Novel Privacy Preserving Non-Invasive Sensing-Based Diagnoses of Pneumonia Disease Leveraging Deep Network Model
Abstract
:1. Introduction
1.1. Data Security
1.2. Data Classification Using Deep Learning
2. Related Work
Contributions of the Work
- To secure the medical images (X-ray images), a neural network-based image encryption is proposed, and a comparison is made to show the effectiveness of the proposed encryption;
- Collection of primary data from thee different hospitals in Rawalpindi/Islamabad, Pakistan;
- Statistical and physiological features are integrated for the non-invasive diagnosis of pneumonia;
- We developed a scheme that can reliably predict the presence of pneumonia, and it can be implemented using a smartphone application. CNN is used as a classification algorithm for the proposed approach;
- A K-fold analysis is also used in this research to select a particular subset of the dataset, and as a consequence, the suggested model has maximum accuracy;
- We built multiple learning models called “K-learning models” after performing the K-fold analysis. The purpose of these models is to deploy ensemble-based learning approaches.
- For the validation of the proposed model, various metrics such as precision, recall, F1 score, and support are used. Misclassifications in the context of pneumonia detection might be exceedingly expensive in terms of human lives if a model incorrectly identifies false positives; hence, we used accuracy as mentioned in addition to the earlier measures to evaluate the proposed model. Moreover, for more validation, tuning is also performed.
3. Chaotic Maps Used in the Proposed Work
3.1. Logistic Map
3.2. Piece-Wise Linear Chaotic Map (PWLCM)
3.3. Logistic Tent Map (LTS)
4. Proposed Pseudo-Random Number Generator
- Pixel scrambling ();
- Pixel substitution (PS) ();
- Pixel bit scrambling (PNS) ();
- () The total number of iterations of the chaotic neuron transfer function is updated using ().
5. Proposed Cryptosystem for Medical Images
5.1. P-Box
5.2. SP-Box
6. Proposed Encryption Scheme Evaluation
- Mean square error (MSE);
- Peak signal to noise ratio (PSNR);
- Entropy;
- Correlation;
- Energy;
- Contrast;
- Execution time.
Noise Attack Analysis
7. Convolutional Neural Networks (CNN)
7.1. Transfer Learning
7.2. Fine Tuning
8. Materials and Methods
Data Representation
9. Model Selection, Training and Evaluation
- The collection of data was in the form of (X-ray) images and consent forms. Different X-ray images varied with size; for example, , where A and B denote the rows and columns of pixels, respectively.
- Statistical features were extracted from the X-ray images using CNN, which extracted features through the filters available in different layers. Initial layer filters were responsible for extracting low-level features, while higher layers filters were responsible for extracting high-level features. Such extracted features were then forwarded to the classifier for the decision.
- Split features were extracted from X-ray images by observing patterns. For example, the patterns shown on the X-ray images of healthy individuals varied from the patterns that appeared on the X-ray images of pneumonia-infected patients. Here, CNN extracted different features/patterns and took a decision based on the extracted features/patterns. Pneumonia images are different from those of normal patients. From Figure 6i–p, one can see different colors, showing a sign of abnormality in the patient. However, the X-ray of the normal patients does not show color variation (see Figure 6a–h).
- Distinct feature vectors (X.Vs) for each X-ray image were made: = , , … .
- The given matrix represents only those feature vectors created from statistical features extracted from the X-ray images. Such features can be expressed in a single data set, as shown in Equation (14).
9.1. K-Fold Analysis
9.2. Voting Techniques
9.2.1. Hard Voting
9.2.2. Soft Voting
10. Experimental Setup
10.1. Results and Discussion
10.2. Confusion Matrix
10.3. Receiver Operator Characteristic (ROC) Curve
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Priya, S.; Santhi, B. A novel visual medical image encryption for secure transmission of authenticated watermarked medical images. Mob. Netw. Appl. 2019, 1–8. [Google Scholar] [CrossRef]
