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Abstract: In this paper, we present integrated lead-free energy converters based on a suitable MEMS
fabrication process with an embedded layer of LiNbO3. The fabrication technology has been devel-
oped to realize micromachined self-generating transducers to convert kinetic energy into electrical
energy. The process proposed presents several interesting features with the possibility of realizing
smaller scale devices, integrated systems, miniaturized mechanical and electromechanical sensors,
and transducers with an active layer used as the main conversion element. When the system is fabri-
cated in the typical cantilever configuration, it can produce a peak-to-peak open-circuit output voltage
of 0.208 V, due to flexural deformation, and a power density of 1.9 nW·mm−3·g−2 at resonance, with
values of acceleration and frequency of 2.4 g and 4096 Hz, respectively. The electromechanical trans-
duction capability is exploited for sensing and power generation/energy harvesting applications.
Theoretical considerations, simulations, numerical analyses, and experiments are presented to show
the proposed LiNbO3-based MEMS fabrication process suitability. This paper presents substantial
contributions to the state-of-the-art, proposing an integral solution regarding the design, modelling,
simulation, realization, and characterization of a novel transducer.

Keywords: lead-free transducers; LiNbO3; MEMS process; energy converters

1. Introduction

With the advent of smart systems, integrated measurement architectures, and dis-
seminated sensing devices, novel solutions and transduction elements have emerged as
an area of incredible impact, potential, and growth [1–3]. These solutions have arisen
interest, especially considering the following prerogatives: high performance, lead-free, the
possibility of incorporating self-generating materials, low cost, miniaturized [4].

New materials, intelligent sensors, and advanced conversion principles are also highly
interesting in the context of sensors, actuators, and converters, i.e., technologies such as
systems able to convert the energy source nature. For example, the ability to transduce
environmental/external energy sources into electrical power, energy harvesting, and certain
measurements basics [5–7].

This latter family of devices finds recent applications in various areas, including
automation, robotics, automotive, biomedical, structural monitoring, and cultural her-
itage [8,9]. The common feature of such devices concerns the strategies to convert the
input energy into corresponding output electrical energy. Literature reports several energy
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harvesters/converters capable of operating in the presence of various sources of energy,
including solar, wind, thermal, RF, and vibrational [10]. The energy storage on a capacitor
is typically the common aspect of all the above approaches.

Kinetic energy represents an interesting source, with an abundant and significant
amount available in the environment. Examples are induced movements, vibrating equip-
ment, environmental kinetic vibrations, noisily and periodic sources [11,12]. Several trans-
duction principles can be considered to convert these kinetic energy sources into electrical
energy (i.e., electrostatic, electromagnetic, magnetoelectric, etc.). It is worth noting that
various dynamics [12] have been implemented to improve the performance in macro and
micro scale devices and Microelectromechanical Systems (MEMS) [13] by using periodic,
noisily, or a mix of waveforms as kinetic energy sources [12–14].

Regarding energy converters based on self-generating materials, it should be noted that
literature presents various intriguing solutions, such as lead zirconate titanate (Pb(Zr,Ti)O3,
PZT), aluminum nitride (AlN), polyvinylidene difluoride (PVDF), and, more generally,
Electro Active Polymers (EAPs) and compounds.

EAPs based on ions (IEAPs), such as ionic polymer–metal composites (IPMCs), are also
widely used as energy converters. This class of compounds can produce electrical power
when suitably deformed, and the transduction capabilities rely on ion migration [15]. These
devices present various configurations, sizes, and geometries. IEAPs have raised great
interest from the scientific community since they are flexible and capable of large deflections,
producing few volts as open circuit output. However, they do not lend themselves to
integrated solutions and present low power generation capability. In ref. [16], the authors
propose IPMCs as an energy converter for harvesting applications. The power generation
expected values are in the order of nW/m/s2, with samples in the order of centimeters. It
is worth mentioning that these macroscale devices’ features are correlated with the specific
geometry, input level, transduction elements, and material composition. Nevertheless, it is
fascinating given various applications (i.e., automotive biomedical, structural monitoring,
disseminated measurement systems), the conception of smaller-scale devices, including
integrated systems, miniaturized mechanical and electromechanical elements, microscale
approaches, and MEMS-based kinetic energy transducers.

