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Abstract: Landslide displacement prediction is one of the unsolved challenges in the field of geologi-
cal hazards, especially in reservoir areas. Affected by rainfall and cyclic fluctuations in reservoir water
levels, a large number of landslide disasters have developed in the Three Gorges Reservoir Area. In
this article, the Baishuihe landslide was taken as the research object. Firstly, based on time series
theory, the landslide displacement was decomposed into three parts (trend term, periodic term, and
random term) by Variational Mode Decomposition (VMD). Next, the landslide was divided into three
deformation states according to the deformation rate. A data mining algorithm was introduced for
selecting the triggering factors of periodic displacement, and the Fruit Fly Optimization Algorithm–
Back Propagation Neural Network (FOA-BPNN) was applied to the training and prediction of
periodic and random displacements. The results show that the displacement monitoring curve of the
Baishuihe landslide has a “step-like” trend. Using VMD to decompose the displacement of a landslide
can indicate the triggering factors, which has clear physical significance. In the proposed model, the
R2 values between the measured and predicted displacements of ZG118 and XD01 were 0.977 and
0.978 respectively. Compared with previous studies, the prediction model proposed in this article
not only ensures the calculation efficiency but also further improves the accuracy of the prediction
results, which could provide guidance for the prediction and prevention of geological disasters.

Keywords: Three Gorges Reservoir; Baishuihe landslide; data mining; displacement prediction;
VMD-FOA-BPNN

1. Introduction

Landslides occur frequently around the world and are one of the most destructive
geological disasters in the world [1,2]. Landslide displacement prediction is one of the geo-
logical engineering problems that at present has not been solved, especially for mountain
and reservoir areas. Reservoir impoundment usually affects the surrounding geological
environment, resulting in landslide disasters. As the largest power station in terms of
installed capacity in the world since 2012, the water level of the Three Gorges Reservoir
fluctuates between 145 and 175 m all year round. Hence, a large number of landslide
disasters have developed in the Three Gorges reservoir [3,4]. Because the Three Gorges
reservoir plays an important role in flood control and power generation, it is of great
significance to study geological landslides in the Three Gorges Reservoir area [5,6].

Landslide displacement prediction is a hot topic at the forefront of natural hazard
research [7]. Displacement prediction is the basis of early warning systems for landslide
disasters. Accurate landslide displacement prediction can reduce the losses caused by such
disasters as much as possible, so as to ensure the safety of people’s lives and property.
Due to the complex geological environment, the accuracy of current methods for directly
predicting total displacement is not sufficient [8]. Hence, landslide displacement should
be divided into several parts by the decomposition technique. At present, landslide
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displacement decomposition mainly adopts two methods. The first is the time series
and simple moving average method [9,10]. This method is simple and practical, and the
displacement component obtained has a clear physical meaning. However, due to defects of
the decomposition method itself, the random displacement cannot be obtained. The second
is empirical mode decomposition (EMD), wavelet analysis, and ensemble empirical mode
decomposition (EEMD), which can divide the total displacement into a specific number of
components, so it has clear physical significance [11–13].

The landslide displacement prediction model has experienced rapid development
in the past 50 years, which was from the initial empirical model to the mathematical
statistical model, and then to the non-linear theoretical model and the comprehensive
model [14]. Nowadays, with the development of high-speed computers, various machine
learning models including deep learning have been widely used for predicting landslide
displacement, such as ELM (Extreme Learning Machine) [15], EML (Evaluating Machine
Learning) [16], BPNN (Back Propagation Neural Network) [17,18], SVR (Support Vector Re-
gression) [19], KELM (Kernel Extreme Learning Machine) [20,21], LSTM (Long Short-Term
Memory) [9,22], and so on. Many algorithms have been used to optimize the parameters for
the prediction models, including GS (Grid Search algorithm) [10], PSO (Particle Swarm Op-
timization) [23], GA (Genetic Algorithm) [24], FOA (Fruit Fly Optimization Algorithm) [25],
GWO (Grey Wolf Optimizer) [26], and so on. Therefore, selection of the influencing factors
plays a crucial role in the development of landslide prediction. Besides, for landslides
in a reservoir area, the fluctuation of the reservoir level and rainfall are usually used as
the hydrologic triggering factors of landslide deformation and failure [27]. However, the
increase of input factors does not necessarily lead to higher prediction accuracy in the
model of landslide displacement prediction. Based on the above facts, for different types of
displacement, it is necessary to select the appropriate inducing factor as the input layer to
establish the model. At present, data mining technology has been widely used in the field
of geological hazards. Nevertheless, the research on data mining technology in landslides
mostly focuses on association criterions and thresholds of triggering factors, while there are
few publications on the joint use of data mining technology and deep learning. In order to
optimize the triggering factors to find the most suitable factors for displacement prediction,
data mining technology could be used.

