Game Theory-Based Energy-Efficient Clustering Algorithm for Wireless Sensor Networks
Abstract
:1. Introduction
- (1)
- Taking into account several aspects that affect the energy consumption of sensor nodes, a game model is established.
- (2)
- According to the energy consumption between the idle listening of sensor nodes and the transition of sensor nodes from the sleep state to the active state, the threshold value of sensor nodes entering the sleep state is determined.
- (3)
- In order to avoid the selfish behavior of sensor nodes when they go to sleep, a penalty mechanism is introduced to force the sensor nodes to adopt cooperative strategies in future operations. The optimal number of penalty rounds for sensor nodes with selfish behavior is proven.
- (4)
- The simulation results show that using the games to control the transition between the sleep state and active state of the sensor nodes can reduce their energy consumption, thereby effectively prolonging the lifetime of the network.
2. Related Work
3. Materials and Methods
3.1. Study Object and WSN Deployment
3.2. Network Model
3.3. Energy Model
3.3.1. Energy Cost of Sensing
3.3.2. Energy Cost for Processing
3.3.3. Energy Consumption for Communicating
3.3.4. Energy Consumption in Transition from Sleep to Active Mode
3.3.5. Total Energy Consumption for Sensor Node
3.4. Game Model
3.4.1. Establishment of Game Model
3.4.2. Determination of Sleep State Threshold
3.4.3. Penalty Mechanism of Sensor Node
3.5. Algorithm Description
Algorithm 1 Proposed Algorithm | |
1. | Initialize: |
2. | N = total nodes |
3. | Dead = 0 //the number of dead nodes. |
4. | Begin |
5. | for i = 1:N |
6. | if //If node is alive |
7. | Cluster formation |
8. | Record the ID of node |
9. | if The sensor nodes need to forward the data |
10. | The sensor nodes forward the data |
11. | else |
12. | Calculate the sleep threshold |
13. | if |
14. | The sensor node remains idle listen |
15. | else |
16. | The sensor node will enter the sleep state from idle listening |
17. | end if |
18. | end if |
19. | else |
20. | Dead = Dead +1 |
21. | if Dead ≥ N |
22. | End of simulation |
23. | end if |
24. | end if |
25. | end for |
Algorithm 2 Proposed Algorithm | |
1. | Initialize: |
2. | r = current round |
3. | Begin |
4. | for r = 1:max |
5. | if the sensor network operating normally |
6. | The sensors nodes are clustered |
7. | if the sensor in the cluster adopt cooperative strategy |
8. | The sensor node decides their own state according to the game strategy |
9. | else |
10. | Calculate the number of penalty rounds M |
11. | Mark the ID of the nodes and punish M rounds |
12. | end if |
13. | else |
14. | End of simulation |
15. | end if |
16. | end for |
4. Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. A Survey on Sensor Networks. IEEE Commun. Mag. 2002, 40, 102–114. [Google Scholar] [CrossRef] [Green Version]
- Fernandezlozano, J.; Martinguzman, M.; Martinavila, J.; Garciacerezo, A. A wireless sensor network for urban traffic characterization and trend monitoring. Sensors 2015, 15, 26143–26169. [Google Scholar] [CrossRef] [PubMed]
- Muduli, L.; Mishra, D.P.; Jana, P.K. Application of wireless sensor network for environmental monitoring in underground coal mines: A systematic review. J. Netw. Comput. Appl. 2018, 106, 87–97. [Google Scholar] [CrossRef]
- Yong, Q.D.; Chen, Y.; Ye, X.W. Lifetime of WSN research based on energy balance. Appl. Mech. Mater. 2013, 303, 231–235. [Google Scholar] [CrossRef]