In this context, to decrease the dimension, integrated scale devices, MEMS, and
micromachined transducers must be accounted for using other types of materials. Several
integrated solutions of beams, bridges, oscillators, and vibrating systems that convert
kinetic energy from the environment into electrical power can also be found in the literature.

Jeon et al. [17] have presented a MEMS power generator with a transverse mode based
on PZT thin film to convert kinetic into electrical energy. A spin-coated thin film of PZT is
used as a conversion layer. A cantilever with a proof mass configuration has been designed
as a resonant transducer. An interdigitated Pt/Ti top electrode has been realized to contact
the active material with a d33 mode to improve the proposed device performance. A 14 kHz
resonant frequency has been obtained, and with the presence of a tip, displacements of
approximately 5 µm. An output power of around 1 µW, and a DC voltage of around 2.4 V,
have been detected. The optimal load corresponds to 5.2 MΩ.

In ref. [18], the authors have proposed another MEMS-based piezoelectric converter
solution with an aerosol deposited active layer thin film. The mechanical resonance corre-
sponds to 256 Hz, and in the presence of a tip, displacements of approximately 10 µm are
observed. An output power of around 2 µW has been generated. The corresponding output
voltage, evaluated with an optimal resistive load of 150 kΩ, is 1.6 Vp-p. It should be noted
that the previously proposed solutions involve post-processing procedures and dedicated
steps of a process to include active layers. More recently, PZT epitaxial thin films have been
deposited on silicon and structured as cantilevers with tip mass [19]. These MEMS devices
could attain 0.27 V/g for an optimal load of 5.6 kΩ and a resonance frequency of 2.3 kHz.

Muralt et al. [20] have reported a MEMS power generator used as a vibration energy
harvester with a 2 µm thick PZT on 5 µm of silicon. In the presence of vibrations of about
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0.3 µm, at 870 Hz, maximum power of about 500 nW is generated. The output voltage
corresponds to about 0.9 V. The optimal resistive load is about 10 kΩ.

Based on their high-performances, current devices tend to be developed using lead-
based PZT technologies and derivatives. Due to their classification as harmful materials,
related to their toxicity, lead-free replacements are needed. These proposed devices comply
with the directives based on the Restriction of Hazardous Substances Directive (RoHS)
thanks to lead-free materials.

Various papers have been proposed in the literature regarding integrated solutions
with embedded lead-free active layers used as conversion elements. Technologies currently
in use, including commercial ones, are developed with processes-based zinc oxide (ZnO)
and AlN layers. Regarding ZnO, it has been implemented in piezoelectric MEMS vibra-
tion energy harvesters with two piezoelectric elements for higher output performance,
where the energy harvester has been fabricated on a Si wafer by means of standard micro-
machining techniques [21]. The resonance frequency is 1.31 kHz, achieving 1.25 µW for 1 g
acceleration level.

In ref. [22], the authors exploit the performance of an AlN-based MEMS as a kinetic to
the electric converter. A commercial MUMPS process, based on 0.5 µm AlN, has been used.
In particular, the performance as a sensing device has also been pursued, showing the
generation of about 2.5 mV voltage with an acceleration level of 0.6 m/s2. In the perspective
of being used as a harvester, this embedded material performance is less than some nW.
In ref. [23], AlN microstructure cantilevers were implemented in an integrated energy
harvesting module with a power management circuit, obtaining 1.4 nW with a resonance
frequency of 1.5 kHz.

LiNbO3 shows the highest material coupling factor among lead-free piezoelectric
materials such as AlN, PVDF, and ZnO and, because of its Curie temperature (1100 ◦C), it
opens the possibility to high-temperature applications [24,25]. For these reasons, the pur-
sued approach has arisen interest in order to fabricate microscale sensors and transducers.
Moreover, macroscale LiNbO3 energy harvesters have been recently investigated, obtaining
power densities comparable with lead-free and lead-based materials [26]. Therefore, their
use has been proposed to power up macroscale devices [27]. On the other hand, their role in
powering the Internet of Things (IoT) nodes has also been explored, either by implementing
them with off-the-shelf radio frequency modules, showing the possibility of sending data
wirelessly every 2 s at resonance [28], or using their electromechanical properties along
with low-power Bluetooth modules to obtain self-powered acceleration sensors [29].

