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Abstract: Current developments in artificial olfactory systems, also known as electronic nose (e-nose)
systems, have benefited from advanced machine learning techniques that have significantly improved
the conditioning and processing of multivariate feature-rich sensor data. These advancements are
complemented by the application of bioinspired algorithms and architectures based on findings
from neurophysiological studies focusing on the biological olfactory pathway. The application of
spiking neural networks (SNNs), and concepts from neuromorphic engineering in general, are one of
the key factors that has led to the design and development of efficient bioinspired e-nose systems.
However, only a limited number of studies have focused on deploying these models on a natively
event-driven hardware platform that exploits the benefits of neuromorphic implementation, such as
ultra-low-power consumption and real-time processing, for simplified integration in a portable e-nose
system. In this paper, we extend our previously reported neuromorphic encoding and classification
approach to a real-world dataset that consists of sensor responses from a commercial e-nose system
when exposed to eight different types of malts. We show that the proposed SNN-based classifier
was able to deliver 97% accurate classification results at a maximum latency of 0.4 ms per inference
with a power consumption of less than 1 mW when deployed on neuromorphic hardware. One
of the key advantages of the proposed neuromorphic architecture is that the entire functionality,
including pre-processing, event encoding, and classification, can be mapped on the neuromorphic
system-on-a-chip (NSoC) to develop power-efficient and highly-accurate real-time e-nose systems.

Keywords: neuromorphic olfaction; bioinspired olfaction; artificial olfactory systems; electronic nose
systems; neuromorphic engineering; spiking neural networks

1. Introduction

Research in machine olfaction and electronic nose (e-nose) systems has garnered much
interest due to a number of novel applications that can be envisaged by implementing this
technology [1]. Although foundational work in odor sensing can be traced back to the 1960s
starting with Moncrieff’s mechanical model [2], a paradigm shift in this domain came after
the seminal work of Persaud and Dodd [3] in the early 1980s that sparked the development
of sophisticated e-nose systems. Inspired by the biological olfactory pathway, Persaud
and Dodd proposed an electronic nose system that implemented a multi-sensor approach,
combined with a signal conditioning and processing module, for the identification of
various volatile compounds. The past thirty years have seen an increasingly large number
of studies building on this foundational research to link the functional emulation of the
biological olfactory pathway to artificial olfactory systems that can be implemented for
real-world applications [1,4–6].

Typically comprising a sensor array and a pattern recognition engine (PARC), e-nose
systems mimic the capabilities of biological olfaction to recognize chemical analytes. A
conventional approach of processing electronic nose data includes four key stages: data
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acquisition of time-series resistance data generated by the front-end sensing array; applica-
tion of pre-processing or signal conditioning techniques for denoising; feature extraction of
robust information to enhance class differentiability; and a subsequent pattern recognition
algorithm that can classify the extracted features to identify the odor class. Although the
dynamics of all the aforementioned processes are vital for the implementation of a robust
and reliable e-nose system, the PARC engine, in particular, is a principal determining factor
for key performance parameters such as power and computing requirements, portability,
and classification latency and accuracy [7,8]. The implementation of traditional computing
techniques has imposed limitations in handling continuous multi-dimensional data, which
in turn has affected the efficiency of the e-nose systems and impeded their performance [4].

Advanced research in machine learning and statistical algorithms has been a major
enabler to improved handling of multivariate data, which has led to novel algorithms being
implemented for pattern recognition in e-nose systems [4,6,9–11]. However, the efficiency
of these algorithms has largely depended on pre-processing methods such as dimensional-
ity reduction, and a number of signal conditioning stages that has added to the complexity,
power and computational requirements, and the overall processing latency [1,12]. Never-
theless, the limitations observed in these implementations has highlighted the importance
of a simplified, robust, and power-efficient PARC engine that can be easily integrated in an
e-nose system.