- Teng, Z.J.; Lu, J.L.; Zhang, L.; Guo, L.W. Based on game theory algorithm in nodes power control of WSN. Control Theor. Appl. 2018, 35, 717–721. [Google Scholar]
- Liu, Z.L.; Song, S.H. A Awakening Scheduling Approach for Wireless Sensor Networks Partial Coverage. Chin. J. Sens. Actuat. 2018, 31, 786–791. [Google Scholar]
- Chen, S.; Wang, M.J. A new clustering optimization slgorithm for multi-level energy heterogeneous wireless sensor networks. Microelectron. Comput. 2016, 33, 42–46. [Google Scholar]
- Huan, X.T.; Kim, K.S.; Lee, S.; Lim, E.G.; Marshall, A. A beaconless asymmetric energy-efficient time synchronization scheme for resource-constrained multi-hop wireless sensor networks. IEEE Trans. Commun. 2020, 68, 1716–1730. [Google Scholar] [CrossRef] [Green Version]
- Chamanian, S.; Baghaee, S.; Ulusan, H.; Zorlu, O.; Uysalbiyikoglu, E.; Kulah, H. Implementation of energy-neutral operation on vibration energy harvesting WSN. IEEE Sens. J. 2019, 19, 3092–3099. [Google Scholar] [CrossRef]
- Ashween, R.; Ramakrishnan, B.; Joe, M.M. Energy efficient data gathering technique based on optimal mobile sink node selection for improved network life time in wireless sensor network (WSN). Wirel. Pers. Commun. 2020, 113, 2107–2126. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Tao, Y.; Dai, J.J. Multi-hop clustering routing protocol for energy harvesting wireless sensor networks. Comput. Eng. Des. 2019, 40, 611–616, 622. [Google Scholar]
- Abrardo, A.; Balucanti, L.; Mecocci, A. Optimized dual low power listening for extending network’s lifetime in multi-hops wireless sensor networks. In Proceedings of the 2011 Wireless Telecommunications Symposium (WTS), New York, NY, USA, 13–15 April 2011; pp. 1–7. [Google Scholar]
- Feng, X.; Chong, S.; Zhang, K.; Li, H.; Gao, Q.; Wang, C. Optimization of T-MAC Protocol in WSN Based on Minimum Contention Window. DEStech T. Comput. Sci. Eng. 2018, 142–147. [Google Scholar] [CrossRef]
- Wang, Z.L.; Zheng, X. k-Cover Based-Sleep Scheduling Algorithm for Redundant Node in Heterogeneous WSNs. Chin. J. Sens. Actuat. 2017, 30, 1422–1426. [Google Scholar]
- Kassan, S.; Gaber, J.; Lorenz, P. Game theory based distributed clustering approach to maximize wireless sensors network lifetime. J. Netw. Comput. Appl. 2018, 123, 80–88. [Google Scholar] [CrossRef] [Green Version]
- AlSkaif, T.; Zapata, M.G.; Bellalta, B. Game theory for energy efficiency in wireless sensor networks: Latest trends. J. Netw. Comput. Appl. 2015, 54, 33–61. [Google Scholar] [CrossRef]
- Shen, S.; Ma, H.; Fan, E.; Hu, K.; Yu, S.; Liu, J.; Cao, Q. A non-cooperative non-zero-sum game-based dependability assessment of heterogeneous WSNs with malware diffusion. J. Netw. Comput. Appl. 2017, 91, 26–35. [Google Scholar] [CrossRef]
- Shi, H.Y.; Wang, W.L.; Kwok, N.M.; Chen, S.Y. Game theory for wireless sensor networks: A survey. Sensors 2012, 12, 9055–9097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhuiyan, B.A. An overview of game theory and some applications. Philos. Prog. 2018, 59, 111–128. [Google Scholar] [CrossRef]
- Habib, M.A.; Moh, S. Game theory-based routing for wireless sensor networks: A comparative survey. Appl. Sci. 2019, 9, 2896. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Cai, Y.M.; Zhou, L.; Wang, J.L. A cooperative communication scheme based on coalition formation game in clustered wireless sensor networks. IEEE Trans. Wirel. Commun. 2012, 11, 1190–1200. [Google Scholar] [CrossRef]
- Lin, D.Y.; Wang, Q. An energy-efficient clustering algorithm combined game theory and dual-cluster-head mechanism for WSNs. IEEE Access. 2019, 7, 49894–49905. [Google Scholar] [CrossRef]