This paper improves the state-of-the-art; in particular, the novelty concerns the design,
modelling, simulation, realization, and characterization of an integrated lead-free energy
converter based on a suitable MEMS fabrication process with an embedded layer of LiNbO3.
To the best of the authors’ knowledge, no technology is yet available, nor MEMS fabrication
process has been reported, on lead-free integrated kinetic energy converters based on
LiNbO3. Our lead-free fabrication technology has been developed to obtain micromachined
resonators able to convert kinetic energy into electrical energy. The process proposed here
presents several features with the possibility to fabricate MEMS scale devices, integrated
systems with miniaturized mechanical and electromechanical sensors, and transducers
with lead-free active layer used as the main element of conversion. When the system is
fabricated in the typical cantilever configuration, it produces an output voltage signal due
to flexural deformation.

The proposed lead-free LiNbO3 converter can generate a voltage with amplitude
higher than diode thresholds (>200 mV), where the electromechanical transduction capa-
bility is exploited for sensing and power generation/harvesting applications. Theoretical
considerations, simulations, numerical analyses, and experiments are presented to show
the proposed LiNbO3-based fabrication process suitability.
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2. Theoretical Considerations

The equivalent circuit of the device is a system that considers the behavior of the
LiNbO3 element and the natural mechanical frequency as a resonator with a single degree of
freedom [30]. In this approximation, the converter can be modeled as an electromechanical
system composed of an inertial mass M, a damper C (mechanical losses), and a spring K
(stiffness of the mechanical structure), that undergoes the action of an external driving force
M

..
y, see Figure 1.
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The relative displacement of the inertial mass concerning the reference frame is then x,
and the current I is proportional to the velocity

.
x, electromechanically converted by a

transformer with a ratio α:1, where α is the electromechanical force factor, see Figure 2.
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Therefore, the LiNbO3 element is a current generator connected in parallel to the
clamped capacitance C0, where V represents the voltage measured on the resistive load Rl.
It is possible to describe such a system in terms of the following coupled equations:{

M
..
x = M

..
y−Kx− αV−C

.
x

I = α
.
x−C0

.
V

(1)

with this formalism, we can express the electromechanical coupling factor k2 and the
damping ratio from mechanical losses ζ as:

k2 =
α2

α2 + KC0
(2)

ζ =
C

2
√

KM
(3)

Therefore, in this electromechanical system, the mechanical losses are represented
by ζ, and the electromechanical coupling factor k2 represents the ratio between the input
mechanical energy and the output electrical energy, which is always <1. From the mathe-
matical expression of the coupled system, it is possible to evaluate the voltage and power
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on a resistive load connected in parallel to the converter so that the power would be given
by P = V2

2Rl
, hence in the explicit form as:

P =
1
2

Rlω
2α2

1 + (ωR lC0)
2 xM

2 (4)

where the power is then proportional to the angular frequency ω and the displacement
magnitude xM, thus, the maximum power is given at the resonance angular frequencyω0
and optimal resistive load value Ropt is expressed as:

Pmax =
1
4
α2

C0
ω0xM

2 (5)