The emergence of neuromorphic methods provided a totally different outlook towards
solving the artificial olfaction problem. The sparse spike-based data representation used in
neuromorphic approaches was crucial for e-nose systems, as the volume of data generated
could be minimized by encoding only useful information, enabling optimization of the
processing [1,13,14]. Other advantages, such as low-power implementation and rapid
processing of sparse data through spiking neural networks (SNNs) and bio-inspired learn-
ing algorithms, were vital for the development of efficient and robust artificial olfactory
systems. The fully-integrated olfactory chip proposed by Koickal et al. in [15] was one
of the first neuromorphic olfactory system implementations. Comprising a chemosensor
array, a signal conditioning circuitry, and an SNN with bio-inspired learning capabilities,
the proposed system emulated the sensing, transformation, and association functionalities
of the biological counterpart. Although further research into overcoming the limitations
of analogue design and real-world applications of this study was never reported, this
groundbreaking work paved the path for future studies in neuromorphic olfaction.

Other noteworthy studies in neuromorphic olfaction include the rank-order-based
latency coding [16,17], hardware-based olfactory models based on the antennal lobe of fruit
fly [18–20], a VLSI implementation of an SNN based on the neurophysiological architecture
of a rodent olfactory bulb [21], hardware implementation of the olfactory bulb model [22],
a classifier using a convolutional spiking neural network [23], a 3D SNN reservoir-based
classifier for odor recognition [24], and the columnar olfactory bulb model inspired by
the glomerular layer of the mammalian olfactory pathway that was recently extended for
its implementation on Loihi, Intel’s neuromorphic research chip [14,25]. However, most
of the research in neuromorphic olfaction, such as [15,21,26–30], is more driven towards
implementing a high level of bio-realism to emulate the biological olfactory pathway, which
results in impractical models with limited scope for real-world applications [5]. Review
articles [1,4–6] present a comprehensive survey on the development, application, and
current limitations of neuromorphic olfactory systems.

Although application of neuromorphic methods and SNNs for artificial olfactory sys-
tems has begun to show promise, only a small number of studies, such as [12,14,21,24,31,32],
have been able to deploy these bio-inspired models on an application-ready neuromorphic
platform in a realistic field setting. In the work presented in this paper, we extend our
previously reported neuromorphic encoding and SNN-based classification approach to
include performance parameters when deployed on Akida neuromorphic hardware [12].
The significance of this work is two-fold: Firstly, the neuromorphic processing model
for olfactory data hypothesized in [12] is proven by applying the model on a real-world
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dataset collected to identify eight types of malts. Secondly, the proposed neuromorphic
model establishes a general platform for encoding and classifying e-nose data, where all
of these functions can be mapped on the Akida neuromorphic hardware to leverage the
ultra-low-power and high-performance capabilities for simplified integration in a portable
e-nose system.

Studies based on implementation of traditional methods for evaluating malt aromas
to identify malt types have shown them to be time-consuming and requiring use of costly
equipment and trained personnel [33,34]. Accomplishing this task using a non-invasive
electronic nose (e-nose) system may be of great interest within the brewing industry
because malts, as one of the vital raw materials, significantly impact the beer quality and
the brewing process [35]. However, achieving this presents a nontrivial classification task
because, as is the case with most aromatic compounds, the instrumental odor characteristics
of a malt sample may overlap even if their aroma profiles may seem different for human
olfaction [36,37]. Therefore, this study aims to implement bioinspired data-encoding and
classification techniques on olfactory data obtained using a commercial e-nose system and
the Akida Spiking Neural Network (SNN) architecture.

