry,k

)
and

(
Vx,k; Vy,k

)
denote

the 2D position and velocity, respectively, at time k; and where θk is the device heading
(see Figure 1). ∆Vx,k, ∆Vy,k, and ∆θk are the IMU measurements, that is to say the velocity

increments between discrete times k− 1 and k along the
(

G,
⇀
x m

)
and

(
G,

⇀
y m

)
axes and

the angle increment around the
(

G,
⇀
z
)

axis. Writing down on the first hand:

x =


rx
ry
Vx
Vy
θ

, u =

 ∆Vx
∆Vy
∆θ

, F =


1 0 Ts 0 0
0 1 0 Ts 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, G(x) =


0 0 0
0 0 0

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

, (2)

and considering process noises in the second-hand, Equation (1) can be rewritten as follows:

xk = Fxk−1 + G(xk−1)(uk + sk) + wk. (3)

where sk is the additive noise affecting the IMU measurements and wk is introduced to take
into account the model approximations (discretization, neglecting the earth rotation effect, etc.).

Figure 1. Moving device to track into an indoor environment.

To compensate for the mid- and long-term effects of the stochastic processes {sk} and
{wk}, the device position is also measured according to Equation (4):

RSSIi = −10n log10(di) + Ai, (4)

where RSSIi is the Received Signal Strength Indication of the Wi-Fi signals exchanged
with the access point i (1 ≤ i ≤ N), n is a factor depending on the environment (n = 2 for
outdoor and 4 for indoor situations), di is the distance between the device and the access
point, and Ai is a calibration coefficient. Introducing the following:



Sensors 2022, 22, 428 4 of 14

yk =

 RSSI1,k
...

RSSIN,k

, γk =

 γ1,k 0 0

0
. . . 0

0 0 γN,k

 with : γi,k =

{
1 if RSSIi is detected at time k

0 otherwise
(5)

Equation (4) can be rewritten in the following compact form:

yk = γk(h(xk) + vk), (6)

where vk is the measurement noise. The problem to solve is to estimate as accurately as
possible xk for any time k using the set of measurements {y1, . . . , yk} and their existence
{γ1, . . . , γk}.

Using Equations (3) and (6), the estimation can recursively be done using an EKF,
because function h is easy to linearize and does not contain discontinuities. The EKF
Equations (7)–(8) for the prediction step and Equations (9)–(11) for the Joseph’s form
correction step are given below:

x̂−k = Fx̂k−1 + G(x̂k−1)uk, (7)

Σ−k = FΣk−1FT + G(x̂k−1)PGT(x̂k−1) + Q, (8)

Kk = γkΣ−k HT
k

(
HkΣ−k HT

k + R
)−1

, (9)

x̂+k = x̂−k + Kk
(
yk − h

(
x̂−k
))

(10)

Σ+
k = (I − Kk Hk)Σ

−
k (I − Kk Hk)

T + KkRKT
k (11)

where I is the identity matrix of appropriate dimension; the superscript T denotes the
transposition operation; and P, Q, R, Σ−k , and Σ+

k are the following covariances:

P = E
(
sksT

k
)
, Q = E

(
wkwT

k
)
, R = E

(
vkvT

k
)
,

Σ−k = E
((

xk − x̂−k
)(

xk − x̂−k
)T
)

, Σ+
k = E

((
xk − x̂+k

)(
xk − x̂+k

)T
)

.
(12)

The filter is initialized with x̂0 and Σ0. It should be noted that at a given time k, if no
RSSI is detected, then γk is null and so x̂+k = x̂−k and Σ+

k = Σ−k . As output of the EKF, the
estimated state and error covariance are as follows: x̂k , x̂+k and Σk , Σ+

k . The matrix Hk
is obtained by linearizing h, as follows:

Hk =
∂h
∂x

∣∣∣∣
x=x̂−k

= − 10n
log2(10)


x̂−k (1)−Xb1

d1

x̂−k (2)−Yb1
d1

0 0 0
...

...
...

...
...

x̂−k (1)−XbN
dN

x̂−k (2)−YbN
dN

0 0 0

, (13)

where (Xbi; Ybi) are the coordinates of the access point i and where

di =
√(

x̂−k (1)− Xbi
)2

+
(
x̂−k (2)−Ybi

)2 is the distance between the object predicted posi-
tion

(
x̂−k (1); x̂−k (2)

)
and the access point i.