In this paper, the Baishuihe landslide was taken as an example, which was in the east
of Three Gorges Reservoir area. Data mining and deep learning were used for predicting
the displacement. Based on the time series analysis of landslides, the displacement and
triggering factors are decomposed by VMD. Periodic and random terms were predicted by
FOA-BPNN. A flow chart of this work is shown in Figure 1.
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2. Methodology
2.1. Two-Step Clustering

The two-step clustering algorithm is usually applied to deal with large-scale types
of data, which divides and integrates data through a two-step process of pre-clustering
and clustering to complete the data classification [28]. For sample data including both
numerical and subtype variables, the two-step clustering algorithm usually uses a log-
likelihood function. If clustered into j classes, it is defined as:

l =
J

∑
j=1

∑
i∈Ij

logp(Xi | θi) =
J

∑
j=1

lj (1)

where, p is the likelihood function; Ij is the set of samples of jth class; θj is the parameter
vector of jth class; J is the number of clusters. For all samples, the log-likelihood clusters
are obtained as the aggregation of the log-likelihood clusters for each category.

For the certain ith class and jth class, the combination is noted as <i, j>, and then their
distance can be defined as:

d(i, j) = ξi + ξ j − ξ〈i,j〉 (2)

where ξi and ξj are the log-likelihood distance of ith class and jth class, respectively. ξ<i,j>
is the log-likelihood distance of the combination of <i, j>. ξ is the specific form of the
log-likelihood function:

ξv = −NV
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2

log
(

σ̂2
k + σ̂2

vk

)
+

KB

∑
k=1

Evk

)
(3)

where,
∧

Evk = −
Lk

∑
l=1

Nvkl
Nv

log
Nvkl
Nv

(4)

where KA is the number of numerical variables; KB is the number of categorical variable; σ̂2
k

and σ̂2
vk denote the total variance of the kth numerical variable and the variance in vth class

respectively; Nv and Nvkl are the sample size of category v and the first category in the kth
subtype variable; Lk is the category of the kth subtype variable.

After ith class and jth class are combined, −ξ<i,j> is greater than ξi + ξj, and hence
d(i,j) is less than 0. Moreover, the smaller d(i,j) is, the more it means that the merging of ith
class and jth class will not cause a significant increase in intra-class differences. Specially,
when d(i,j) is less than the threshold C, ith class and jth class can be merged. Conversely,
when d(i,j) is greater than the threshold C, indicating that merging will cause a significant
increase in variability within the clustered clusters, and the ith class and jth class cannot
be merged.

The threshold value C is given by:

C = log(V) (5)

V = ∏
k

Rk∏
m

Lm (6)

where Rk is the range of values of the kth numeric variable; Lm is the sample size of the mth
subtype variable.

2.2. Apriori Algorithm

The a priori algorithm was proposed by Agrawal [29]. This algorithm can deal only
with categorical variables rather than numeric variables. The algorithm mainly includes
two steps: (1) generating frequent item sets that meet the minimum support values, and (2)
generating association rules that satisfy the minimum credibility in the frequent item set
generated in the first step.
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The frequent item set T contains item a (frequent item set). If its support is equal to or
greater than the support threshold specified by the user, as shown in Equation (1), the a
priori algorithm uses the iterative method of layer-by-layer searching to generate frequent
item sets.

|T(a)|
|T| ≥ min supp (7)

Frequent k-item sets are used to explore and generate (k + 1)-item sets. The algorithm
implementation process is shown in Figure 2.
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Simple association rules are generated from the frequent item sets, and association
rules with confidence levels greater than the threshold value are selected to form an effective
rule set. If CL′→(L−L′) is greater than the confidence threshold specified by the user (see
Equation (2)), then the association rule can be generated.

CL′→(L−L′) =
|T(L)|
|T(L′)| ≥ min con f (8)

2.3. VMD

Based on the EMD model, the VMD model was proposed in 2013, which is an adaptive
method for signal processing and modal variation [30]. The constraint variation can be
expressed as: 

min
{uk}{ωk}

{
K
∑

k=1
‖ ∂t

[(
σ(t) + j

πt

)
∗ uk(t)

]
e−jωkt ‖2

2

}
s.t.

K
∑

k=1
uk = f (t)

 (9)

where f (t) is the original signal, K is the number of components, ∂t denotes the Dirac
function, {ωk} denotes the actual central frequency, {uk} denotes the component obtained
after decomposition,

(
σ(t) + j

πt

)
∗ uk(t) denotes the analytical signal of each component,

e−jωkt denotes the estimated central frequency of each analytical signal, and * denotes the
convolution operator. We then obtain the following:

L({uk}, {ωk}, λ) = α ∑
k
‖ ∂t

[(
σ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt ‖2

2 + ‖ f (t)−∑
k

uk(t) ‖2
2 +

〈
λ(t), f (t)−∑

k
uk(t)

〉
(10)

where λ denotes the Lagrange multiplier.
By using the alternative direction method of multipliers (ADMM), the saddle point

of the model without an upper constraint can be obtained, which is the optimal solution
of the constrained variational model, so that the original signal can be decomposed into
IMF components.
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2.4. FOA-BPNN

The BPNN is a multilayer feedforward neural network based on error back propa-
gation algorithm training, which was first proposed by Rumelhart and McClelland [31].
BPNNs have arbitrary complex pattern classification and good multidimensional function
mapping ability. In addition, it can solve XOR and other problems that simple perceptrons
cannot solve. Structurally, BPNNs are composed of an input layer, a hidden layer, and an
output layer. The BP algorithm takes the network’s square error as the objective function
and uses the gradient descent method to calculate the minimum objective function.