2. Materials and Methods
2.1. Sample Preparation

The preparation of samples and experimental protocols were based on previous ma-
chine olfaction-based studies that included experiments with grains [38–41] and beer [42,43].
This study used eight types of malt samples obtained from Pilot Malting Australia. The
classes of malts and their flavor profiles, as described in [36,44–48], are listed in Table 1.
Samples were prepared using 100 g of each malt type transferred to a 250 mL sterile and
borosilicate glass flask. The samples were sealed tightly with two layers of paraffin film and
stored at room temperature to prevent the loss of volatiles and odor characteristics. Before
exposure to the e-nose system, the samples were heated at 25 ◦C using a digital hotplate
with frequent perturbation to ensure that the malts were evenly heated. The paraffin
films were punched with holes to prevent moisture accumulation within the flask, and the
perturbation continued until a thermal equilibrium was achieved. This process allowed the
release of aromatic volatiles, which mainly include aliphatic alcohols, aldehydes, ketones,
pyrroles, furans, and pyrazines [49], from the malt samples without a significant increase
in relative humidity that would affect the headspace analysis. A total of eight samples,
corresponding to each type of malt, were prepared for the experiment.

Table 1. Types of malts used in this study and their flavor descriptors.

Malt Type Flavor Descriptors

Wheat Clove-like and banana notes with malty sweetness
Pale Sweet and slightly biscuity

Caramel Sweet, honey-like with slight roasty/toastiness
Dark chocolate Rich roasted, coffee, and cocoa

Pilsner Mild sweetness with straw/grassy notes
Honey Subtle honey and bread flavors

Roasted Coffee, intense bitter, and roasty notes
Rye Roasty and spicy notes

2.2. Electronic Nose System

A commercially available Cyranose-320™ e-nose (Sensigent, Pasadena, CA, USA)
was used to obtain the aroma patterns from the headspace of the malt samples. The
portable e-nose system incorporates a sensor array consisting of 32 nanocomposite sensors,
where each sensor exhibits cross-sensitivity towards specific chemical or aromatic volatile
compounds [50]. The e-nose system is exposed to these aromatic compounds through
a delivery system where the chemical interaction between the sensing element and the
volatiles results in a change in electrical resistance. This change in resistance is proportional
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to the amount of chemical absorbed by the conducting polymer on the sensing surface. The
resulting signal is a change in resistance in a sensing element for the time interval during
which it is exposed to the chemical vapors. The raw data acquired consists of changes in
resistance in each sensor array element, producing a distribution pattern or a smell-print
that can be used to identify the VOC mixture using pattern-recognition techniques. In the
study described in this paper, it was observed that four sensors (sensors 5, 6, 23, and 31)
were sensitive to polar compounds, such as water vapor due to moisture present in the
headspace due to the heating of the malt samples. As a result, data from sensors 5, 6, 23,
and 31 was not acquired during the experiments, and the experiments overall resulted in a
28-dimensional e-nose response.

2.3. Sampling Protocol

The VOCs were measured using the experimental setup shown in Figure 1. Although
the experiments were carried out in a fume cupboard to avoid interference from contam-
inants such as dust, ambient air was used for the baseline so as to replicate a real-world
application where ideal lab conditions and zero-grade dry air for the baseline may not be
available. Sensigent’s PCNose software was used for data acquisition, and the raw resis-
tance change data was exported to a CSV file. As reheating of the malt sample after initial
thermal equilibrium was achieved could potentially change its physical characteristics
and adversely affect the experiments, data samples were recorded as consecutive sensor
response measurements until the thermal equilibrium could be maintained. In total, nine
replicates of measurements were recorded for each malt sample, resulting in a dataset of
72 files with eight classes. Another set of experiments producing three additional replicates
per class was carried out under similar laboratory conditions. This dataset, consisting of
24 files, was used to validate the classifier’s generalization for inferences of previously
unseen data.
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Before the experiments, the e-nose system was purged with ambient air for six minutes
to obtain a steady baseline. For the e-nose analysis, the sample headspace was analyzed
for a total of 90 s. This included 15 s of baseline, 50 s for sample intake, and 25 s for snout
removal and baseline purge. The substrate temperature was set to 37 ◦C and the pump
speeds for each sampling stage were set as per the manufacturer’s recommendation [50],
and the sampling frequency was set to 1 Hz. Table 2 shows the sampling parameters used
to record responses from the e-nose system.

Table 2. Signal acquisition parameters for the e-nose system.

