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Abstract: With the ever-increasing advancements in the technology of driver assistant systems, there
is a need for a comprehensive way to identify traffic conflicts to avoid collisions. Although significant
research efforts have been devoted to traffic conflict techniques applied for junctions, there is dearth
of research on these methods for motorways. This paper presents the validation of a traffic conflict
prediction algorithm applied to a motorway scenario in a simulated environment. An automatic video
analysis system was developed to identify lane change and rear-end conflicts as ground truth. Using
these conflicts, the prediction ability of the traffic conflict technique was validated in an integrated
simulation framework. This framework consisted of a sub-microscopic simulator, which provided an
appropriate testbed to accurately simulate the components of an intelligent vehicle, and a microscopic
traffic simulator able to generate the surrounding traffic. Results from this framework show that
for a 10% false alarm rate, approximately 80% and 73% of rear-end and lane change conflicts were
accurately predicted, respectively. Despite the fact that the algorithm was not trained using the
virtual data, the sensitivity was high. This highlights the transferability of the algorithm to similar
road networks, providing a benchmark for the identification of traffic conflict and a relevant step for
developing safety management strategies for autonomous vehicles.

Keywords: validation; integrated simulation framework; traffic conflicts; road safety

1. Introduction

With the rapid growth of artificial intelligence techniques such as machine learning
and image recognition, the vehicle industry is currently undergoing dramatic changes. A
vehicle is no longer considered to be a simple mechanical structure, but an entity which
includes multiple advanced driver assistance systems (ADAS) aiming to improve both
vehicle and driver safety. With these additional functions, vehicles are progressively
becoming more intelligent, with the latest advancement being Autonomous Vehicles (AVs)
and Connected and Autonomous Vehicles (CAVs). These emerging technologies in the
automotive industry have introduced safety-related challenges and, consequently, research
has attempted to address these challenges by developing proactive and predictive safety
management systems for these vehicles.

Traditionally, safety analysis has formed functional relationships between occurrences
of safety incidents (e.g., accidents) and various kinematics or infrastructure related factors
using historical data [1]. However, these approaches have been developed by static and
aggregated data, and the effects of sudden changes in traffic conditions that lead to collision
risks are sometimes not captured [2]. These limitations can be overcome by making
use of real-time traffic data [3]. This approach is considered to be proactive rather than
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reactive [4]. The underlying theory behind the approach of using non-accident data is based
on that in accelerating vehicle-based proactive safety systems, traffic conflicts can be used a
measure of accident nearness, and a safety critical event has the potential to progress to a
traffic collision. In fact, Tarko, [5] establishes that traffic conflicts are probabilistically and
statistically connected with traffic accidents. Typically, a traffic conflict includes including
at least two moving vehicles and is generally identified through the response of the evasive
action that takes place so as to avoid a potential collision, and by a safety surrogate measure
(SSM) that shows a spatio-temporal risk (two parties are in close proximity in either space
or time) [5–7]. Nevertheless, reliable traffic conflict identification is not an easy task.

Traffic conflict prediction algorithms have been developed to assess and quantify the
threat level surrounding an ego-vehicle. The technical reliability of adopting such systems
for conflict prediction relies on the functionality of the multiple sensors that a vehicle is
equipped with. These systems necessitate stringent safety tests to ensure robustness. Testing
and validation is key to determining the prediction accuracy and impact on safety that a
traffic conflict prediction algorithm can achieve in a complex and organically changing
real-world environment, thereby facilitating customer uptake. Commercially available sub-
microscopic simulators such as PreScan, CarMaker, and CARLA provide platforms offering
a variety of intelligent traffic modeling to investigate and validate various technologies
and applications such as testing the identification of traffic conflicts. This can be done by
including a traffic conflict prediction model using deep learning within this simulator, so
that complex and non-linear patterns are identified to classify and predict traffic conflicts [8].
To boost the strength of sub-microscopic simulators, they can also be integrated with other
available simulation tools such as PTV VISSIM (a microscopic simulator). However, the
complexity of modeling all possible combinations of traffic situations and environmental
conditions make this approach challenging. Hence, a number of ‘benchmark’ scenarios have
to be developed allowing the investigation of driving behaviors and vehicle functionalities
under different traffic conditions and scenarios.