3. Materials and Methods

As we can see in Figure 3, regarding the microfabrication process, the material stack
constituted of lithium niobate (LiNbO3), chromium (Cr), gold (Au), silica (SiO2), and silicon
(Si) is achieved with a standard 500 µm Si/SiO2 substrate with an oxide layer of 500 nm
and a (YXlt)/163◦/90◦ LiNbO3 (following IEEE standard on rotation [31]) single crystal
substrate polished in both sides. In both Si/SiO2 and polished LiNbO3 substrates, an
adhesive layer of Cr of 15 nm and a thin layer of Au of 85 nm by sputtering is deposited to
perform Au-Au bonding between the substrates. After bonding, the LiNbO3 layer is lapped
to 12 µm and polished again (TTV 2 µm). After a step of micro-polishing the piezoelectric
layer, top electrodes are deposited with the same adhesive layer thickness of Cr, and
185 nm of Au, patterned by UV lithography in the shape needed to create beams. Further
procedures are related to mechanical cutting with a 100 µm thick saw and a precision
of 2 µm.
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Regarding the materials on this matter, the need for a protective sacrificial layer, in this
case, a 3 µm resin layer, is needed while cutting with the high precision dicing saw. Because
of the devices’ size, processing steps take place to release the devices from the frame.
Reactive-Ion Etching (RIE) processes are performed to straighten the mechanical cuts and
achieve the beam’s thickness (see cantilever beam in Figure 3). The microfabrication tech-
nology has been carefully selected based on standard procedures to foresee the possibility
of upscaling, if convenient, for certain applications. Various devices have been developed
under the previously described microfabrication procedure to validate the suitability of the
LiNbO3 MEMS process, such as linear beams. Even though more intricated structures can
be more suitable for these applications, linear devices with lengths from 13 mm to 4.5 mm,
800 µm width, and 120 µm thick, have been selected to have as benchmark previous work
experience in designing and characterizing MEMS devices with similar behavior, based
on commercially available PiezoMUMPs manufacturing technology [32]. In parallel, FEM
simulations have been performed to better understand the mechanical behavior. In par-
ticular, the case study regards a cantilever beam having a width of 800 µm and a length
of 6.5 mm. Simulations have been performed with the software COMSOL Multiphysics
and the specific MEMS module, with a solid body representing its weight as a load, a fixed
constrain on the extreme cross-section, and a mesh of 1936 prim elements; only consider
the theoretical calculation for an optimal setup without any additional disturbances after
the ones we can estimate mathematically. A study in frequency has been carried out to
approach the value of the first eigenmode and use it to narrow down the physical measure-
ments, while a study in the time domain has allowed us to understand the devices’ stress
values and movement behavior, see Figure 4.
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Figure 4. Linear Beam with 6.5 mm length and 800 µm width FEM simulations results: (a) first
eigenmode with a frequency around 4092 Hz. (b) Stress values with a max. value 5.86 × 105 N/m2.

Figure 5 shows the fabricated (YXlt)/163◦/90◦ LiNbO3-based MEMS energy convert-
ers, fixed in a PCB and wire bonded. A cross-section of a beam is also highlighted.
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and cross-section of a realized device (on the right).

4. Experimental Results and Discussion

The experimental characterization of the (YXlt)/163◦/90◦ LiNbO3 device done with
Agilent Technologies E5061B and a test feature Keysight Technologies 16047E, M, C, and
K values, have been estimated from resonance and anti-resonance frequency of electrical
impedance. The results have shown two different modes, giving two sets of ωr and
ωa. The experimental data have been fitted to extrapolate ζ and k2 of the prototypes. A
representation of the data from the impedance measurement is presented in Figure 6.
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The first mode estimated mechanical damping factor is ζ = 0.0017, with low dielectric
losses (tanδ < 1%). As expected, (YXlt)/163◦/90◦ LiNbO3 high-quality single crystal
is responsible for the considerably low values of damping and losses. Concerning the
electromechanical coupling factor, the converter shows low coupling, the value measured
is k1

2 = 0.7%. In the lumped model, the spurious mode has not been considered due to
very low coupling (k1

2 = 0.04%). The appearance of the spurious mode could be due to the
mechanical effect of resonance with other beams that are part of the device or the sample
thickness variation. Eventually, given the devices’ low coupling, we could foresee that the
electronic interface would not affect the structure displacement [33].



Sensors 2022, 22, 559 8 of 12

The experimental setup (see Figure 7) used to study the integrated converter is
based on:

• A signal generator HP33120A, for impressing a suitable waveform to the shaker;
• An oscilloscope, Agilent MSO9064A, for acquiring the signals;
• A single-axis accelerometer used to monitor the imposed vibrations;
• Two laser sensors, used for measuring the sensor displacement (anchor and tip).
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The device was studied considering extensive tests and a metrological characterization.
In this context, the frequency response is presented in Figure 8a, where the average of
14 tests each is represented with 9 data points for voltage vs. frequency, showing the
resonance frequency, f 0, around 4096 Hz. This value is obtained by sweeping the frequency
from 4076 Hz to 4116 Hz with steps of 5 Hz. An open-circuit voltage (Voc) of about
0.208 Vp-p is found at resonance. Similarly, for voltage vs. acceleration (Figure 8b), the
source signal amplitude has been changed to obtain a variation of equidistance steps of
0.082 g of acceleration from 1.785 g to 2.28 g. With a linear fit of seven data points, this
figure is represented as a calibration diagram to consider the voltage uncertainty, with a
maximum value σ = 0.004 Vp-p. This result is achieved with a polynomial curve fitting
based on Matlab’s polyfit and polyval functions, where polyfit returns the coefficients of
a degree n polynomial equation (p(x) = p1xn + p2xn−1 + · · · pnx + pn+1), to best fit the
curve, and polyval returns the estimated error.