In addition, as proposed by Wen-Tsao Pan [32], the FOA is a new method of global
optimization, which is based on the foraging behavior of Drosophila melanogaster. Because
the fruit fly is superior to other species in terms of smell and vision, the olfactory organ of
Drosophila can collect all kinds of smells floating in the air, even the smells of food sources
40 km away. Then, after flying to the vicinity of the food location, they can use their sharp
vision to find the food or observe the gathering position of their companions, and fly in
that direction. The optimization procedure of the FOA-BPNN is shown in Figure 3.
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3. Case Study
3.1. Geological Settings of Three Gorges Reservoir Area

The Three Gorges reservoir is an artificial lake formed after the completion of the
Three Gorges hydropower station, situated in the middle part of China. The total lengths
of the Yangtze River and surrounding area are 660 km and 1084 km2 respectively. The
altitude drops from the highest part to the west and east, forming a hilly landform and
medium altitude mountains, respectively. The trend of the mountains is controlled by the
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main geological structures. The strata in the Three Gorges Reservoir area are from pre
Sinian to Quaternary. Jurassic red strata are dominant in the Three Gorges Reservoir area,
mainly exposed in the west of Zigui county east of Fengjie county (the red strata refer to
sandstone, mudstone, and sandstone interbedded with mudstone layers). In addition, other
sedimentary rocks (limestone, marl, and dolomite) also exist in the area between Fengjie
and Zigui. These hard rocks form a steep canyon in Fengjie–Zigui area. Metamorphic
complexes and magmatic rocks appear in the area near the dam site on a relatively small
scale. Controlled by the complex geological conditions, coupled with seasonal rainfall and
periodic fluctuation of reservoir water level, a large number of geological disasters have
developed in the Three Gorges Reservoir area. A total of 4429 geological disasters have
been found up to the present time, most of which are landslides, rock falls, and debris
flows [4]. A geological map of the Three Gorges Reservoir area is shown in Figure 4.
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3.2. Local Environmental Conditions

The Baishuihe landslide is in the Zigui County area of the Three Gorges Reservoir
area, located in the middle latitude, belonging to a subtropical continental monsoon climate
zone, with a warm and humid climate, sufficient light, abundant rainfall, and distinct
seasons. The average annual rainfall of Zigui County is 1493.2 mm. Rainfall is generally
concentrated in the flood season in this area, and the maximum daily rainfall has historically
reached up to 358 mm. The monsoon is mainly southerly. Limited by the terrain, the wind
speed is generally low. The Yangtze River is the lowest erosion base level in this area and
flows through the front edge of the landslide from west to east. The cross section of the
river valley is a “V” shape, steep to the north and gentle to the south. There are several
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gullies short in length and depth in the landslide area, all of which are trunk gullies. Only
temporary flood flows are formed after rainstorms, which constitute the primary discharge
channel of surface water in the area.

The Baishuihe landslide is located on the south bank (convex bank) of the Yangtze
River. The elevation of the landslide gradually decreases from south to north. The elevation
of the toe and rear edges is about 70 m and 400 m, and the bedrock ridge is the boundary
between the eastern and western sides. The deformation of the middle and front part of the
landslide is relatively strong. Pinnate fissures are continuously distributed on both sides
of the boundary, and the boundary between the east side and the rear edge is basically
connected. The slope of the landslide is 30◦ to 35◦, and the landslide has an average
thickness of 30 m with a volume of 1.26 × 107 m3. The topographic map and a schematic
geological profile of the Baishuihe landslide are shown in Figures 5 and 6.
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3.3. Deformation of the Landslide

The Baishuihe landslide has been monitored since June 2003, and the layout of the
monitoring surface layout is shown in Figure 5b. According to the characteristics of the
surface monitoring displacement and surface macro-deformations, the Baishuihe landslide
can be divided into two areas; however, the active area (area A) is the middle and front
part of the landslide, which has strong deformation. After the completion of the Three
Gorges Dam, the landslide has produced obvious displacement due to the impoundment
of the reservoir. Several transverse tension cracks have appeared in the east of the landslide.
Specifically, the eastern and posterior boundaries are basically connected, and the western
boundary’s cracks are in the shape of pinnately distributed cracks. From August 2005 to
August 2006, there were many landslides on the inner side slope of the riverside highway
with an elevation of about 220 m, and many subsidence and tension cracks appeared on the
surface of the landslide. Approximately 100,000 m3 of landslide debris piled on the road
towards the rear of the active area in June 2007 (Figure 7).
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3.4. Analysis of the Monitoring Data