Therefore, the purpose of this paper is to validate a traffic conflict prediction algorithm
implemented within an integrated sub-microscopic simulation framework. One main
challenge arising from validating the prediction algorithm is that ground truth, i.e., traffic
conflicts, is not readily available. This study makes use of a system that adopts a set of
defined conservative criteria derived from existing literature to identify all possible traffic
conflicts. To enhance the validation of ground truth, the results from this system are also
validated. The ground truth provides a means for virtual verification and evaluation of
the traffic conflict predictions from the algorithm in critical scenarios using an integrated
simulation framework. To ensure realistic values and accurate representation of traffic
characteristics, data was collected via an instrumented vehicle and inductive loop detectors
from a section of the M1 motorway in the UK. The scenarios were developed based on
several variables including the ego-vehicle and the behavior of the surrounding vehicles,
the sensors used, and the driving style of road users. These variables need to be modeled
in a sub-microscopic simulation environment while a microscopic traffic simulator can be
used in conjunction to generate traffic dynamics.

This research is a valuable addition to existing literature, since it develops a process to
acquire traffic conflict data to test the effectiveness of the prediction algorithm by devel-
oping a number of traffic conflict scenarios in the simulation framework. The integrated
simulation framework is a new approach that provides a platform to the user to model,
test, validate, and further enhance the customized models for future users. The results
emerging from the framework showcase the transferability of the algorithm and provide
recommendations to vehicle manufacturers to improve their collision-risk model, allowing
intelligent vehicles to operate safely and reliably, and further testing and developing vehicle
safety technologies and automated driving systems.
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2. Literature Review

Timely detection of traffic conflict plays an important role in the development of
intelligent vehicles in order to proactively mitigate the risk of collision. Multiple traffic
conflict identification techniques have been recommended and applied in the literature, but
these studies provide mixed conclusions about their transferability to motorway scenarios.
As a result, this review focuses on two key parts. Firstly, it examines the characteristics used
to identify ground-truth traffic conflicts occurring in a motorway scenario. It must be noted
that only lane change and rear-end traffic conflicts are considered in this study, as these
are the two most prevalent type of traffic conflicts in a motorway scenario [9]. Secondly,
it presents a review of existing integrated simulation frameworks to test and validate a
traffic conflict predictor algorithm. These frameworks assist to improve safety in ADASs
and highlight their utility in CAVs and AVs.

2.1. Traffic Conflict Identification to Generate Ground Truth Data in a Motorway Scenario

The identification of traffic conflicts is a challenging task. They are characterized by a
set of indicators arising from their definition: a spatiotemporal proximity indicator and an
evasive action response [7]. These indicators can facilitate the identification process and
research has attempted to define thresholds that clearly delineate the presence of a traffic
conflict. However, these thresholds have yet to be solidified.

Within the evasive action, there are three possible corrective maneuvers an ego-driver
can take in response to a traffic conflict: control speed by (1) accelerating or (2) braking [10],
and/or (3) steering to control lateral position [11]. By analyzing these evasive maneuvers,
information on how they are performed can be derived (e.g., controlled braking, lane
changing), as well as how they are influenced by the dynamic surroundings or road-surface
conditions in which they take place. While some traffic conflicts can be identified using
kinematic triggers, this can lead to a selection bias, since traffic conflicts can also result in no
reaction from the driver and therefore no significant kinematic changes [12]. This highlights
that the identification of traffic conflicts should fundamentally not be based solely on
evasive maneuvers, but also on the temporal and/or spatial proximity of the vehicles [7].
Examples of temporal proximity measures include time headway and Time-to-Collision
(TTC) whilst spatial proximity measures include examples such as Proportion of Stopping
Distance (PSD). The key advantage of spatial and/or temporal proximity measures is their
ability to capture the severity of a traffic conflict interaction in an objective and quantifiable
way [13]. However, this assumption may not be applicable in all driving environments, for
example, in congested traffic settings where road users are predisposed to regular vehicular
interactions and are frequently near each other.

Therefore, by adopting both evasive maneuvers and spatial and/or temporal proximity
measures, traffic conflict identification can be improved via information about the ego-
vehicle and surrounding traffic. Consequently, in this way, traffic conflicts can be identified
and assessed accurately and reliably. Nevertheless, detection of the traffic conflict indicators
from vehicles and trajectories via vision-based monitoring of road networks is inherently
difficult [14]. This approach is typically followed in existing studies for intersections using
static video data [15,16]. However, when using static video data, inherent challenges arising
from the development of the latest technology advancements, such as autonomous vehicles,
are not covered. Video data collected from an in-vehicle perspective could add a new
real-time dimension to traffic conflict identification analysis by examining a continuously
changing environment. Therefore, such a dynamic video analysis system needs to be
developed to provide valid and reliable traffic conflict identification for a continuously
changing visual and driving environment.