The force factor α has been measured from the displacement and voltage measure-
ments in open circuit conditions. From the Voc measured at resonance and considering a
peak-to-peak displacement of 2 µm, the force factor α for the converter has been calculated,
while the clamped capacitance C0 has been measured at 1 kHz. With the parameters sum-
marized in Table 1, we can approximate the behavior of the cantilever around its resonance
frequency; even though being a single degree of freedom model, it does not allow us to
consider possible nonlinearities of the system.

Table 1. Experimental evaluated lumped model parameters.

C0 (pF) M (mg) C (N·s·m−1) K (N·m−1) α (N·V−1) XM (µm)

744 1.133 9.948 × 10−5 731.4 4.7619 × 10−5 0.98
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Figure 8. Characterization results of the device: (a) voltage vs. frequency (b) voltage vs.
acceleration–calibration diagram (c) Power and voltage output comparison for the simulated and
experimental results.

Using the formalism presented in Equation (5), we have estimated the power output
from the LiNbO3 element obtaining about 2.6 nW for a load of approximately 100 kΩ,
which results in a discrepancy of 17% between experimental and theoretical data. This
difference can be attributed to considering a beam without a tip mass as a single degree of
freedom system [34]. The power and voltage simulations from the lumped model, along
with the experimental results, are shown in Figure 8c.

Regarding the voltage vs. resistance load, a measurement with resistance in parallel
take place for resistance values related to the logarithmic scale, emphasizing the range
between 100 kΩ and 1 MΩ where the proper measurements and the performance of the
device show a saturation point of 0.03 Vrms. The power vs. resistance load, with a maximum
power over 3 nWrms at an optimal resistance value of 196 kΩ, is derived from the voltage
vs. resistance load values, mathematically calculated using Ohm’s Law.

A 96 kΩ discrepancy is observed between experimental and theoretical values. The
lumped model approximates the harvester to a single degree of freedom system and
does not consider electromechanical interface imperfections such as clamping or thickness
variation of the piezoelectric or silicon layer. Moreover, variations in magnitude and slight
frequency derivation are present between the measurements.
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Nevertheless, an expected behavior can be noticed, promising for future variegate
applications. Finally, we have estimated the devices’ power density with an acceleration of
2.4 g, which shows a resulting power output of 1.9 nW·mm−3·g−2.

Table 2 presents finite element simulations comparing (YXlt)/163◦/90◦ LiNbO3 and
commonly used ceramic PZT-5A. The geometry and parameters used in the simulation
are the same for both materials, and the values are measured in open circuit conditions,
assuming a tip displacement of 1.4 µm. Typically, due to the lower stiffness of PZT-5A
ceramics, the resonance frequency of the device shifted to a lower value (3536 Hz). However,
the voltage output is similar to LiNbO3, obtaining a Vrms of 33 mV. The power output is
similar for LiNbO3 and PZT-5A (3 nW and 2 nW, respectively), showing comparable results.

Table 2. Simulation of different materials with the same MEMS design.

Material Frequency (Hz) Vrms (mV) Power (nW)

(YXlt)/163◦/90◦ LiNbO3 4092 37 3
PZT-5A 3536 33 2

5. Conclusions

This paper demonstrates the possibility of using LiNbO3 MEMS devices for sensing
applications or as energy harvesters. We analyzed the performances of a piezoelectric
beam with 6.5 mm in length and 800 µm width, which showed a peak-to-peak open-circuit
voltage of 0.208 V with resonance frequency at 4096 Hz. The piezoelectric beam showed
low mechanical damping (ζ = 0.0017), a coupling factor k2 = 0.7%, and whenever operated
at resonance, it attained a power density of 1.9 nW·mm−3·g−2. Finite element simulations
and a single degree of freedom model were used to predict and analyze the experimental
results. Further improvements in the sensing capabilities and electromechanical coupling
of the devices have been obtained by implementing a silicon tip mass to maximize the stress
on the beam and lower its resonance frequency. Moreover, the proposed microfabrication
route results are promising, especially for industrial upscaling and for the application of
LiNbO3 in MEMS scale devices.
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