Parameter Time Pump Speed

Baseline correction 15 s Medium (120 cc/min)
Sample draw-in 50 s High (180 cc/min)
Snout removal 5 s

Purge (air intake) 20 s High (180 cc/min)

Substrate heater temperature 37 ◦C

2.4. Signal Conditioning and Pre-Processing

The odor data acquired in the form of relative resistance signals was first visually
analyzed using the PCNose tool, which is Sensigent’s interfacing and data acquisition
software for the Cyranose-320™ e-nose system. A typical e-nose response has three key
components: a baseline response during the reference phase, a response curve and steady
response during the exposure/sniffing phase, and a transition back to the baseline during
the recovery phase (shown in Figure 2) [51].

Sensors 2022, 22, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 2. Typical response signal of an electronic nose sensor for a sniffing cycle (adapted from [51]). 

Mathematically, the normalization process can be expressed as: |𝑅(𝑥)| = 𝑅 − 𝑅𝑅୫ୟ୶ (௫) − 𝑅୫୧୬ (୶) 
where 𝑅(𝑥) is the absolute value of normalized relative resistance for sensor 𝑥, 𝑅 
is the baseline response of sensor 𝑥, 𝑅 is the measured resistance of sensor 𝑥 at instance 𝑖, and 𝑅୫୧୬ (௫) and 𝑅୫ୟ୶ (௫) are the minimum and maximum resistance of sensor 𝑥 for 
that sample. 

Although the dataset was limited in terms of the number of samples and classes, each 
sample is highly multidimensional as responses from 28 sensors are acquired. Despite the 
fact that each sensing element responds differently to the aromatic compounds, the dis-
tinctive information observed in the dataset is limited as the sensor responses follow a 
typical trend of baseline response followed by an increase or decrease in resistance to a 
steady-state response when exposed to the malt sample and back to baseline during the 
recovery phase. As a result, except for the slope of the sensor responses, most of the time-
points represent a steady-state feature that may not suffice for classification, especially for 
a highly multivariate dataset. 

Another feature set based on enhancing inter-class discrimination was extracted to 
overcome the limitations of relative resistance features. In this case, the mean of the base-
line was subtracted from the signal, and the data was normalized using the min–max val-
ues recorded for each sensor across all samples and classes. This global normalization 
process can be modelled as: |𝑅(𝑥)| = 𝑅 − 𝑅௦(௩)𝑅 ௫(௫) − 𝑅 (௫) 
where 𝑅(𝑥) is the absolute value of normalized resistance response for sensor 𝑥, 𝑅 
is the measured resistance of sensor 𝑥 at instance 𝑖, 𝑅௦(௩) is the average of sensor 𝑥’s baseline response, and 𝑅 ௫(௫) and 𝑅 (௫) are the global maximum and 
minimum resistances for sensor 𝑥 observed across all samples and classes. 

The implementation of global normalization highlighted the descriptive information 
regarding the sensor responses with respect to each class by enhancing their inter-class 
features. This unique information can be used to distinguish sensor responses more effec-
tively, which boosts classification performance. The pre-processing and conditioning 
stage is illustrated in Figure 3, which shows the transformation of the raw signal into fea-
tures that were used for encoding and classification. 
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In order to accomplish the identification of aromatic compounds through pattern
recognition of e-nose responses, raw sensor responses have to be conditioned to mitigate
the effects of noise and differences in resistance ranges of the sensors that can influence the
outcomes of the classification process [7,11]. Noise in the sensor responses was mitigated
by implementing a rolling mean smoothing technique, and the signals were normalized by
fractional manipulation during which the baseline is subtracted from the signal and divided
by the minimum and maximum resistance to generate dimensionless and normalized
responses on a unified scale between 0 and 1. In general, normalization using linear scaling
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was used over other methods in order to avoid computationally expensive operations
during the pre-processing stage.

Mathematically, the normalization process can be expressed as:

|Rnorm(x)| = Ri − R0

Rmax(x) − Rmin(x)

where Rnorm(x) is the absolute value of normalized relative resistance for sensor x, R0 is
the baseline response of sensor x, Ri is the measured resistance of sensor x at instance i, and
Rmin(x) and Rmax(x) are the minimum and maximum resistance of sensor x for that sample.