There are three monitoring sections and six GPS monitoring points in the active
Baishuihe landslide area. Among them, the monitoring points ZG93 and ZG118 have
been in place since June 2003; XD01 and XD02 were added in May 2005, and XD03, XD04
were added in October 2005. Note that the displacement of all the monitoring points is
synchronous. The monitoring period of Points ZG93, ZG118, and XD01 is long, meaning
that they are representative and can reflect the entire movement process of the landslide.
Therefore, in this study, these three points were taken for detailed analyses (Figure 8).
According to the filling scheduling of the reservoir, the monitoring data can be divided into
three stages for analysis, as described below.
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(1) Phase I (from June 2003 to June 2006): The water level of the reservoir started at
135 m in September and reached its highest level of 139 m in October. The maximum
displacement of ZG93 and ZG118 was 25.8 mm and 30.6 mm, respectively, during
the three impoundment periods. During Phase I, the reservoir basically maintained
the highest water level from November to January of the next year. The maximum
monthly displacement rates of these three points were below 13 mm/month during
this period, which was relatively slow. The water level began to drop in February each
year and reached the lowest level (135 m) in July. During this period, the minimum
increase of these three points was over 80 mm, and the maximum increase was over
150 mm. Especially in May and June, the rate of increase in landslide displacement was
the largest. From the end of July to the beginning of September, the reservoir water
level remained at the lowest level, but the landslide displacements first continued to
grow rapidly and then basically remained the same. In this stage, the water level of
the Yangtze River changed from having the natural water level for many years to the
manually adjusted reservoir water level, and the landslide was still in the adaptation
period of adjustment of the reservoir’s water level. Therefore, we can consider that
the deformation of the landslide in this stage was mainly affected by the decline in
the reservoir’s water level. In particular, the heavy rainfall in July 2005 did not cause
an obvious increase in the displacement of the landslide.

(2) Phase II (from July 2006 to June 2008): The water level of the reservoir fluctuated
between 145 and 155 m, which dropped from 155 m to 145 m for the first time during
April to June 2007. Alternatively, a drastic drop in the water level led to an increase in
the hydrodynamic pressure inside the landslide, which caused the displacement of
each monitoring point to suddenly increase for the first time, increasing by more than
1000 mm.

(3) Phase III (from July 2008 to December 2016): The water level of the reservoir fluctu-
ated between 145 and 175 m. Before 2015, the annual displacement rate showed a
downward trend.

In summary, the fluctuation in the reservoir’s water level resulted in the significant
extension of the fluctuating range and immersion range of the reservoir’s water level, then,
in turn, the stress field, seepage field, and rock–soil structure characteristics of the sliding
mass changed significantly, which had a significant impact on the evolution process of
the Baishuihe landslide. In addition, owing to the different stages of the reservoir’s water
level operations, there were some differences in the degree of impact on the deformation
evolution process of the landslide. Moreover, although the landslide has undergone some
adjustment, its shear deformation energy has been released to a certain extent. However,
when external effects such as rainfall and the reservoir water level change dramatically
again, the landslide will tend to be unstable.

4. Results
4.1. Triggering Factors

Rainfall and periodic fluctuation of reservoir water level are the main inducing factors
of landslide deformation [34,35]. The periodic fluctuation of the water level in the Three
Gorges causes dynamic osmotic pressure in the slope, resulting in landslide deforma-
tion [36]. On the one hand, rainfall can increase the weight of the landslide mass, thus
increasing the sliding force of landslides; on the other hand, it can weaken the mechanical
strength of the landslide rock and soil mass, resulting in landslide deformation [37,38].
Therefore, rainfall and reservoir water level can be used as trigger factors for landslide
deformation [39]. In this research, a total of 10 triggering factors were selected to carry
out displacement prediction research, including 5 reservoir level related factors (monthly
average water level h; monthly maximum daily drop of water level ∆hdailydrop

max ; monthly
maximum daily rise of water level ∆hdailyrise

max ; monthly fluctuation of water level ∆hmonth;
bimonthly fluctuation of water level ∆h2month), 4 rainfall related factors (monthly maximum
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effective continuous rainfall qe f f ective
continuous; monthly cumulative rainfall qmonth; bimonthly cu-

mulative rainfall q2month; monthly maximum daily rainfall qday
max), and 1 deformation factor

(last monthly velocity of deformation v), as shown in Table 1. In this study, the monitoring
data of ZG93 were selected for landslide prediction. In addition, because the monitoring
points ZG118 and XD01 have similar deformation characteristics to ZG93, the monitoring
data of ZG118 and XD01 were added to increase the sample size and overcome model
overfitting errors, as well as to provide a more representative prediction of the overall
landslide displacement. The triggering factors are shown in Table 1.

Table 1. Triggering factors used to carry out displacement predictions.