Localizations using Wi-Fi RSSI, IMU, and EKF usually give pretty good results, with
the accuracy depending on the number of access points. However, in warehouses, the Wi-Fi
coverage is often depreciated because of metallic shelving and harsh stored products such
as pallets of water bottles, conserves, or chemical products. Moreover, the topology of ware-
houses can frequently change because of permanently changing stocks. Thus, additional
state constraints are introduced in the baseline EKF to improve the localization accuracy.
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3. Proposed Approach

Let us consider an indoor environment such as a warehouse. It includes several
rectangular storage areas containing shelves, as illustrated in Figure 2. Each storage
area can have its own organization changed, i.e., the shelves’ position and quantity can
be modified according to the products stored. Consequently, the corridors between the
shelves are not fixed. Outside the storage areas, the movements are free. For circulation
convenience, all shelves are parallel to the

(
O,
→
y
)

axis.

Figure 2. Varying organization of the warehouse, with m storage areas. An example of shelves’
organization is drawn for area m.

Because the shelves’ localization into an area are subject to possible modifications,
position constraints are not suitable. Moreover, the objects to localize can be spun around,
for example a barcode reader in a hand when scanning some products put on the shelves.
Thus, no additional constraint about the heading could be taken into account. However, as
the displacements between the shelves are along the

(
O,
→
y
)

axis due to the area arrange-

ment, the speed along the
(

O,
→
x
)

axis is close to zero. This constraint is taken into account
according to a smooth additional measurement, as in [26]:

Dxk + ζk = 0 with : D = [0 0 1 0 0]. (14)

Constraint (14) is equivalent to: Vx,k = ζk, where {ζk} is a zero-mean white random

process with a standard deviation σ. It imposes the speed along the
(

O,
→
x
)

axis to be
close to zero, but not strictly, because the object can nevertheless laterally navigate between
the left and right shelves. Equation (14) must be considered only if the object is inside
a storage area. Writing down

(
Xmin

i , Xmax
i , Ymin

i , Ymax
i

)
, the limits of area i (see Figure 2),



Sensors 2022, 22, 428 6 of 14

and considering the uncertainty of the position estimate
(
x̂+k (1); x̂+k (2)

)
, the condition

is as follows: 
Xmin

i + 3
√

Σ+
k (1, 1) ≤ x̂+k (1) ≤ Xmax

i − 3
√

Σ+
k (1, 1)

Ymin
i + 3

√
Σ+

k (2, 2) ≤ x̂+k (2) ≤ Ymax
i − 3

√
Σ+

k (2, 2)
, (15)

where Σ+
k (i, j) is the coefficient at the ith row and jth column of Σ+

k . Considering the noise
distribution is Gaussian, the probability of wrong detection of a storage area is less than
0.1%. When condition (15) is satisfied for one of the storage areas, taking into account
constraint (14) leads to the following constraint update, similar to the correction step of
Equations (9)–(11):

Lk = Σ+
k DT

(
DΣ+

k DT + σ2
)−1

, (16)

x̂k = x̂+k + Lk
(
0− Dx̂+k

)
= (I − LkD)x̂+k , (17)

Σk = (I − LkD)Σ+
k , (18)

where x̂k and Σk are the constrained estimated state and covariance, respectively. Consider-
ing that D = [0 0 1 0 0], Equation (16) becomes the following:

Lk =
1

Σ+
k (3, 3) + σ2

 Σ+
k (1, 3)

...
Σ+

k (5, 3)

. (19)

This result allows for writing down the following:

Mk = I − LkD =


1 0 −α1k 0 0
0 1 −α2k 0 0
0 0 βk 0 0
0 0 −α4k 1 0
0 0 −α5k 0 1

 with :


Tk =

1
Σ+

k (3,3)+σ2

αik = TkΣ+
k (i, 3) i = 1, 2, 4, 5

βk = Tkσ2

(20)

Finally, the constraints in scalar form for fast computation become the following:

x̂k(i) = x̂+k (i)− αik x̂+k (3) i = 1, 2, 4, 5

x̂k(3) = βk x̂+k (3)

Σk(i, j) = Σ+
k (i, j)− αikΣ+

k (3, j) i = 1, 2, 4, 5, j = 1, . . . , 5

Σk(3, j) = βkΣ+
k (3, j) j = 1, . . . , 5

(21)

Equations (20) and (21) can be optimally computed with 25 additions (1 for Equation (20),
4 for x̂k, and 4 × 5 for Σk) and 36 multiplications (6 for Equation (20), 5 for x̂k, and 4 × 5 + 5
for Σk).

The flowchart of the constrained LBS is summarized in Figure 3.
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Figure 3. Flowchart of the proposed constrained LBS approach.