Although the dataset was limited in terms of the number of samples and classes, each
sample is highly multidimensional as responses from 28 sensors are acquired. Despite
the fact that each sensing element responds differently to the aromatic compounds, the
distinctive information observed in the dataset is limited as the sensor responses follow
a typical trend of baseline response followed by an increase or decrease in resistance to
a steady-state response when exposed to the malt sample and back to baseline during
the recovery phase. As a result, except for the slope of the sensor responses, most of the
time-points represent a steady-state feature that may not suffice for classification, especially
for a highly multivariate dataset.

Another feature set based on enhancing inter-class discrimination was extracted to
overcome the limitations of relative resistance features. In this case, the mean of the baseline
was subtracted from the signal, and the data was normalized using the min–max values
recorded for each sensor across all samples and classes. This global normalization process
can be modelled as:

|Rnorm(x)| =
Ri − Rbaseline(avg)

Rglobal max(x) − Rglobal min(x)

where Rnorm(x) is the absolute value of normalized resistance response for sensor x, Ri
is the measured resistance of sensor x at instance i, Rbaseline(avg) is the average of sensor
x’s baseline response, and Rglobal max(x) and Rglobal min(x) are the global maximum and
minimum resistances for sensor x observed across all samples and classes.

The implementation of global normalization highlighted the descriptive information
regarding the sensor responses with respect to each class by enhancing their inter-class
features. This unique information can be used to distinguish sensor responses more
effectively, which boosts classification performance. The pre-processing and conditioning
stage is illustrated in Figure 3, which shows the transformation of the raw signal into
features that were used for encoding and classification.
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2.5. Data-to-Event Encoding Using AERO

One of the key aspects of implementing a neuromorphic approach for a sensing appli-
cation is the sparse representation of data using a spike-based format that enables rapid
processing with minimal power consumption [52]. Although the encoding of data in a spik-
ing format can be achieved using several bioinspired algorithms, such as step forward (SF)
thresholding or Ben’s spiker algorithm (BSA) [53], address event representation (AER) [54]
has become a de facto standard within the neuromorphic domain [55]. Based on the abstrac-
tion of the pulse-based neurobiological communication code found in living organisms,
AER is an ideal interface for communicating temporal information in an event-based sparse
format from multiple sources using a narrow channel [56].

First conceptualized during the development of the dynamic vision sensor (DVS), the
AER protocol’s ternary data format for vision applications is used to encode X-axis and
Y-axis coordinates of a pixel and ON or OFF spikes that are generated using a thresholding
method to represent luminosity changes [4,57]. Following the successful implementation
of AER for neuromorphic vision sensors, the AER protocol has been extended for several
other neuromorphic systems, such as tactile [58,59] and auditory sensing [60], along with
event-driven processing in neuromorphic hardware implementations [52,61,62].

The data-to-event transformation approach used in this work was abstracted from our
previously developed AER for olfaction (AERO) encoder [12]. This approach is based on
quantizing the normalized sensor responses to encode signal amplitude levels of each sen-
sor within the AER data structure. AERO generates events at each timepoint and translates
sensor responses into the AER-based spiking data format to encode the timestamp, the am-
plitude level of the signal, and the sensor ID information. Similar to one-hot encoding [63],
the quantization of the signal amplitude creates time-based bins that are used by the SNN
to learn from the non-zero bins and classify the sensor responses.
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Based on the number of bits selected for quantization, the signal amplitude is par-
titioned into 2n levels, where n is the number of bits used. The quantization levels of
signal amplitude are crucial to preserve the features that can significantly influence the
learning and classification capabilities of the SNN. Typically, the number of bits selected for
quantization determines whether the time-based bins formed are fine- or coarse-grained,
which directly impacts the SNN’s ability to generalize the odor classes based on the class-
specific features it has learnt. This process of encoding continuous e-nose sensor responses
into sparse AER-based events implemented through AERO is illustrated in Figure 4 as a
conceptual block diagram.
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2.6. Akida Neuromorphic Framework and Network Architecture