No. Factors Category

F1 Monthly average water level (h) (m) Reservoir water
F2 Maximum monthly daily drop in water level (∆hdailydrop

max ) (m/day) Reservoir water
F3 Maximum monthly daily rise in water level (∆hdailyrise

max ) (m/day) Reservoir water
F4 Monthly fluctuation of the water level (∆hmonth) (m/month) Reservoir water
F5 Bimonthly fluctuation of the water level (∆h2month) (m/2 months) Reservoir water
F6 Maximum monthly effective continuous rainfall (qe f f ective

continuous) (mm) Rainfall
F7 Cumulative monthly rainfall (qmonth) (mm) Rainfall
F8 Cumulative bimonthly rainfall (q2month) (mm) Rainfall
F9 Maximum monthly daily rainfall (qday

max) (mm) Rainfall
F10 Monthly velocity (v) (mm/month) Deformation

4.2. Clustering Results

In the two-step clustering algorithm, the minimum and maximum categories of the
triggering factors were set as 2 and 10 respectively. In clustering algorithms, there are two
commonly used clustering criteria: the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC). When the number of samples is large, the BIC criterion can
effectively avoid the model complexity caused by high model accuracy. Therefore, in
this study, the BIC was chosen as the cluster criterion, and the distance measurement
method was Euclidean distance. The clustering results of the external triggering factors are
shown in Tables 2 and 3. Monthly velocity (v) was clustered into three categories (Low, V1;
Medium, V2; High, V3), as shown in Table 4.

Table 2. Clustering results of the reservoir water level factors (ZG93, ZG118, XD01).

No. Factors Clustering Results Count

F1 h
(135.13~138.95) High Water Level (F11) 97
(144.21~158.02) Medium Water Level (F12) 186
(160.14~174.74) Low Water Level (F13) 183

F2 ∆hdailydrop
max

(−0.14~0.58) Slow Daily Drop (F21) 339
(0.63~1.87) Medium Daily Drop (F22) 92
(1.91~3.69) Sharp Daily Drop (F23) 35

F3 ∆hdailyrise
max

(−0.43~0.04) Slow Daily Rise (F31) 129
(−1.70~−0.49) Sharp Daily Rise (F32) 337

F4 ∆hmonth (0~6.18) Smooth Fluctuation (F41) 349
(6.59~18.25) Sharp Fluctuation (F42) 117

F5 ∆h2month
(0~6.50) Non-fluctuation (F51) 250

(6.68~14.15) Smooth Fluctuation (F52) 126
(14.91~28.71) Sharp Fluctuation (F53) 90
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Table 3. Clustering results of the rainfall factors (ZG93, ZG118, XD01).

No. Factors Clustering Results Count

F6 qe f f ective
continuous

(1.50~30.30) Light Effective Rainfall (F61) 182
(31.30~66.00) Moderate Effective Rainfall (F62) 151
(67.70~110.50) Medium Effective Rainfall (F63) 92

(125.00~239.40) Heavy Effective Rainfall (F64) 41

F7 qmonth

(3.10~66.10) Light Effective Rainfall (F71) 198
(69.90~163.70) Moderate Effective Rainfall (F72) 191

(168.50~291.50) Medium Effective Rainfall (F73) 60
(357.50~517.60) Heavy Effective Rainfall (F74) 17

F8 q2month
(18.40~135.20) Light Effective Rainfall (F81) 197

(143.60~362.90) Moderate Effective Rainfall (F82) 212
(367.20~726.30) Heavy Effective Rainfall (F83) 57

F9 qday
max

(1.30~25.60) Light Daily Rainfall (F91) 234
(26.50~51.30) Moderate Daily Rainfall (F92) 151

Table 4. Clustering results of the monthly velocity (ZG93, ZG118, XD01).

Monthly Velocity (v) (mm/month) Clustering Results Count

(−9.61~21.66) Low (V1) 358
(22.35~81.89) Medium (V2) 81

(137.70~313.24) High (V3) 27

4.3. Association Rules

In the a priori algorithm, the minimum conditional support was set to 0.01 and the
minimum rule confidence was set to 100% to ensure that the mining association criteria
were absolutely correct. In total, 5447 association rules were generated, most of which
were V1 and V2 stages (4247 and 1008, respectively). The main factors controlling V1
deformation of the landslide were smooth fluctuations of the reservoir’s water level and
light rainfall. The main factors controlling V2 deformation of the landslide were sharp
fluctuations of the water level and medium to heavy rainfall. The main factor controlling
V3 deformation of the landslide was heavy rainfall. Nevertheless, there may be some time
correlation between these nine factors. In general, a drop in reservoir water and heavy
rainfall were the main factors causing landslide deformation in the Three Gorges Reservoir
area. It can be seen from Figure 7 that the water level of the Three Gorges reservoir has
had a period of slow decline (175 m–165 m) from January to April and a rapid decline
(165 m–145 m) from April to June since 2008. The heavy rainfall is concentrated from
June to September every year. Moreover, this is also a critical period when the landslide
produces severe deformation.