- Shah, S.A.; Ahmad, J.; Masood, F.; Shah, S.Y.; Pervaiz, H.; Taylor, W.; Imran, M.A.; Abbasi, Q.H. Privacy-preserving wandering behavior sensing in dementia patients using modified logistic and dynamic newton leipnik maps. IEEE Sens. J. 2020, 21, 3669–3679. [Google Scholar] [CrossRef]
- Singh, N.; Sinha, A. Optical image encryption using fractional Fourier transform and chaos. Opt. Lasers Eng. 2008, 46, 117–123. [Google Scholar] [CrossRef]
- Hennelly, B.M.; Sheridan, J.T. Image encryption and the fractional Fourier transform. Optik 2003, 114, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Zhe, Z.; Haibing, Y.; Wenjie, P.; Yunpeng, Z. A chaos-based image encryption algorithm using wavelet transform. In Proceedings of the 2010 2nd International Conference on Advanced Computer Control, Shenyang, China, 27–29 March 2010; Volume 2, pp. 217–222. [Google Scholar]
- Maniccam, S.S.; Bourbakis, N.G. Image and video encryption using SCAN patterns. Pattern Recognit. 2004, 37, 725–737. [Google Scholar] [CrossRef]
- Ravichandran, D.; Banu, S.A.; Murthy, B.; Balasubramanian, V.; Fathima, S.; Amirtharajan, R. An efficient medical image encryption using hybrid DNA computing and chaos in transform domain. Med. Biol. Eng. Comput. 2021, 59, 589–605. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.; Alhumyani, H.; Masud, M.; Alshamrani, S.S.; Cheikhrouhou, O.; Muhammad, G.; Hossain, M.S.; Abbas, A.M. Framework for efficient medical image encryption using dynamic S-boxes and chaotic maps. IEEE Access 2020, 8, 160433–160449. [Google Scholar] [CrossRef]
- Ali, T.S.; Ali, R. A novel medical image signcryption scheme using TLTS and Henon chaotic map. IEEE Access 2020, 8, 71974–71992. [Google Scholar] [CrossRef]
- Adedokun, E.; Akan, B.J.; Salau, H.; Umoh, I.; Nwosu, R.I.; Ibrahim, Y. A Secure Chaotic Framework for Medical Image Encryption using a 3D Logistic Map. Appl. Model. Simul. 2020, 4, 141–148. [Google Scholar]
- Gafsi, M.; Abbassi, N.; Hajjaji, M.A.; Malek, J.; Mtibaa, A. Improved chaos-based cryptosystem for medical image encryption and decryption. Sci. Program. 2020, 2020, 6612390. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Poori, S.; Narasimhan, M.; Rethinam, S.; Kuppusamy, C.V.; Balasubramanian, R.; Annamalai, V.M.P.; Rengarajan, A. Chua’s diode and strange attractor: A three-layer hardware–software co-design for medical image confidentiality. IET Image Process. 2020, 14, 1354–1365. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Liu, C.; Sun, Q.; Peng, W. Differentiating novel coronavirus pneumonia from general pneumonia based on machine learning. Biomed. Eng. Online 2020, 19, 66. [Google Scholar] [CrossRef] [PubMed]
- Greenslade, L. World Pneumonia Day during a Global Pneumonia Pandemic: 12 November. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 319, L859–L860. [Google Scholar] [CrossRef] [PubMed]
- Casado, F.; Morty, R.E. World Health Observances in November 2020: Adult and Pediatric Pneumonia, Preterm Birth, and Chronic Obstructive Pulmonary Disease in Focus. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 319, L854–L858. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xie, P.; Zhang, H.; Li, D.; Cheng, M. Predict pneumonia with chest X-ray images based on convolutional deep neural learning networks. J. Intell. Fuzzy Syst. 2020, 39, 2893–2907. [Google Scholar] [CrossRef]
- Chen, C.Y.; Lin, W.C.; Yang, H.Y. Diagnosis of ventilator-associated pneumonia using electronic nose sensor array signals: Solutions to improve the application of machine learning in respiratory research. Respir. Res. 2020, 21, 45. [Google Scholar] [CrossRef]
- Cooper, G.F.; Aliferis, C.F.; Ambrosino, R.; Aronis, J.; Buchanan, B.G.; Caruana, R.; Fine, M.J.; Glymour, C.; Gordon, G.; Hanusa, B.H.; et al. An evaluation of machine-learning methods for predicting pneumonia mortality. Artif. Intell. Med. 1997, 9, 107–138. [Google Scholar] [CrossRef]
- Chumbita, M.; Cillóniz, C.; Puerta-Alcalde, P.; Moreno-García, E.; Sanjuan, G.; Garcia-Pouton, N.; Soriano, A.; Torres, A.; Garcia-Vidal, C. Can artificial intelligence improve the management of pneumonia. J. Clin. Med. 2020, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Mohanan, M.; Babiarz, K.S.; Goldhaber-Fiebert, J.D.; Miller, G.; Vera-Hernández, M. Effect of a large-scale social franchising and telemedicine program on childhood diarrhea and pneumonia outcomes in India. Health Aff. 2016, 35, 1800–1809. [Google Scholar] [CrossRef]