Spiking neural networks are a particular class of artificial neural networks (ANNs)
that incorporate biological processing principles where neurons process and propagate
information in the form of sparse action potential-like representations, also known as spikes.
The Akida neuromorphic framework by Brainchip implements these core concepts in the
form of a digital neuromorphic system-on-a-chip (NSoC) [64] and the Akida Execution
Engine (AEE), a Python-based chip emulator and key component of the Akida MetaTF
ML framework (link—https://doc.brainchipinc.com accessed on 15 November 2021) for
development and simulation of the behavior of the SNNs supported by the event domain
neural processor.

The Akida SNN implements a simplistic yet effective integrate-and-fire neuron model
where a summation operation of input spikes is performed to simulate the membrane
potential of the neuron and causes the neuron to fire if this potential is higher than a
predetermined threshold. One of the key features of this neuromorphic framework is the
binary implementation of synaptic weights and activation. This significantly reduces the
computational overhead, resulting in a low-power rapid processing architecture [65].

The study described in this paper takes advantage of the fact that SNN models
developed using the Akida MetaTF framework can be seamlessly deployed on the Akida
NsoC, allowing the classifier to run on low-power neuromorphic hardware with support
for edge learning. Additionally, the on-chip processor and data-to-spike converter within
the Akida NsoC architecture (shown in Figure 5) enables onboard signal pre-processing
and event generation, thus eliminating the requirement of a PC for interfacing with the
e-nose system.

https://doc.brainchipinc.com
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The neuromorphic classifier proposed in this work is based on a feed-forward two-
layer network architecture that comprises an input layer that receives AER-based spiking
input and a fully connected layer for processing. The input dimensions, such as the number
of timepoints (input width), activation levels (input height), and the number of features
(number of sensors), are defined in the input layer. The event-based data generated by the
AERO encoder is received by the input layer and propagated as spikes to the subsequent
fully connected processing layer. This layer is responsible for learning and classification
tasks. Several parameters—such as connectivity of neurons, the total number of neurons,
minimum plasticity, and learning competition—are defined in this layer, which control the
learning and classification performance of the model.

3. Results and Discussion
3.1. Classifier Training: Learning Using STDP

Learning in the SNN-classifier is implemented using the Akida built-in learning algo-
rithm based on the bioinspired spike-time dependent plasticity (STDP) learning approach
with modifications for efficient implementation on low bit-width architectures (refer to [66]).
In this unsupervised learning approach, the neurons learn to respond to particular features
that are found to repeat over multiple input samples by reinforcing the synapses that match
an activation pattern [64]. The synaptic connectivity of the neurons within the network
undergoes weight changes to establish a correlation with repeating temporal patterns, and
the competition between neurons ensures that they each learn different features.

The quantization of the signal during the data-to-event encoding plays an important
role in the learning process as the discretized sensor responses are distributed in time-based
bins, similar to one-hot encoding, and the network learns the signal characteristics and odor-
specific features from non-zero-valued bins. In this case, the level of quantization controls
the specificity and generalization of the signal that the network learns over successive
presentation of the e-nose data. A 4-bit discretization that partitions the amplitude of
the signal into 16 activation levels was selected for this application based on the overall
classification performance of the network achieved with minimum use of neural resources.

Training the SNN model was based on one-shot learning where the SNN learns repeat-
ing temporal patterns through a single feed-forward propagation of event-based data. This
approach is much faster than typical deep learning gradient-based training that requires
multiple iterations for network convergence and to minimize the error function. Training
and testing of the SNN-based classifier for all eight classes of malts was implemented for
both of the relative resistance features (local and global) that were extracted during the
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pre-processing stage. In each case, a randomly allocated combination of six files per sample
(70%) were used for training the classifier model, and the remaining three files (30%) were
used for testing. The resultant connectivity weights within the neuron population after the
learning phase for locally normalized relative resistance features are shown in Figure 6.
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Figure 6. Changes in neuron weights after the training phase. In this case, 19 neurons among the
neuron population of 80 neurons have learnt to identify key patterns within the sensor responses for
eight classes of malts resulting in synaptic changes.