The statistical results of the data mining and association rules are shown in Table 5.
The total support, average support, and the contribution without support of each triggering
factor were counted, and the comprehensive contribution was the mean value of these three
contributions. The comprehensive contribution of each factor according to the association
rules is shown in Figure 9. Factors with a degree of contribution less than 0.3 were
eliminated and were not used as input layers in the prediction model. Therefore, eight
triggering factors were taken as the input layer in the V1 and V3 prediction models (F1, F3,
F5, F6, F7, F8, F9, and F10), and eight triggering factors were taken as the input layer in the
V2 prediction model (F1, F2, F5, F6, F7, F8, F9, and F10).
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Table 5. Statistical results of the data mining and association rules.

Contribution F1 F2 F3 F4 F5 F6 F7 F8 F9

V1

Association rules 2860 1936 2071 1683 2673 2780 2610 2770 2630
Total support 4480.98 1867.49 3231.69 1557.06 3723.31 3776.06 3579.76 3800.01 3744.18

Average support 1.57 0.96 1.56 0.93 1.39 1.36 1.37 1.37 1.42
Contribution without support 0.67 0.45 0.49 0.40 0.63 0.65 0.61 0.65 0.62
Comprehensive contribution 0.41 0.23 0.33 0.21 0.36 0.37 0.35 0.37 0.36

V2

Association rules 632 463 308 392 630 654 694 628 725
Total support 453.26 344.78 195.09 289.57 438.03 467.48 506.75 447.84 478.52

Average support 0.72 0.74 0.63 0.74 0.69 0.71 0.73 0.71 0.66
Contribution without support 0.63 0.46 0.31 0.39 0.63 0.65 0.69 0.62 0.72
Comprehensive contribution 0.36 0.30 0.21 0.27 0.35 0.37 0.39 0.36 0.38

V3

Association rules 130 48 109 0 111 133 126 105 124
Total support 83.43 29.45 69.32 0 70.54 81.59 80.98 67.26 76.07

Average support 0.64 0.61 0.64 0 0.64 0.61 0.64 0.64 0.61
Contribution without support 0.71 0.26 0.60 0 0.61 0.73 0.69 0.58 0.68
Comprehensive contribution 0.42 0.23 0.37 0 0.38 0.42 0.41 0.37 0.40
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Figure 9. Comprehensive contribution of each factor according to the association rules (V1: Low
monthly velocity; V2: Medium monthly velocity; V3: High monthly velocity; F1: Monthly average
water level; F2: Maximum monthly daily drop in water level; F3: Maximum monthly daily rise in
water level; F4: Monthly fluctuation of the water level; F5: Bimonthly fluctuation of the water level;
F6: Maximum monthly effective continuous rainfall; F7: Cumulative monthly rainfall; F8: Cumulative
bimonthly rainfall; F9: Maximum monthly daily rainfall).

4.4. Decomposition of Displacement

The non-stationary time series theory indicated that the time series consisted of three
parts: the trend term, the periodic term, and the random term. For the landslide displace-
ment, the time series can be divided into three parts: (1) trend displacement, which is
controlled by internal factors, such as geological conditions, geomorphology, geological
structure, rock and soil properties, etc.; (2) periodic displacement, which is controlled by
external factors, such as rainfall, the reservoir’s water level, wind load, air temperature,
etc.; and (3) random displacement, which is controlled by random factors, such as hu-
man activities, engineering construction, vehicle loads, vibration loads, etc., as shown in
Figure 10.

X(t) = α(t) + β(t) + γ(t) (11)
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Figure 10. Relationship among trend displacement, periodic displacement, and random displacement.

Here, X(t) denotes the observed value of landslide displacement, and α(t), β(t), and
γ(t) denote the trend, periodic, and random displacements, respectively.

Therefore, K was set to 3 and 2 in the VMD decomposition of the landslide displace-
ments and triggering factors, respectively. The penalty parameter a and the rising step τ
(a = 1.5 and τ = 0.1) were finally determined through multiple trials as follows. (1) In the
displacement decomposition, a = 1.5 and τ = 0.1. (2) In the triggering factors decomposing,
a = 700 and τ = 0.5. The decomposition results are shown in Table 6 and Figure 11.

Table 6. Composition of training and prediction samples.

Samples Training Samples Prediction Samples

Monthly velocity V1 V2 V3 V1 V2 V3
ZG93 116 30 5 10 2 0

ZG118 119 24 8 10 2 0
XD01 93 22 13 10 1 1

Total samples 328 76 26 30 5 1

4.5. Displacement Prediction
4.5.1. Trend Term Prediction

The displacement of the trend term showed a distinct piecewise function. Therefore,
the trend term of ZG93 was divided into three phases: Phase 1 (June 2003~June 2007),
Phase 2 (June 2007~June 2014), and Phase 3 (June 2014~December 2016). Multiple fitting
results showed that good fitting results can be obtained by using a cubic function and the
robust least squares method. The fitting function can be defined as:

S = at3 + bt2 + ct + d (12)

The fitting results and parameters are shown in Figure 12 and Table 7, which indicate
that the prediction accuracy’s R2 and the RMSE of the trend term were 99.4% and 4.063.
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Table 7. Parameters of the trend term of displacement based on polynomial fitting.