- Hendrarini, N.; Asvial, M.; Sari, R.F. Optimization of heterogeneous sensor networks with clustering mechanism using game theory algorithm. In Proceedings of the 2nd International Conference on Software Engineering and Information Management, New York, NY, USA, 10–13 January 2019; pp. 25–29. [Google Scholar]
- Liu, Q.W.; Liu, M.D. Energy-efficient clustering algorithm based on game theory for wireless sensor networks. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717743701. [Google Scholar]
- Yang, L.; Lu, Y.Z.; Zhong, Y.C.; Wu, X.G.; Xing, S.J. A hybrid, game theory based, and distributed clustering protocol for wireless sensor networks. Wirel. Netw. 2016, 22, 1007–1021. [Google Scholar] [CrossRef]
- Truong, C.D.; Khan, M.A.; Sivrikaya, F.; Albayrak, S. Cooperative game theoretic approach to energy-efficient coverage in wireless sensor networks. In Proceedings of the 2010 Seventh International Conference on Networked Sensing Systems (INSS), Kassel, Germany, 15–18 June 2010; pp. 73–76. [Google Scholar]
- Yang, L.; Lu, Y.Z.; Xiong, L.; Tao, Y.; Zhong, Y.C. A game theoretic approach for balancing energy consumption in clustered wireless sensor networks. Sensors 2017, 17, 2654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S. A better-performing Q-learning game-theoretic distributed routing for underwater wireless sensor networks. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718754728. [Google Scholar] [CrossRef]
- Thandapani, P.; Arunachalam, M.; Sundarraj, D. An energy-efficient clustering and multipath routing for mobile wireless sensor network using game theory. Int. J. Commun. Syst. 2020, 33, e4336. [Google Scholar] [CrossRef]
- Raj, P.; Khedr, A.M.; Aghbari, Z.A. Data gathering via mobile sink in WSNs using game theory and enhanced ant colony optimization. Wirel. Netw. 2020, 26, 2983–2998. [Google Scholar] [CrossRef]
- Hu, S.; Wang, X. Game Theory on Power Control in Wireless Sensor Networks Based on Successive Interference Cancellation. Wirel. Pers. Commun. 2020, 111, 33–45. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, J.; Xu, T.; Gao, Z.; Qi, H.; Yin, H. The optimal game model of energy consumption for nodes cooperation in WSN. J. Amb. Intel. Hum. Comp. 2020, 11, 589–599. [Google Scholar] [CrossRef]
- Halgamuge, M.N.; Zukerman, M.; Ramamohanarao, K.; Vu, H.L. An estimation of sensor energy consumption. Prog. Electromag. Res. B. 2009, 12, 259–295. [Google Scholar] [CrossRef] [Green Version]
- Pati, B.; Sarkar, J.L.; Panigrahi, C.R. Ecs: An energy-efficient approach to select cluster-head in wireless sensor networks. Arab. J. Sci. Eng. 2017, 42, 669–676. [Google Scholar] [CrossRef]
- Banerjee, A.; Gauthier, V.; Labiod, H.; Afifi, H. Cooperation optimized design for information dissemination in vehicular networks using evolutionary game theory. arXiv 2013, arXiv:1301.1268. [Google Scholar]
- Zhang, J.; Gauthier, V.; Labiod, H.; Banerjee, A.; Afifi, H. Information dissemination in vehicular networks via evolutionary game theory. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, Australia, 10–14 June 2014; pp. 124–129. [Google Scholar]
- Zhang, C.; Dong, Y.; Lv, Y.; Su, Z.Z. Cooperative research of WSN nodes based on repeated game theory. J. Cent. South Univ. 2017, 48, 1762–1768. [Google Scholar]
- Singh, K. WSN LEACH based protocols: A structural analysis. In Proceedings of the 2015 International Conference and Workshop on Computing and Communication (IEMCON), Vancouver, BC, Canada, 15–17 October 2015; pp. 1–7. [Google Scholar]