3.2. Classification Performance

The classification within the SNN is based on a winner-takes-all (WTA) logic [67],
where the class label of the neuron with the highest activation level among the population
is allocated to the presented data. The accuracy of the classifier is determined by comparing
the predicted class label to the true class label for the validation data. The experiments
for classification of malts using the SNN model were conducted for both of the extracted
features, locally normalized relative resistance and relative resistance normalized using
global min–max.

An optimization process based on differential evolution [68] was implemented to
determine a configuration for key parameters of the network. These include the minimum
plasticity, plasticity decay, and learning competition, which have a significant influence on
the classification performance of the SNN model. The optimum values for the network
parameters were derived using a fitness function based on maximizing the stable classifi-
cation accuracy of the SNN model. Certain parameters—such as the number of neurons
per class and the connectivity of neurons (number of weights per neuron)—largely depend
on the number of samples within a class, the number of sensors (dimensions of the data)
employed, and the number of timepoints used for classification. The initial plasticity pa-
rameter was set to the maximum during the network initialization and gradually decreased
based on the neuron activations and learning. Table 3 lists the network parameters, a short
description of their functionality, their bounds used for the optimization process, and the
optimum values for each parameter.
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Table 3. SNN parameters with a description of their functionality, their max–min bounds used for
the optimization, and the optimum value of the parameter obtained using grid-search.

Network Parameters Parameter Description Bounds Optimum Value

Number of neurons
per class

Number of neurons
representing each class 1–30 10

Number of weights
per neuron

Number of active
connections for each

neuron

1 to 2880 (max bound
is derived from 2 ×

number of timepoints
× quantization levels)

1795

Initial plasticity
Controls weight

changes when learning
occurs

0.75–1.00 0.84

Learning competition Controls competition
between neurons 0.1–0.75 0.48

Minimum plasticity

Minimum level to
which connectivity

among the neurons will
decay

0.1–0.50 0.21

Plastic decay
Decay of weight

connections with each
learning step

0.1–0.50 0.27

The classification performance of the network was determined using a stratified five-
fold cross-validation. For the first scenario using the locally normalized relative resistance
feature, the SNN model provided a classification performance of 90.83% with a variance
of ±4.083%. The classification performance of the SNN model for the second scenario
using relative resistance normalized using global min–max increased by 6.25%. In this
case, the five-fold cross-validation accuracy of the classifier was found to be 97.08%, with a
variance of±2.08%. For each scenario, the processing latency for the emulated learning and
recognition tasks on a standard PC with an i5 CPU, including the data-to-event encoding
and other software-based latencies due to looping and control structures, was found to be
between 1.5 and 2 s.

In order to evaluate the efficiency and accuracy of the SNN-based classifier in regard
to the overall classification performance, we compared the obtained results with statistical
machine learning tools. As most of the statistical classification methods are based on single
vector inputs [7,11,13], the temporal data was reduced to three static features: maximum
resistance change, area under the curve, and the slope of the sensor response during the
sniffing phase of the sampling. Statistical machine learning algorithms generally do not
perform well for highly multidimensional datasets [1,5,24]. Hence, principal component
analysis (PCA) was used for dimensionality reduction and the dataset was reduced to three
key components based on maximum explained variance. The comparison of classification
accuracy and latency to train and classify the dataset based on a 70:30 train:test split and
five-fold cross-validation is shown in Table 4 below.

Table 4. Comparative analysis of the proposed approach and other statistical machine learning
classifiers’ classification performance.