Phase a b c d R2 MSE RMSE

Phase 1 0.012 −0.610 21.208 2.698 0.990 518.271 22.766
Phase 2 0.003 −1.072 124.836 −2752.830 0.993 780.995 27.946
Phase 3 −0.036 15.684 −2272.588 111,207.893 0.999 20.876 4.569

All training samples / / / / 0.994 563.729 23.743
Prediction samples / / / / 0.991 16.510 4.063

4.5.2. Periodic and Random Term Prediction

The periodic and random displacements were trained and predicted by FOA-BPNN. In
general, a model’s performance is usually affected by its own structure. Through extensive
sensitivity analysis, the most reliable structure can be obtained [40,41]. Therefore, in the
process of FOA optimization, 12 different structures with population sizes between 10 and
120 (10 intervals) were tested [42,43]. Each network was executed with 100 repetitions,
and the MSE (between the actual and predicted periodic displacements of the landslide)
was defined as the objective function used to evaluate the performance error of the model.
It is worth noting that each structure was tested five times to evaluate its repeatability.
The sensitivity curves are shown in Figure 13, which indicate that the MSE of the model
decreases with an increase in the population size. However, because FOA-BPNN integration
reduces the error in the training process, the model is less sensitive to population size. The
computing time of models with different population sizes is shown in Figure 14. After
consideration of the calculation costs and error, the population size of FOA-BPNN model
was determined as 10. In total, six FOA-BPNN models were built, including individual
periodic prediction models for V1, V2, and V3, and individual random prediction models
for V1, V2, and V3, as shown in Figure 15.
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Figure 15 indicates that the proposed models achieved good prediction results. According
to the results of the residual error analysis, in the training process of the model, the residual
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error of displacement was relatively stable, which also verified the robustness and reliability
of the model. For the prediction samples, there were some fluctuations in the residual error.
The prediction accuracy of the model will be analyzed in the Discussion section.

4.5.3. Total Displacement

The total displacement prediction results of the landslide can be obtained by super-
imposing the prediction results of all three types of displacement, as shown in Figure 16,
which shows that the prediction model achieved good accuracy for monitoring point ZG93.
In June 2007, there was a significant difference between the total displacement training
value and the actual value, resulting in the obvious mutation of the residual error. This
was because in the three parts of landslide displacement (trend, periodic, random), the
trend displacement accounts for more than 85%. In June 2007, it was the boundary between
Phase 1 and Phase 2, where there were some differences in the training results of the two
polynomial fitting functions, resulting in a large residual error in the total displacement.
However, the residual error was relatively stable for the prediction samples.
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5. Discussion

As mentioned above, the landslide displacement contains three parts: (1) trend dis-
placement, which is controlled by internal factors; (2) periodic displacement, which is
controlled by external factors; and (3) random displacement, which is controlled by random
factors. Generally, in predictions of landslide displacement, the selection of triggering fac-
tors is based on monitoring data such as rainfall and the reservoir’s water level, which are
the main factors causing periodic displacement. Therefore, taking these factors as the input
of periodic displacement will not only have clear physical significance but will also signifi-
cantly improve the accuracy of landslide displacement predictions. When the time series
analysis method was used to predict the landslide displacement, the displacement trend
was relatively easy to predict. Therefore, choosing the appropriate periodic displacement
prediction model is the key to improving the effect of landslide displacement predictions.
Moreover, landslide prediction models have experienced rapid development in the past
50 years, and various machine learning models have been widely used for predicting
landslide displacements. However, each algorithm has its limitations. For instance, SVM
has low computational complexity but it is sensitive to the choice of parameters and kernel
function. The decision tree model does not need any prior assumptions on the data, but the
required sample size is relatively large, and its ability to deal with missing values is quite
limited. ELM uses the principle of least squares and a pseudo-inverse matrix to solve the
problem, which is only suitable for single-hidden-layer neural networks. BPNN has strong
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self-learning, self-adaptive ability, and good generalization ability but it is prone to slow
convergence. In this study, based on the VMD and data mining results, the FOA-BPNN was
used to predict the periodic and random terms of monitoring point ZG93′s displacement.
The BPNN, SVM, and ELM algorithms were chosen as the comparison models (Models 2–4).
The performance of various displacement prediction models of the Baishuihe landslide are
shown in Table 8 and Figure 17. The prediction accuracy of the FOA-BPNN model was the
highest. The R2 reached 0.977 and its RMSE was only 10.041. In contrast, the proposed
model could improve the accuracy of landslide displacement predictions.

Table 8. Performance of various displacement prediction models of the Baishuihe landslide.