- Ayan, E.; Ünver, H.M. Diagnosis of pneumonia from chest X-ray images using deep learning. In Proceedings of the 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, 24–26 April 2019; pp. 1–5. [Google Scholar]
- Bhartiya, P.; Yadav, S.; Gupta, A.; Gupta, D. Pneumonia Detection Using CNN and ANN Based on Deep Learning Approach. In Emerging Technologies for Healthcare: Internet of Things and Deep Learning Models; Wiley: Hoboken, NJ, USA, 2021; pp. 181–201. [Google Scholar]
- Moujahid, H.; Cherradi, B.; El Gannour, O.; Bahatti, L.; Terrada, O.; Hamida, S. Convolutional Neural Network Based Classification of Patients with Pneumonia using X-ray Lung Images. Transfer 2020, 2, 16. [Google Scholar] [CrossRef]
- Ho, T.T.; Park, J.; Kim, T.; Park, B.; Lee, J.; Kim, J.Y.; Kim, K.B.; Choi, S.; Kim, Y.H.; Lim, J.K.; et al. Deep learning models for predicting severe progression in COVID-19-infected patients: Retrospective study. JMIR Med. Inf. 2021, 9, e24973. [Google Scholar] [CrossRef]
- Kavitha, M.; Jayasankar, T.; Venkatesh, P.M.; Mani, G.; Bharatiraja, C.; Twala, B. COVID-19 disease diagnosis using smart deep learning techniques. J. Appl. Sci. Eng. 2021, 24, 271–277. [Google Scholar]
- Patel, R. Predicting Invasive Ductal Carcinoma Using a Reinforcement Sample Learning Strategy Using Deep Learning. arXiv 2021, arXiv:2105.12564. [Google Scholar]
- Hu, Q.; Drukker, K.; Giger, M.L. Role of standard and soft tissue chest radiography images in COVID-19 diagnosis using deep learning. In Proceedings of the Medical Imaging 2021: Computer-Aided Diagnosis, San Diego, CA, USA, 15–20 February 2021; Volume 11597, p. 1159704. [Google Scholar]
- Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.; Shpanskaya, K.; et al. Chexnet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv 2017, arXiv:1711.05225. [Google Scholar]
- Bai, B.; Nazir, S.; Bai, Y.; Anees, A. Security and provenance for Internet of Health Things: A systematic literature review. J. Softw. Evol. Process 2021, 33, e2335. [Google Scholar] [CrossRef]
- Al-Maadeed, T.A.; Hussain, I.; Anees, A.; Mustafa, M.T. A image encryption algorithm based on chaotic Lorenz system and novel primitive polynomial S-boxes. In Multimedia Tools and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–22. [Google Scholar]
- Gondal, M.A.; Anees, A. Analysis of optimized signal processing algorithms for smart antenna system. Neural Comput. Appl. 2013, 23, 1083–1087. [Google Scholar] [CrossRef]
- Coppersmith, D. The Data Encryption Standard (DES) and its strength against attacks. IBM J. Res. Dev. 1994, 38, 243–250. [Google Scholar] [CrossRef]
- Osvik, D.A.; Bos, J.W.; Stefan, D.; Canright, D. Fast software AES encryption. In International Workshop on Fast Software Encryption; Springer: Berlin/Heidelberg, Germany, 2010; pp. 75–93. [Google Scholar]
- Basu, S. International data encryption algorithm (idea)—A typical illustration. J. Glob. Res. Comput. Sci. 2011, 2, 116–118. [Google Scholar]
- Hussain, I.; Anees, A.; Al-Maadeed, T.A.; Mustafa, M.T. Construction of s-box based on chaotic map and algebraic structures. Symmetry 2019, 11, 351. [Google Scholar] [CrossRef] [Green Version]
- Shafique, A. A new algorithm for the construction of substitution box by using chaotic map. Eur. Phys. J. Plus 2020, 135, 194. [Google Scholar] [CrossRef]
- Ahmed, F.; Anees, A.; Abbas, V.U.; Siyal, M.Y. A noisy channel tolerant image encryption scheme. Wirel. Pers. Commun. 2014, 77, 2771–2791. [Google Scholar] [CrossRef]
- Shafique, A.; Ahmed, J. Dynamic substitution based encryption algorithm for highly correlated data. Multidimens. Syst. Signal Process. 2021, 32, 91–114. [Google Scholar] [CrossRef]
- Raghavendra, C.; Sivasubramanian, S.; Kumaravel, A. Improved image compression using effective lossless compression technique. Clust. Comput. 2019, 22, 3911–3916. [Google Scholar] [CrossRef]
- Rehman, M.U.; Shafique, A.; Khalid, S.; Hussain, I. Dynamic Substitution and Confusion-Diffusion-Based Noise-Resistive Image Encryption Using Multiple Chaotic Maps. IEEE Access 2021, 9, 52277–52291. [Google Scholar] [CrossRef]
- Martin, K.; Lukac, R.; Plataniotis, K.N. Efficient encryption of wavelet-based coded color images. Pattern Recognit. 2005, 38, 1111–1115. [Google Scholar] [CrossRef]