Method Classification Accuracy Execution Time

Akida SNN (this work) 97% 1.85 s
Linear Discriminant Analysis 84% 33 s

Support Vector Machine 89% 22 s
K-Nearest Neighbor

(weighted) 73% 14 s
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In order to validate the classifier performance, the SNN model was exposed to an
entirely unseen dataset. This phase of the work used the secondary dataset, consisting of
24 files. This test was crucial to evaluate the generalization ability of the classifier model
and eliminate the effects of inadvertent overfitting resulting from multiple uses of data
during the model development. Applying the SNN model to this dataset resulted in 91.66%
accuracy for the relative resistance features using global normalization. A confusion matrix
of the classification result is shown in Figure 7.
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As SNN models designed using the Akida MetaTF framework can be seamlessly
deployed on the Akida NsoC, the SNN-based classifier proposed in this study was imple-
mented on the Akida neuromorphic hardware to validate the performance parameters. All
functionalities of the proposed pattern recognition engine, including pre-processing, AERO
encoder, and the SNN-based classifier, were mapped onto the neuromorphic hardware
platform. As anticipated, the classification performance of the SNN model when imple-
mented on the hardware was similar to the results obtained using the software-based chip
emulator. The classification latency for a trained SNN model in an inference mode was
recorded to be 0.6 ms per inference. The dynamic power consumption of the SNN-based
classifier when implemented on the neuromorphic hardware was less than 1 mW. The
overall classification results, on both the Python-based emulator and the neuromorphic
hardware, confirm that the proposed neuromorphic framework can be efficiently integrated
as a pattern recognition engine in a portable artificial olfactory system operating under
strict power constraints to deliver highly accurate classification in real time.

4. Conclusions

This study presents the implementation of a neuromorphic approach towards the
encoding and classification of electronic nose data. The proposed approach was used to
identify eight classes of malts and has potential as an application for quality control in
the brewing industry. Experiments were conducted using a commercial e-nose system to
record a dataset consisting of time-varying information of sensor responses when exposed
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to different malts under semi-laboratory conditions. The classifier proposed in this study
utilized the combination of the Akida SNN and the AERO encoder, a neuromorphic
approach that has previously delivered highly accurate results on a benchmark machine
olfaction dataset [12]. The proposed method successfully classified the dataset with an
accuracy of 97.08% and a maximum processing latency of 0.4 ms per inference when
deployed on the Akida neuromorphic hardware. A secondary dataset that was used to
validate the classifier model in an ‘inference-only’ mode was classified with an accuracy
of 91.66%. These results could potentially be further improved by refinements to pre-
processing that can enhance informative independent components for malt classes that
are misclassified.

Based on these results, we can conclude that the classifier model implemented using
Akida SNN in conjunction with the AERO encoder provides a promising platform for
odor recognition systems. An application targeted towards the identification of malts
based on their aroma profile, generally considered a nontrivial classification task using
traditional machine learning algorithms, was successfully demonstrated in this work with
a classification accuracy greater than 90% under different scenarios. The developed model
can be deployed on the Akida NsoC, thus enabling the integration of a bio-inspired classi-
fier model within a commercial e-nose system. A comparative analysis of the proposed
approach with statistical machine learning classifiers shows that the SNN-based classifier
outperforms the statistical algorithms by a significant margin for both accuracy and pro-
cessing latency. A performance-based comparison of the neuromorphic model proposed
in this work with other neuromorphic olfactory approaches, such as [13,14,26,27,69,70],
could not be established as their inherent structures, including spike encoding schemes,
neuron models, SNN architectures, and implementation of learning algorithms, vary vastly.
The proposed methodology, however, does not require a graphic processing unit (GPU)-
based model simulation, unlike in [13], or a complex bio-realistic model, as used in [14].
Furthermore, the SNN-based classifier can be entirely mapped on a single neural pro-
cessing unit core, as opposed to multiple cores used in [14], leading to a low-power and
low-latency implementation.

The application of such real-time and highly accurate e-nose systems can be extended
to fields such as food technology, the brewing and wine industries, and biosecurity. Future
research in this domain will focus on encoding parameters such as rank-order code within
the AERO events to analyze its impact on classification performance.
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