2.2. Testing and Validation of Functions in Intelligent Vehicles

The development of systems for intelligent driving functions is a complex process.
The technical reliability of intelligent vehicles relies on the functionality of the multiple
systems the vehicle is equipped with. The system’s performance changes with road
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infrastructure and dynamic surroundings. Hence, testing and validation of systems are of
great importance. It is necessary that comprehensive testing, either on real-world test tracks
and/or in virtual environments, is performed. However, most testing methods are still
carried out virtually rather than on public roads [17]. Virtual testing includes making use
of traffic simulation software programs where each part of the system (e.g., road network,
vehicle systems and driving behavior) is modeled. It is necessary to design, explore and
evaluate novel emerging transportation systems. These are the only methods that can
address unprecedented challenges that will arise from their implementation safely and
at a low-cost. There are four categories of traffic simulation: macroscopic, mesoscopic,
microscopic, and sub-microscopic. Each category depends on the detail of simulation
required and the scale of the experiment that needs to be conducted.

The lowest level of detail is found in macroscopic and mesoscopic models. These
models are mainly used to explore travel demand between origin and destination. Follow-
ing these models, changes in traffic patterns are explored in microscopic traffic simulation
models such that they are able to reproduce the behavior of individual vehicles. In fact,
traffic microsimulation makes use of mathematical equations to represent the movement
of simulation vehicles. Examples of microscopic simulation software tools include PTV
VISSIM, AIMSUN, or SUMO (open-source). One of the main drawbacks of traffic microsim-
ulation is the fact that it cannot accurately simulate specific mechanical or technological
parts of a system. As a result, it cannot assist in addressing specific challenges associated
with sensor recognition faults, such as the failure to identify lane markings or a roadworks
area in a motorway.

Sub-microscopic simulation can accurately simulate all the components of an intel-
ligent vehicle such as sensors (e.g., camera and radar), mechanical parts, and internal
components (e.g., engine, steering wheel). This category has also some disadvantages;
namely, it is not able to manage large-scale experiments with regards to network size and
cannot simulate large amounts of surrounding traffic. It works by using the graphical user
interface (GUI) of a sub-microscopic simulator to model and outline scenarios. Control
algorithms for each component (e.g., vehicle or infrastructure) are developed using C++,
MATLAB, or Python. Typical sub-microscopic software programs used are: (1) PreScan,
(2) CarMaker, and (3) CARLA. A summary of how these sub-microscopic simulators have
been adopted in the literature for virtual testing for safety purposes is presented here:

• PreScan:

Real-world tests were translated to virtual driving in a simulation environment by
Van der Made et al. [18] to evaluate different scenarios. Validation of probabilistic ADAS
sensor models with real-world data developed by Schubert et al. [19] was also carried out
in PreScan. On the other hand, Seo et al. [20] adopted a virtual sensor model together with
control algorithms to compare autonomous emergency braking with a pre-safe seat belt
system;

• CarMaker:

Riegger et al. [21] developed and validated a system for safe crossing. The system took
control over AVs to optimize their trajectories. Überbacher et al. [22] evaluated lane change
warning and side collision warning by applying a vehicle-in-the-loop function. Pfeffer
and Haselhoff [23] tested the performance of a camera-based driving assistance system by
adding artificial pedestrian models into the video stream;

• CARLA:

Osiński et al. [24] used interactive traffic scenarios to train agents to develop policies for
a variety of autonomous driving systems. These scenarios were also used for experimental
evaluation. Dosovitskiy et al. [25] employed CARLA to compare the performance of three
methods for autonomous driving. These methods include the classical model, a model
trained via imitation learning, and a model trained via reinforcement learning.

A variety of these simulators could potentially be used in this study; however, the
candidate software must achieve several essential requirements. These requirements
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review the tools’ capability to simulate vehicle equipment, perform realistic maneuvers,
and accurately simulate the vehicle’s surrounding environment and infrastructure. The
inventory of all the available traffic sub-microscopic simulators along with the criteria are
presented in Table 1.