- Jamal, S.S.; Anees, A.; Ahmad, M.; Khan, M.F.; Hussain, I. Construction of cryptographic S-boxes based on mobius transformation and chaotic tent-sine system. IEEE Access 2019, 7, 173273–173285. [Google Scholar] [CrossRef]
- Shafique, A.; Shahid, J. Novel image encryption cryptosystem based on binary bit planes extraction and multiple chaotic maps. Eur. Phys. J. Plus 2018, 133, 331. [Google Scholar] [CrossRef]
- Anees, A.; Hussain, I. A novel method to identify initial values of chaotic maps in cybersecurity. Symmetry 2019, 11, 140. [Google Scholar] [CrossRef] [Green Version]
- Anees, A.; Siddiqui, A.M.; Ahmed, J.; Hussain, I. A technique for digital steganography using chaotic maps. Nonlinear Dyn. 2014, 75, 807–816. [Google Scholar] [CrossRef]
- Anees, A.; Siddiqui, A.M.; Ahmed, F. Chaotic substitution for highly autocorrelated data in encryption algorithm. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 3106–3118. [Google Scholar] [CrossRef]
- Shafique, A.; Ahmed, J.; Boulila, W.; Ghandorh, H.; Ahmad, J.; Rehman, M.U. Detecting the security level of various cryptosystems using machine learning models. IEEE Access 2020, 9, 9383–9393. [Google Scholar] [CrossRef]
- Bouslimi, D.; Coatrieux, G.; Cozic, M.; Roux, C. A joint encryption/watermarking system for verifying the reliability of medical images. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, Y.; Xie, T.; Chen, M.Z. Breaking a novel image encryption scheme based on improved hyperchaotic sequences. Nonlinear Dyn. 2013, 73, 2083–2089. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Cao, W.; Chen, C.P. Image encryption using binary bitplane. Signal Process. 2014, 100, 197–207. [Google Scholar] [CrossRef]
- Li, C. Cracking a hierarchical chaotic image encryption algorithm based on permutation. Signal Process. 2016, 118, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; Zheng, L. A transfer learning method with deep residual network for pediatric pneumonia diagnosis. Comput. Methods Programs Biomed. 2020, 187, 104964. [Google Scholar] [CrossRef]
- Sánchez Morillo, D.; Leon Jimenez, A.; Moreno, S.A. Computer-aided diagnosis of pneumonia in patients with chronic obstructive pulmonary disease. J. Am. Med. Inf. Assoc. 2013, 20, e111–e117. [Google Scholar] [CrossRef] [Green Version]
- Luján-García, J.E.; Yáñez-Márquez, C.; Villuendas-Rey, Y.; Camacho-Nieto, O. A transfer learning method for pneumonia classification and visualization. Appl. Sci. 2020, 10, 2908. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.J.; Tao, Y.H. Machine Learning Based Common Radiologist-Level Pneumonia Detection on Chest X-rays. In Proceedings of the 2019 13th International Conference on Signal Processing and Communication Systems (ICSPCS), Gold Coast, QLD, Australia, 16–18 December 2019; pp. 1–7. [Google Scholar]
- El Asnaoui, K.; Chawki, Y.; Idri, A. Automated methods for detection and classification pneumonia based on X-ray images using deep learning. In Artificial Intelligence and Blockchain for Future Cybersecurity Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 257–284. [Google Scholar]
- Siddiqi, R. Automated pneumonia diagnosis using a customized sequential convolutional neural network. In Proceedings of the 2019 3rd International Conference on Deep Learning Technologies, Xiamen, China, 5–7 July 2019; pp. 64–70. [Google Scholar]
- Civit-Masot, J.; Luna-Perejón, F.; Domínguez Morales, M.; Civit, A. Deep learning system for COVID-19 diagnosis aid using X-ray pulmonary images. Appl. Sci. 2020, 10, 4640. [Google Scholar] [CrossRef]
- Ni, Q.; Sun, Z.Y.; Qi, L.; Chen, W.; Yang, Y.; Wang, L.; Zhang, X.; Yang, L.; Fang, Y.; Xing, Z. A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. Eur. Radiol. 2020, 30, 6517–6527. [Google Scholar] [CrossRef]
- Zhang, R.; Tie, X.; Qi, Z.; Bevins, N.B.; Zhang, C.; Griner, D.; Song, T.K.; Nadig, J.D.; Schiebler, M.L.; Garrett, J.W. Diagnosis of coronavirus disease 2019 pneumonia by using chest radiography: Value of artificial intelligence. Radiology 2021, 298, E88–E97. [Google Scholar] [CrossRef]
- Antin, B.; Kravitz, J.; Martayan, E. Detecting pneumonia in chest X-Rays with supervised learning. Semanticscholar. org 2017. Available online: http://cs229.stanford.edu/proj2017/final-reports/5231221.pdf (accessed on 9 December 2021).