- Pasha, M.A.; Khan, J.H.; Masud, S. I-leach: Energy-efficient routing protocol for monitoring of irrigation canals. Simul.-Trans. Soc. Mod. Sim. 2015, 91, 750–764. [Google Scholar] [CrossRef]
- Tang, G.M.; Li, L.Y.; Gao, J.P. IR-LEACH: An improved LEACH protocol for WSN. Appl. Mech. Mater. 2013, 373, 388–392. [Google Scholar] [CrossRef]
- Felicia, E.; Apietu, K.F.; Jamal-Deen, A.; Sarpong, A.M.K.; Kataka, B.F. Prolonging the Lifetime of Wireless Sensor Networks: A Review of Current Techniques. Wirel. Commun. Mob. Com. 2018, 2018, 8035065. [Google Scholar]
- Sinde, R.; Begum, F.; Njau, K.; Kaijage, S. Lifetime improved WSN using enhanced-LEACH and angle sector-based energy-aware TDMA scheduling. Cogent. Eng. 2020, 7, 1795049. [Google Scholar] [CrossRef]
- Nugraha, F.A.; Sudiharto, D.W.; Karimah, S.A. The comparative analysis Between LEACH and DEEC based on the number of nodes and the range of coverage area. In Proceedings of the 2019 International Seminar on Application for Technology of Information and Communication (iSemantic), Semarang, Indonesia, 21–22 September 2019; pp. 440–445. [Google Scholar]
- Nehra, V.; Sharma, A.K.; Tripathi, R.K. I-DEEC: Improved DEEC for blanket coverage in heterogeneous wireless sensor networks. J. Amb. Intel. Hum. Comp. 2019, 11, 3687–3698. [Google Scholar] [CrossRef]
- Verma, A.; Kumar, S.; Gautam, P.R.; Rashid, T.; Kumar, A. Fuzzy logic based effective clustering of homogeneous wireless sensor networks for mobile sink. IEEE Sens. J. 2020, 20, 5615–5623. [Google Scholar] [CrossRef]
- Murugan, K.; Pathan, A.S.K. Prolonging the lifetime of wireless sensor networks using secondary sink nodes. Telecommun. Syst. 2016, 62, 347–361. [Google Scholar] [CrossRef]
- Mechta, D.; Harous, S. Improving LEACH-C using sink mobility. In Proceedings of the 2016 IEEE 7th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 20–22 October 2016; pp. 1–6. [Google Scholar]
- Sivakumar, P.; Radhika, M. Performance analysis of LEACH-GA over LEACH and LEACH-C in WSN. Proced. Comput. Sci. 2018, 125, 248–256. [Google Scholar] [CrossRef]
- Fizza, K.; Banerjee, A.; Mitra, K.; Jayaraman, P.P.; Ranjan, R.; Patel, P.; Georgakopoulos, D. QoE in IoT: A vision, survey and future directions. Discov. Internet Things 2021, 1, 4. [Google Scholar] [CrossRef]
Symbol | Description |
---|---|
Number of sensor nodes in the network | |
Sensor node where | |
Energy cost for sensing | |
Energy cost for processing | |
Energy cost for sending | |
Energy cost for receiving | |
Energy consumption for sleep to active mode | |
Total energy consumption for sensor node |
Parameters | Value |
---|---|
1.0 | |
5000 | |
Size of date packet (bits) | 4000 |
Proper percentage of CH nodes (%) | 5 |
0.0013 | |
10 | |
(nJ/bit) | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Huang, C.; Gan, J.; Wu, X. Game Theory-Based Energy-Efficient Clustering Algorithm for Wireless Sensor Networks. Sensors 2022, 22, 478. https://doi.org/10.3390/s22020478
Yan X, Huang C, Gan J, Wu X. Game Theory-Based Energy-Efficient Clustering Algorithm for Wireless Sensor Networks. Sensors. 2022; 22(2):478. https://doi.org/10.3390/s22020478
Chicago/Turabian StyleYan, Xiao, Cheng Huang, Jianyuan Gan, and Xiaobei Wu. 2022. "Game Theory-Based Energy-Efficient Clustering Algorithm for Wireless Sensor Networks" Sensors 22, no. 2: 478. https://doi.org/10.3390/s22020478
APA StyleYan, X., Huang, C., Gan, J., & Wu, X. (2022). Game Theory-Based Energy-Efficient Clustering Algorithm for Wireless Sensor Networks. Sensors, 22(2), 478. https://doi.org/10.3390/s22020478