Table 1. Criteria for the selection of the appropriate sub-microscopic simulation tool (adapted from [17]).

Requirement
Satisfied (Yes/Partially/No)

PreScan (TASS
International) CarMaker (IPG) CARLA (Intel)

Open Source No No Yes

Environmental sensor models Yes Partially Partially

Road and roadside models Yes Yes Partially

Realistic vehicle models to generate different vehicles Partially Yes Partially

Pedestrian and bicycle models Yes Partially Yes

Realistic driver or maneuver modeling Partially Yes No

Adverse weather conditions can be adopted and also
affect the sensor models Yes No No

Allows scripting and automation functionality which
links to other platforms Yes Yes Yes

Potential to change visibility within the experiment,
e.g., darkness and retro-reflectivity Yes Partially No

Potential to simulate worn off traffic signs and faded
lane markings, (perceived by sensor models) Yes Partially No

Allows road infrastructure data to be imported and
(semi-) automatic generation of road models Partially Partially Partially

Needs additional software tools (e.g.,
Matlab/Simulink/Python) Yes Yes Yes

As a result, from Table 1, PreScan was the simulation tool adopted for this study. This
is because of its ability to integrate the essential multiple components of a traffic model,
including vehicles (i.e., intelligent mobility functionalities), human behavior, and traffic
network via user interfaces. PreScan can also simulate multiple sensor technologies such
as cameras, LiDARs, radars, and GPS. It operates by employing Simulink, enabling the
representation of sophisticated system/scenario control algorithms, the development of
new algorithms, and modifications of existing ones. The main strength of this platform is
its ability to offer a variety of intelligent traffic modeling in order to design and investigate
various technologies and applications.

In conclusion, testing and validation of any ADAS is crucial. Existing studies have in-
vestigated the safety effectiveness of different ADAS functions in various simulators [19–25].
However, ground truth is not always known a priori. In this study, to extract a potential
traffic conflict, criteria derived from existing literature are used to include all traffic con-
flicts. Therefore, using these criteria, an extraction algorithm is adopted to identify all time
points where the thresholds were exceeded. Nevertheless, the time points identified by the
system need to be validated. By comparing the extracted traffic conflicts ground truth with
traffic conflict predictions from the implemented algorithm, the technical reliability and
performance of the algorithm can be evaluated. Such processes can be performed in an
integrated simulation framework. In this research, the framework considered consists of a
submicroscopic simulator (PreScan), which provides the appropriate testbed and can accu-
rately simulate the components of an intelligent vehicle, in conjugation with a microscopic
simulator (PTV VISSIM) to simulate the surrounding traffic dynamics. This framework is
considered due to its wide acceptability within the research community and its capability
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to test ADAS. This work is significant as it provides benchmarking for the prediction of
traffic conflicts for virtual testing procedures and is a relevant step for developing safety
management strategies for AVs.

3. Methods

The methodology of this paper is divided into two sections. The first section includes
traffic conflict identification to generate ground truth data and the second section includes
the validation of the traffic conflict prediction algorithm. Identifying traffic conflicts ground
truth is not easy as the data is not readily available. As a result, to identify rear-end and lane
changing conflicts, a method must be developed in a needed simulated environment. A
system making use of vehicle detections, lane-geometry identification, and defined criteria
was developed virtually to identify traffic conflicts. For each conflict scenario, safety metric
equations were developed to evaluate the traffic conflict identification.

An empirical analysis was carried out on this data to identify traffic conflict defining
patterns as well as the nature of performed evasive maneuvers when a traffic conflict is
identified. Based on this empirical analysis, derived scenarios were then transferred to
an integrated simulation framework to investigate safety performance. The simulation
framework consists of a submicroscopic and a microscopic traffic simulation tool. The
submicroscopic simulator served as an appropriate testbed to validate and test the traffic
conflict predictions from the developed algorithm implemented within the ego-vehicle. The
microsimulation tool was utilized to simulate dynamic traffic surrounding the ego-vehicle.