- Jain, R.; Nagrath, P.; Kataria, G.; Kaushik, V.S.; Hemanth, D.J. Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning. Measurement 2020, 165, 108046. [Google Scholar] [CrossRef]
- Ismail, S.M.; Said, L.A.; Radwan, A.G.; Madian, A.H.; Abu-Elyazeed, M.F. Generalized double-humped logistic map-based medical image encryption. J. Adv. Res. 2018, 10, 85–98. [Google Scholar] [CrossRef]
- Tian, J.; Lu, Y.; Zuo, X.; Liu, Y.; Qiao, B.; Fan, M.; Ge, Q.; Fan, S. A novel image encryption algorithm using PWLCM map-based CML chaotic system and dynamic DNA encryption. Multimed. Tools Appl. 2021, 80, 32841–32861. [Google Scholar] [CrossRef]
- Hussain, I.; Anees, A.; Algarni, A. A novel algorithm for thermal image encryption. J. Integr. Neurosci. 2018, 17, 447–461. [Google Scholar] [CrossRef] [PubMed]
- Shafique, A.; Ahmed, F. Image encryption using dynamic S-box substitution in the wavelet domain. Wirel. Pers. Commun. 2020, 115, 2243–2268. [Google Scholar] [CrossRef]
- Hussain, I.; Anees, A.; Aslam, M.; Ahmed, R.; Siddiqui, N. A noise resistant symmetric key cryptosystem based on S 8 S-boxes and chaotic maps. Eur. Phys. J. Plus 2018, 133, 167. [Google Scholar] [CrossRef]
- Hussain, I.; Anees, A.; Alkhaldi, A.H.; Aslam, M.; Siddiqui, N.; Ahmed, R. Image encryption based on Chebyshev chaotic map and S8 S-boxes. Opt. Appl. 2019, 49, 317–330. [Google Scholar]
- Shafique, A.; Hazzazi, M.M.; Alharbi, A.R.; Hussain, I. Integration of Spatial and Frequency Domain Encryption for Digital Images. IEEE Access 2021, 9, 149943–149954. [Google Scholar] [CrossRef]
- Wen, H.; Zhang, C.; Huang, L.; Ke, J.; Xiong, D. Security Analysis of a Color Image Encryption Algorithm Using a Fractional-Order Chaos. Entropy 2021, 23, 258. [Google Scholar] [CrossRef]
- Hussain, I.; Anees, A.; AlKhaldi, A.H.; Algarni, A.; Aslam, M. Construction of chaotic quantum magnets and matrix Lorenz systems S-boxes and their applications. Chin. J. Phys. 2018, 56, 1609–1621. [Google Scholar] [CrossRef]
- Li, Z.; Peng, C.; Tan, W.; Li, L. An effective chaos-based image encryption scheme using imitating jigsaw method. Complexity 2021, 2021, 8824915. [Google Scholar] [CrossRef]
- Zhang, Y. A new unified image encryption algorithm based on a lifting transformation and chaos. Inf. Sci. 2021, 547, 307–327. [Google Scholar] [CrossRef]
- Naumann, U. On the Computational Complexity of the Chain Rule of Differential Calculus. arXiv 2021, arXiv:2107.05355. [Google Scholar]
- Jo, J.; Kim, S.; Park, I.C. Energy-efficient convolution architecture based on rescheduled dataflow. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 4196–4207. [Google Scholar] [CrossRef]
- Wu, J. CNN for Dummies; Nanjing University: Nanjing, China, 2015; Volume 202. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Rehman, M.U.; Shafique, A.; Khalid, S.; Driss, M.; Rubaiee, S. Future Forecasting of COVID-19: A Supervised Learning Approach. Sensors 2021, 21, 3322. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.U.; Najam, S.; Khalid, S.; Shafique, A.; Alqahtani, F.; Baothman, F.; Shah, S.Y.; Abbasi, Q.H.; Imran, M.A.; Ahmad, J. Infrared Sensing Based Non-invasive Initial Diagnosis of Chronic Liver Disease Using Ensemble Learning. IEEE Sens. J. 2021, 21, 19395–19406. [Google Scholar] [CrossRef]
- Chouhan, V.; Singh, S.K.; Khamparia, A.; Gupta, D.; Tiwari, P.; Moreira, C.; Damaševičius, R.; De Albuquerque, V.H.C. A novel transfer learning based approach for pneumonia detection in chest X-ray images. Appl. Sci. 2020, 10, 559. [Google Scholar] [CrossRef] [Green Version]
- Rahman, T.; Chowdhury, M.E.; Khandakar, A.; Islam, K.R.; Islam, K.F.; Mahbub, Z.B.; Kadir, M.A.; Kashem, S. Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X-ray. Appl. Sci. 2020, 10, 3233. [Google Scholar] [CrossRef]
- Yang, K.; Qinami, K.; Li, F.F.; Deng, J.; Russakovsky, O. Towards fairer datasets: Filtering and balancing the distribution of the people subtree in the imagenet hierarchy. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, 27–30 January 2020; pp. 547–558. [Google Scholar]