4. Results

Now, let us apply the proposed approach to a 6000 m2 warehouse. This warehouse
contains m = 2 storage areas and is equipped with N = 6 Wi-Fi access points (reference:
Cambium CnPilot E510 with firmware 3.11.4.1-r3). A 425 m journey is done with a robot
(see Figure 4), according to the route drawn in Figure 5. The robot is a WiFibot Lab
V4 equipped with an Intel Celeron quad core SBC running Linux Ubuntu 18.04 LTS. It
embeds for the wireless communication an Atheros AR9280 wireless-N dual band half
mini-card. The robot is also equipped with a YEI 3-space IMU, whose noise characteristics
are 99 µg/

√
Hz for the accelerometers and 9 mdeg/

√
s for the gyroscopes, leading to the

following P with sample time Ts = 0.1 s:

P = 10−8

 9.424 0 0
0 9.424 0
0 0 0.247

. (22)



Sensors 2022, 22, 428 8 of 14

Figure 4. WiFibot moving into the warehouse.

Figure 5. Warehouse under consideration with the 425 m journey done by the robot and the localiza-
tion of the different Wi-Fi access points and storage areas.
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To set the parameters Ai, n and the variance R, the robot was placed at different
known fixed positions all over the warehouse. About 2000 RSSI values coming from the
six access points were acquired. Remarking that Equation (4) is linear in parameters Ai
and n, the least squares method can be applied to compute their value. The variances of
the computed Ai that can further be obtained are by definition equal to R. The results are
n = 3.6885, R = 1 dB2, and:

Acc. pt i 1 2 3 4 5 6
Ai (dB) −11.66 −14.04 −17.16 −14.52 −12.53 −16.43

(23)

Finally, the additional process noise and velocity constraint covariances were set to:

Q = 10−6


0.01 0 0 0 0

0 0.01 0 0 0
0 0 25 0 0
0 0 0 25 0
0 0 0 0 0.04

, σ2 = 1
m2

s2 , (24)

and the EKF was initialized with Equation (25).

x̂0 =


30

106
0
0

−π/3

 ≈ x0 Σ0 =


32 0 0 0 0
0 32 0 0 0
0 0 0.12 0 0
0 0 0 0.12 0
0 0 0 0 52

. (25)

The localization results are given in Figure 6 for the position with respect to the time
and in Figure 7 for the 2D trajectory.

Figure 6. Position with respect to the time: (a) without application of constraints; (b) with application
of the constraints. The right part of plots (a,b) are the error (difference between real and estimated po-
sition) and the confidence interval±3× STD, where STD is the standard deviation: STD =

√
Σk(1, 1)

for the X-axis and STD =
√

Σk(2, 2) for the Y-axis.
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Figure 7. Comparison of the 2D positions with and without constraint applications.

The same journey was also done five times at different speeds, with three different
devices: two barcode readers and one tablet. During these experiments, the RSSI and
IMU measurements were sent to a log server through a 4G connection and a 4G Teltonika
RUT950 router, to create a database. The constrained and unconstrained LBS algorithms
were then applied using this database. The results in terms of RMS (root mean square) are
summarized in Table 1. The length of each journey and the total number of RSSI detected
during the route are also given for information.

Table 1. RMS localization errors (in m) with and without constraint applications.