Model Algorithm’s Combination
Prediction Term

R2 MSE RMSE

Model 1 VMD + FOA-BPNN 0.977 100.828 10.041
Model 2 VMD + BPNN 0.923 340.481 18.452
Model 3 VMD + SVM 0.944 282.566 16.81
Model 4 VMD + ELM 0.877 940.462 30.667
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In this study, ZG93’s monitoring data were selected for predicting displacement, and
the monitoring data of points ZG118 and XD01 were added to increase the sample size and
overcome the model’s overfitting error, and to provide a better representative prediction of
the overall landslide displacement. The accuracy of various models in terms of predicting
ZG93’s displacement has been discussed. The monitoring points ZG118 and XD01 in
2016 were used for the model validation. The measured and predicted displacements of
ZG93, ZG118, XD01 are shown in Figure 18. The R2 values between the measured and
predicted displacements of ZG118 and XD01 were 0.977 and 0.978, respectively. The RMSE
of these two monitoring points was 12.40 and 16.04, respectively. In the previous study [10],
cumulative displacement was divided into trend term and periodic term by time series
model and moving average method. A cubic polynomial model was proposed to predict
the trend term of displacement. Then, multiple algorithms were used to determine the
optimal support vector regression (SVR) model and train and predict the periodic term. In
this paper, data mining technology is used to screen the trigger factors of periodic items,
and the more advanced FOA optimization algorithm is used to optimize the parameters
of the machine learning model. Furthermore, this paper uses a VMD model to divide
the landslide displacement data, which makes great progress compared with the moving
average model, and will be more conducive to the integration and automation of the
landslide prediction model. Therefore, the prediction accuracy obtained in this paper
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(R2 = 0.977 and 0.978) is significantly higher than that of previous studies (R2 = 0.963 and
0.951). In general, the model proposed in this study has achieved good results in terms
of predicting the displacement of different monitoring points of the landslide, which has
high practicability and application value in the study of landslide displacement predictions.
However, it is worth noting that due to the small amount of displacement data in the V3
state of the monitoring point (Table 6), the prediction results of XD01 have obvious errors
for July 2016. Therefore, in order to obtain satisfactory prediction results, the monitoring
data of various states should be supplemented as much as possible.

Sensors 2022, 22, 481 21 of 23 
 

 

 
Figure 18. Measured and predicted displacements of ZG93, ZG118, and XD01. 

6. Conclusions 
In this paper, the Baishuihe landslide in the Three Gorges Reservoir area was taken 

as an example. Data mining and deep learning were used for displacement prediction. 
The following conclusions can be reached: 
(1) Using VMD to decompose the displacement of Baishuihe landslide can correspond 

to the triggering factors, which had clear physical significance. 
(2) The association rules showed that the main factors controlling the V2 and V3 defor-

mation of the landslide were the sharp fluctuation of reservoir water level and me-
dium–heavy rainfall. 

(3) R2 between the measured and prediction displacements of ZG118 and XD01 were 
0.977 and 0.978. RMSE of these two monitoring points were 12.40 and 16.04, respec-
tively. 

(4) An integrated approach for landslide displacement prediction including data mining 
and deep learning was proposed, which could guide the managers of geological dis-
asters to improve the prediction accuracy, so as to reduce the losses caused by land-
slides. 

Author Contributions: Writing—original draft, F.M.; data curation, X.X.; writing—review and ed-
iting, Y.W.; investigation, F.Z. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This research was supported by the National Natural Science Foundation of China 
(42007267, 41977244), Science and Technology Project of Hubei Provincial Department of Natural 
Resources (ZRZY2020KJ12), and the National Key R&D Program of China (2017YFC-1501301). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 
1. Hong, H.; Pourghasemi, H.; Pourtaghi, Z. Landslide susceptibility assessment in Lianhua County (China): A comparison be-

tween a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology 2016, 259, 105–
118. 

2. Juang, C.H.; Dijkstra, T.; Wasowski, J.; Meng, X. Loess geohazards research in China: Advances and challenges for mega engi-
neering projects. Eng. Geol. 2019, 251, 1–10. 

Figure 18. Measured and predicted displacements of ZG93, ZG118, and XD01.

6. Conclusions

In this paper, the Baishuihe landslide in the Three Gorges Reservoir area was taken as
an example. Data mining and deep learning were used for displacement prediction. The
following conclusions can be reached:

(1) Using VMD to decompose the displacement of Baishuihe landslide can correspond to
the triggering factors, which had clear physical significance.

(2) The association rules showed that the main factors controlling the V2 and V3 de-
formation of the landslide were the sharp fluctuation of reservoir water level and
medium–heavy rainfall.

(3) R2 between the measured and prediction displacements of ZG118 and XD01 were 0.977
and 0.978. RMSE of these two monitoring points were 12.40 and 16.04, respectively.

(4) An integrated approach for landslide displacement prediction including data mining
and deep learning was proposed, which could guide the managers of geological disas-
ters to improve the prediction accuracy, so as to reduce the losses caused by landslides.
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