3.1. Generation of Traffic Conflicts Ground Truth from Simulated Data

The video analysis system was developed to identify traffic conflicts through the
response to an evasive action and the temporal and/or spatial proximity [7]. A set of
defined conservative criteria derived from existing literature were used to include all traffic
conflicts. Therefore, using these criteria, an automatic extraction algorithm was developed
to identify all the vehicles and time points where the thresholds were exceeded. The
influential factors used to identify both lane change and rear-end conflicts were based on
time, distance, speed, braking, acceleration and deceleration. The readers are referred to
Formosa et al. [26] for a more thorough description of the traffic conflict extraction from
the data. The flowchart for the lane change and rear-end conflict extraction algorithm is
shown in Figure 1.

These traffic conflicts were further validated by evaluating developed equations for
both traffic conflict scenarios. These equations are based on the assumption that in a conflict
process, the preceding vehicle (or the lane changing vehicle) maintains its speed while the
ego-vehicle applies the brakes once the driver reacts. This assumption is reasonable, since
the drivers in the front are possibly not aware of the hazard conditions behind them [27].
Considering the lane change conflict presented in Figure 2a, if the two vehicles maintain
their velocity, the conflict will turn into a sideswipe conflict at time tX with angle θ, and the
following conditions need to be satisfied:

sEVLC−SS ≤ VEVtX + sLC + sLCV −
(

lEV + lLCV

2

)
(1)

VEV(tX + tLC)− aEV
2

(
tX + lLCV

VLCV
− τLC

)2
≤

VEVtX + wLCV
2sinθ + wEV

2tanθ + lLCV(1+cosθ)
2 −

(
lEV+lLCV

2

) (2)
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EV, PV, and LCV represent the ego-vehicle, preceding vehicle, and lane change vehicle, respectively,
while θ, t, s, V, and a represent angle, time, distance, velocity, and acceleration, respectively. Based on
these criteria, the timestamps of each identified traffic conflict were recorded and validated. When
the threshold was exceeded, the timestamp was highlighted as a traffic conflict by the system.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 27 
 

 

width of the vehicle, respectively; and tX is the modified TTC. This is estimated by ି േ√(మ ାଶ ୟ ଡ଼ሻୟ , where ΔX is the clearance between two vehicles and ΔV and Δa denote 
the rate of change in velocity and acceleration between the ego-vehicle and the lane 
change vehicle, respectively. However, when the conflict angle varies between [0°, 5°], the 
sideswipe conflict is also considered as a rear-end conflict resulting in the following equa-
tion: sైిషు ≤ Vtଡ଼ + sେᇱ + sେᇱ − ൬l + lେ2 ൰ (4)

V(tଡ଼ + tେሻ − a2 ൬tଡ଼ + lେVେ − τେ൰ଶ ≤ 

Vtଡ଼ + wେ2sinθ + w2tanθ + lେ(1 + cos θሻ2 + Vେ ൬τ + V − Vେa − tେ൰ − ൬l + lେ2 ൰ 
(5)

The RBR for this condition is: aେିୖ = (V − Vେሻଶ2(V(tଡ଼ − τሻ + Vେτ + wେ2sinθ + w2tanθ + lେcosθ − l2 − lେሻ (6)

In the case of the rear-end conflict presented in Figure 2b, if the ego-vehicle is not 
able to decelerate to at least the speed of the preceding vehicle with a clearance of 0 m, a 
conflict will take place. sు ≤ sି  + s − ൬l + l2 ൰ (7)

Vτୖ + Vଶ − Vଶ2a ≤ Vtଡ଼ + ൬l + l2 ൰ − Vtଡ଼ + V(V − Vሻa − ൬l + l2 ൰ (8)

with the RBR of: aୖ ≥  V − V2(tଡ଼ − τሻଶ (9)

where τ is the reaction time taken as 0.92 s [29]. 

 
Figure 2. Visual representation of validating (a) lane change conflict and (b) rear-end conflict. Figure 2. Visual representation of validating (a) lane change conflict and (b) rear-end conflict.