Device 1 Device 2 Device 3

Journey 1
Length: 8′09′′

Nbr of RSSI detect.: 105
RMS unconstr.: 1.86

RMS constrained: 1.05

Nbr of RSSI detect.: 155
RMS unconstr.: 1.31

RMS constrained: 1.28

Nbr of RSSI detect.: 107
RMS unconstr.: 1.53

RMS constrained: 1.36

Journey 2
Length: 6′34′′

Nbr of RSSI detect.: 127
RMS unconstr.: 1.87

RMS constrained: 1.43

Nbr of RSSI detect.: 94
RMS unconstr.: 2.26

RMS constrained: 1.68

Nbr of RSSI detect.: 114
RMS unconstr.: 1.59

RMS constrained: 1.58

Journey 3
Length: 8′25′′

Nbr of RSSI detect.: 115
RMS unconstr.: 1.76

RMS constrained: 1.04

Nbr of RSSI detect.: 151
RMS unconstr.: 0.93

RMS constrained: 0.89

Nbr of RSSI detect.: 244
RMS unconstr.: 1.01

RMS constrained: 0.94

Journey 4
Length: 10′38′′

Nbr of RSSI detect.: 90
RMS unconstr.: 1.43

RMS constrained: 1.01

Nbr of RSSI detect.: 105
RMS unconstr.: 1.23

RMS constrained: 0.96

Nbr of RSSI detect.: 142
RMS unconstr.: 1.56

RMS constrained: 1.38

Journey 5
Length: 10′34′′

Nbr of RSSI detect.: 150
RMS unconstr.: 1.31

RMS constrained: 1.12

Nbr of RSSI detect.: 123
RMS unconstr.: 0.77

RMS constrained: 0.66

Nbr of RSSI detect.: 119
RMS unconstr.: 0.89

RMS constrained: 0.75

5. Discussion

Let us now discuss about the results presented in the previous section. It can clearly
be seen in Figure 7 that taking into account the speed constraint leads to a better tracking of
the trajectory. It is true in the storage areas, but it also has a positive impact outside, because
the heading estimate is more accurate. This can especially be observed in the last part of
the route, when the robot is leaving the area 2. It can also be noticed that the constraint
allows for a faster realignment of the estimated trajectory to the real one after each abrupt
90◦ turn. Such situations are usually tricky because of the difficulty to accurately estimate
the heading.
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In Figure 6, the impact of the constraint can be seen in the confidence interval
±3× STD. An increase of this interval stands for a localization uncertainty increase, due
to the low rate of RSSI detected. It is equivalent to an observability deterioration. Such a
phenomenon is from far less important in the constrained case (Figure 6b), more especially
along the X axis. It highlights the positive effect of the constraint.

Looking to the figures in Table 1, the first thing to point out is that the worst results
were obtained in the shortest journey (the second) and the best ones were in the longest
(fourth and fifth). This makes sense because for a given distance, the slower the journey,
the longer it is, which involves more RSSI detections. The second thing to notice is that
the global RMS over the five journeys and three devices are 1.48 m versus 1.20 m with-
out/with the constraint. The improvement is thus 19%. The best obtained result (device
2, journey 5) is a mean error smaller than 70 cm, which is pretty good considering the
warehouse harshness.

To have a point of comparison, our approach was also experimented with the dataset [27]
presented in [28]. This dataset included several journeys done by an object (a Nexus
4 running Android 4.4). The data included the real position and the RSSI of the different
access points. The route is drawn in Figure 8, extracted from [28].

Figure 8. Experiment in the engineering office wing at University of Victoria, considering open
datasets [27]. The six access points were located at the AP circles.

Unlike in [28], we considered only one MAC address for each access point, i.e., that
six RSSI were available at each scan. We also did not consider markers. According to our
approach, four areas can be considered, as detailed in Table 2.

Table 2. Constraint areas in Figure 8.

Area 1
(Including AP3)

Area 2
(Including AP4)

Area 3
(Including AP5)

Area 4
(Including AP6)

Xmin 6 m 16.5 m 6 m 0 m
Xmax 16.5 m 21 m 16.5 m 6 m
Ymin 2 m −11 m −14 m −11 m
Ymax 4 m 2 m −11 m 2 m
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The constraint equations suitable with these areas are:

Dxk + ζk = 0 with : D =

{
[0 0 0 1 0] for areas 1 and 3

[0 0 1 0 0] for areas 2 and 4
. (26)

The results in Table 3 highlight that even if our approach is slightly less efficient than
the Soft Range Limited K-Nearest Neighbors (SRL-KNN) algorithm introduced in [27], it
has smaller average errors than all of the other methods. The estimated 2D trajectory is
plot and compared with the real one in Figure 9.

Table 3. Comparison of the average errors.

Our approach: 0.89 m SRL-KNN [28]: 0.66 m to 1.2 m STI-WKNN [29]: 1.09 m
Spearman rank [30]: 1.45 m Kernel method [31]: 1.07 m Kalman [32]: 0.96 m

Figure 9. Real (ground truth) trajectory and the estimated one with our approach.

6. Conclusions

In this paper, a constrained Kalman filter for Wi-Fi-based indoor localization was de-
veloped. This approach is suitable when the space organization is flexible, as in warehouses.
The constraint is about the object speed and only applies in some areas of the warehouse.
The object to track can be spun around, for example a barcode reader in a hand. The pro-
posed approach was experimented with a robot and three devices on five different journeys.
The results highlight that the proposed approach improves the localization accuracy by
19%. As an outlook of this work, the proposed approach can be extended to the 3D case.
The use of an estimator such as the UKF and nonlinear smoothing will also be considered.
Finally, the regional classifications analysis is another prospect of this work.
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