- Guo, Y.; Shi, H.; Kumar, A.; Grauman, K.; Rosing, T.; Feris, R. Spottune: Transfer learning through adaptive fine-tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4805–4814. [Google Scholar]
- Hopstaken, R.; Muris, J.; Knottnerus, J.; Kester, A.; Rinkens, P.; Dinant, G. Contributions of symptoms, signs, erythrocyte sedimentation rate, and C-reactive protein to a diagnosis of pneumonia in acute lower respiratory tract infection. Br. J. Gen. Pract. 2003, 53, 358–364. [Google Scholar]
- Khatri, A.; Jain, R.; Vashista, H.; Mittal, N.; Ranjan, P.; Janardhanan, R. Pneumonia identification in chest X-ray images using EMD. In Trends in Communication, Cloud, and Big Data; Springer: Berlin/Heidelberg, Germany, 2020; pp. 87–98. [Google Scholar]
- Suganthi, L.; Nirmala, K.; Deepa, S.; Nagalakshmi, K.; Santhya, M. Detection of Pneumonia Clouds From Chest X-ray Images. In Data Intelligence and Cognitive Informatics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 819–829. [Google Scholar]
Proposed Work | |||||||
Encrypted X-ray Images | MSE | PSNR | Entropy | Correlation | Energy | Contrast | Execution Time (s) |
Normal patient X-ray-1 | 258 | 18 | 7.9992 | 0.0001 | 0.154 | 9.2413 | 0.021 |
Normal patient X-ray-2 | 259 | 15 | 7.9991 | −0.0054 | 0.0156 | 10.7891 | 0.020 |
Normal patient X-ray-3 | 260 | 16 | 7.9988 | 0.0010 | 0.0155 | 10.1584 | 0.025 |
Normal patient X-ray-4 | 251 | 16 | 7.9991 | 0.0001 | 0.0155 | 10.7914 | 0.027 |
Pneumonia patient X-ray-1 | 251 | 19 | 7.9991 | −0.0035 | 0.0152 | 10.7341 | 0.029 |
Pneumonia patient X-ray-2 | 256 | 17 | 7.9997 | 0.0006 | 0.0151 | 10.7982 | 0.030 |
Pneumonia patient X-ray-3 | 251 | 16 | 7.9992 | −0.0015 | 0.0155 | 10.1351 | 0.022 |
Pneumonia patient X-ray-4 | 260 | 15 | 7.9990 | 0.0004 | 0.0154 | 10.7546 | 0.025 |
Average | 260 | 15 | 7.9990 | 0.0004 | 0.0154 | 10.7546 | 0.025 |
Comparison | |||||||
ExistingSchemes | MSE | PSNR | Entropy | Correlation | Energy | Contrast | Execution Time (s) |
Ref. [68] | 249 | 20 | 7.9953 | −0.0015 | 0.0156 | 9.9882 | 1.361 |
Ref. [69] | 248 | 25 | 7.9959 | 0.0006 | 0.0155 | 9.9783 | 1.399 |
Ref. [70] | 242 | 20 | 7.9981 | 0.0002 | 0.0151 | 9.9985 | 2.798 |
Ref. [71] | 250 | 20 | 7.9981 | 0.0006 | 0.0155 | 9.6570 | 2.331 |
Ref. [7] | 249 | 23 | 7.9925 | −0.0075 | 0.0160 | 9.9944 | 2.978 |
Ref. [72] | 248 | 26 | 7.9944 | −0.0050 | 0.0159 | 9.6986 | 2.036 |
Ref. [73] | 247 | 21 | 7.9972 | 0.0009 | 0.0158 | 9.9973 | 2.971 |
Value Assigned | Cough | Fever | Breathing Issues | Chest Pain | Loss of Appetite | Energy | Fatigue | Vomiting | Nausea | Sweating | Shaking Chill | Diarrhea |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yes | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
No | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
High intense symptom | 2 | 2 | 2 | 2 | N/A | N/A | N/A | 2 | 2 | 2 | 2 | N/A |
Value Assigned | Cough | Fever | Breathing Issues | Chest Pain | Loss of Appetite | Energy | Fatigue | Vomiting | Nausea | Sweating | Shaking Chill | Diarrhea | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P-1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Normal |
P-2 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Normal |
P-3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Normal |
P-4 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | Normal |
P-5 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | Normal |
P-6 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | Normal |
P-7 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | Normal |
P-8 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | Normal |
P-9 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | Normal |
P-10 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | Normal |
P-11 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | Normal |
P-12 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | Normal |
P-13 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | Normal |
P-14 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | Normal |
P-15 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | Normal |
P-16 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | Normal |
P-17 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | Normal |
P-18 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | Normal |
P-19 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | Normal |
P-20 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | Normal |
P-21 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | Normal |
P-22 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | Normal |
P-23 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Normal |
P-24 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | Normal |
P-25 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | Normal |
P-26 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | Normal |
P-27 | 1 | 1 | 1 | 0 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | Normal |
P-28 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | Normal |
P-29 | 0 | 1 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | Normal |
P-30 | 0 | 1 | 1 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | Normal |
P-31 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | Pneumonia |
P-32 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | Pneumonia |
P-33 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | Pneumonia |
P-34 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | Pneumonia |
P-35 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | Pneumonia |
P-36 | 1 | 0 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 0 | Pneumonia |
P-37 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | Pneumonia |
P-38 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | Pneumonia |
P-39 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | Pneumonia |
P-40 | 1 | 2 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | Pneumonia |
P-41 | 2 | 2 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | Pneumonia |
P-42 | 2 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Pneumonia |
P-43 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | Pneumonia |
P-44 | 2 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | Pneumonia |
P-45 | 1 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | Pneumonia |
P-46 | 1 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | Pneumonia |
P-47 | 1 | 2 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | Pneumonia |
P-48 | 0 | 2 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | Pneumonia |
P-49 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | Pneumonia |
P-50 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | Pneumonia |
P-51 | 1 | 2 | 0 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | Pneumonia |
P-52 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | Pneumonia |
P-53 | 1 | 1 | 0 | 0 | 2 | 0 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | Pneumonia |
P-54 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | Pneumonia |
P-55 | 1 | 1 | 0 | 0 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | Pneumonia |
P-56 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | Pneumonia |
P-57 | 1 | 1 | 0 | 0 | 2 | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | Pneumonia |
P-58 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | Pneumonia |
P-59 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | Pneumonia |
P-60 | 1 | 1 | 0 | 0 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | Pneumonia |
Parameters Parameters | CNN | Transfer Learning | Fine Tuning | RF | NB | SVM | SVM | SVM | SVM |
---|---|---|---|---|---|---|---|---|---|
(Sigmoid | (Linear | (rbf | (Polynomial | ||||||
Kernel) | Kernel) | Kernel) | Kernel) | ||||||
Accuracy | |||||||||
analysis | |||||||||
Proposed | 95.7 | 96.3 | 97.0 | 0.99 | 89 | 13 | 51 | 94 | 94 |
Ref. [52] | 90 | 80 | 88 | 89 | 89 | 91 | 90 | 83 | 85 |
Ref. [53] | 85 | 92 | 91 | 91 | 90 | 91 | 91 | 90 | 91 |
Ref. [57] | 94 | 74 | 76 | 78 | 72 | 73 | 81 | 83 | 85 |
Ref. [59] | 84 | 82 | 81 | 88 | 91 | 92 | 90 | 91 | 96 |
Ref. [60] | 90 | 85 | 81 | 91 | 91 | 93 | 90 | 91 | 92 |
Precision | |||||||||
analysis | |||||||||
Proposed | 0.96 | 0.97 | 0.99 | 0.88 | 1.00 | 0.31 | 0.34 | 1.00 | 0.96 |
Ref. [52] | 0.83 | 0.91 | 0.89 | 0.84 | 0.85 | 0.86 | 0.88 | 0.91 | 0.88 |
Ref. [53] | 0.91 | 0.94 | 0.92 | 0.95 | 0.92 | 0.92 | 0.94 | 0.97 | 0.98 |
Ref. [57] | 0.96 | 0.94 | 0.95 | 0.97 | 0.95 | 098 | 0.97 | 0.98 | 0.97 |
Ref. [59] | 0.88 | 0.87 | 0.86 | 0.83 | 0.91 | .96 | 0.97 | 0.96 | 0.97 |
Ref. [60] | 0.88 | 0.87 | 0.86 | 0.83 | 0.91 | .96 | 0.97 | 0.96 | 0.97 |
Recall | |||||||||
analysis | |||||||||
Proposed | 0.96 | 0.99 | 1.0 | 0.95 | 0.79 | 0.14 | 0.86 | 0.91 | 0.84 |
Ref. [52] | 0.88 | 0.91 | 0.92 | 0.94 | 0.90 | 0.93 | 0.94 | 0.93 | 0.91 |
Ref. [53] | 0.91 | 0.93 | 0.90 | 0.89 | 0.97 | 0.93 | 0.94 | 0.91 | 0.90 |
Ref. [57] | 0.90 | 0.91 | 0.89 | 0.88 | 0.95 | 0.91 | 0.92 | 0.90 | 0.91 |
Ref. [59] | 0.96 | 0.90 | 0.91 | 0.90 | 0.91 | 0.95 | 0.94 | 0.91 | 0.95 |
Ref. [60] | 0.90 | 0.91 | 0.93 | 0.95 | 0.95 | 0.91 | 0.91 | 0.90 | 0.90 |
F1-score | |||||||||
analysis | |||||||||
Proposed | 0.97 | 0.98 | 0.99 | 0.95 | 0.88 | 0.21 | 0.44 | 0.93 | 90 |
Ref. [52] | 0.85 | 0.91 | 0.80 | 0.87 | 0.84 | 0.96 | 0.92 | 0.93 | 0.91 |
Ref. [53] | 0.91 | 0.91 | 0.82 | 0.91 | 0.92 | 0.90 | 0.97 | 0.95 | 0.93 |
Ref. [57] | 0.95 | 0.96 | 0.91 | 0.90 | 0.90 | 0.95 | 0.94 | 0.91 | 0.90 |
Ref. [59] | 0.90 | 0.89 | 0.91 | 0.92 | 0.91 | 0.90 | 0.94 | 0.95 | 0.98 |
Ref. [60] | 0.90 | 0.89 | 0.91 | 0.92 | 0.91 | 0.90 | 0.94 | 0.95 | 0.98 |
Parameters | CNN | Transfer Learning | Fine Tuning | RF | NB | SVM | SVM | SVM | SVM |
---|---|---|---|---|---|---|---|---|---|
(Sigmoid | (Linear | (rbf | (Polynomial | ||||||
Kernel) | Kernel) | Kernel) | Kernel) | ||||||
Accuracy | |||||||||
analysis | |||||||||
K = 25 | 95.7 | 96.3 | 97 | 92 | 88 | 12 | 50 | 90 | 91 |
K = 30 | 94.0 | 94.4 | 95 | 85 | 79 | 21 | 55 | 84 | 91 |
K = 35 | 93.9 | 94.6 | 96 | 95 | 89 | 12 | 50 | 94 | 95 |
K = 40 | 93.5 | 93.9 | 94.5 | 96 | 90 | 12 | 50 | 95 | 95 |
Precision | |||||||||
analysis | |||||||||
K = 25 | 0.96 | 0.97 | 0.99 | 0.93 | 1.00 | 0.31 | 0.33 | 1.00 | 1.00 |
K = 30 | 0.93 | 0.95 | 0.97 | 0.81 | 1.00 | 0.32 | 0.33 | 1.00 | 1.00 |
K = 35 | 0.92 | 0.94 | 0.95 | 0.94 | 0.98 | 0.31 | 0.32 | 0.97 | 0.97 |
K = 40 | 0.91 | 0. | 0.93 | 0.92 | 1.00 | 0.32 | 0.32 | 1.00 | 1.00 |
Recall | |||||||||
analysis | |||||||||
K = 25 | 0.96 | 0.99 | 1.0 | 0.91 | 0.79 | 0.16 | 1.00 | 0.90 | 0.92 |
K = 30 | 0.95 | 0.96 | 0.97 | 0.81 | 0.62 | 0.33 | 1.00 | 0.80 | 0.91 |
K = 35 | 0.95 | 0.97 | 0.97 | 0.92 | 0.78 | 0.14 | 1.00 | 0.91 | 0.92 |
K = 40 | 0.94 | 0.95 | 0.96 | 0.96 | 0.82 | 0.13 | 1.00 | 0.92 | 0.91 |
F1-score | |||||||||
analysis | |||||||||
K = 25 | 0.97 | 0.98 | 0.99 | 0.91 | 0.86 | 0.21 | 0.46 | 0.93 | 0.92 |
K = 30 | 0.96 | 0.97 | 0.98 | 0.82 | 0.76 | 0.32 | 0.51 | 0.89 | 0.96 |
K = 35 | 0.95 | 0.96 | 0.97 | 0.92 | 0.90 | 0.21 | 0.51 | 0.94 | 0.91 |
K = 40 | 0.95 | 0.97 | 0.97 | 0.94 | 0.83 | 0.20 | 0.50 | 0.93 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, M.U.; Shafique, A.; Khan, K.H.; Khalid, S.; Alotaibi, A.A.; Althobaiti, T.; Ramzan, N.; Ahmad, J.; Shah, S.A.; Abbasi, Q.H. Novel Privacy Preserving Non-Invasive Sensing-Based Diagnoses of Pneumonia Disease Leveraging Deep Network Model. Sensors 2022, 22, 461. https://doi.org/10.3390/s22020461
Rehman MU, Shafique A, Khan KH, Khalid S, Alotaibi AA, Althobaiti T, Ramzan N, Ahmad J, Shah SA, Abbasi QH. Novel Privacy Preserving Non-Invasive Sensing-Based Diagnoses of Pneumonia Disease Leveraging Deep Network Model. Sensors. 2022; 22(2):461. https://doi.org/10.3390/s22020461
Chicago/Turabian StyleRehman, Mujeeb Ur, Arslan Shafique, Kashif Hesham Khan, Sohail Khalid, Abdullah Alhumaidi Alotaibi, Turke Althobaiti, Naeem Ramzan, Jawad Ahmad, Syed Aziz Shah, and Qammer H. Abbasi. 2022. "Novel Privacy Preserving Non-Invasive Sensing-Based Diagnoses of Pneumonia Disease Leveraging Deep Network Model" Sensors 22, no. 2: 461. https://doi.org/10.3390/s22020461
APA StyleRehman, M. U., Shafique, A., Khan, K. H., Khalid, S., Alotaibi, A. A., Althobaiti, T., Ramzan, N., Ahmad, J., Shah, S. A., & Abbasi, Q. H. (2022). Novel Privacy Preserving Non-Invasive Sensing-Based Diagnoses of Pneumonia Disease Leveraging Deep Network Model. Sensors, 22(2), 461. https://doi.org/10.3390/s22020461