Sensors 2022, 22, 566 8 of 26

In this case, the required braking rate (RBR) is given as:

aLC−SS ≥
2VEVlLCV

VLCV
+ lEV − lLCVcos θ− wLCV

sinθ −
wEV
tanθ

(tX + tLC − τ)2 (3)

where τ is the reaction time taken as 1.3 s [28]; tLC is the time for the lane change vehicle to
enter the ego-vehicle’s lane, which can be calculated by tLC = lLCV⁄VLCV [27] where lLCV
and VLCV is the length and velocity of the lane change vehicle; l and w are the length
and width of the vehicle, respectively; and tX is the modified TTC. This is estimated

by
−∆V ±√(∆V2+2 ∆a ∆X)

∆a , where ∆X is the clearance between two vehicles and ∆V and
∆a denote the rate of change in velocity and acceleration between the ego-vehicle and
the lane change vehicle, respectively. However, when the conflict angle varies between
[0◦, 5◦], the sideswipe conflict is also considered as a rear-end conflict resulting in the
following equation:

sEVLC−RE ≤ VEVtX + s′LC + s′LCV −
(

lEV + lLCV

2

)
(4)

VEV(tX + tLC)− aEV
2

(
tX + lLCV

VLCV
− τLC

)2
≤

VEVtX + wLCV
2sinθ + wEV

2tanθ + lLCV(1+cosθ)
2 + VLCV

(
τ+ VEV−VLCV

aEV
− tLC

)
−
(

lEV+lLCV
2

) (5)

The RBR for this condition is:

aLC−RE =
(VEV −VLCV)

2

2(VEV(tX − τ) + VLCVτ+
wLCV
2sinθ + wEV

2tanθ + lLCVcosθ−lEV
2 − lLCV)

(6)

In the case of the rear-end conflict presented in Figure 2b, if the ego-vehicle is not able
to decelerate to at least the speed of the preceding vehicle with a clearance of 0 m, a conflict
will take place.

sEVRE ≤ sEV−PV + sPV −
(

lEV + lPV

2

)
(7)

VEVτRE +
V2

EV −V2
PV

2aEV
≤ VEVtX +

(
lEV + lPV

2

)
−VPVtX +

VPV(VEV −VPV)

aEV
−
(

lEV + lPV

2

)
(8)

with the RBR of:
aRE ≥

VEV −VPV

2(tX − τ)2 (9)

where τ is the reaction time taken as 0.92 s [29].

3.2. Traffic Conflict Algorithm Validation

Validating the results from the developed algorithm is key to proving its effectiveness.
This process can be performed in a traffic simulation environment, providing a platform
where the safety performance of the prediction algorithm can be evaluated and validated.
This approach improves the cost-effectiveness of the development stage and was achieved
by allowing the maximum number of scenarios to be tested against different factors.
An advantage such as this would not be feasible in real-world tests given the inherent
complexities in creating such scenarios [17].

3.2.1. Ontology of Simulation Experiments

In the current literature, the terminology used to describe the virtual evaluation
and validation of ADAS development is inconsistent. An ontology presented by Geyer
et al. [30] is adapted within this study to evaluate and validate the developed traffic conflict
prediction algorithm (see Figure 3).
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Figure 3 presents a hierarchical structure to show the different levels of the simulation
study. These levels include:

• Experiment:

The top level of the hierarchical structure is an experiment in which a systematic
procedure is conducted in order to evaluate and validate the developed traffic conflict
prediction algorithm. This experimental level is described by the requirements needed for
testing and validation, the network model, vehicles, study duration, and computational
constraints;

• Scenery:

This level describes all the static components of the network environment, i.e., the
layout and geometry of the network to be simulated. This includes the addition of static
components within the network, for example, road markings, traffic lights, and road signs;

• Scenario:

A scenario introduces the dynamic traffic objects, i.e., road users. A set of scenarios
were developed based on the objectives of the study using the scenery. Therefore, the
scenario describes the interactions between the ego-vehicle and the surrounding traffic,
their trajectories, position, and velocity to carry out a maneuver.

1. Ego-vehicle:

The sub-microscopic simulation requires a vehicle to be used as the main subject of
investigation. The developed traffic conflict prediction algorithm is applied to this vehicle
in order to be tested and validated. In comparison to the surrounding traffic, this vehicle is
equipped with multiple sensors and has detailed models;

2. Criticality:

This defines a condition that must be examined by research. It is assumed that these
conditions impact negatively the safety performance of the developed system to be tested.
This may include adverse weather conditions, which may influence the sensor perception,
and vision obstructions that lead to challenges for object detection.

3.2.2. Simulation Framework for Validating a Traffic Conflict Prediction Algorithm

Traffic simulation paves the way for intelligent technologies by allowing virtual
testing and validation of emerging ADAS in a realistic traffic environment. This research
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implemented traffic simulations to test and validate the developed traffic conflict prediction
algorithm. Developing a simulation environment that can simulate intelligent mobility
and its functions is crucial; therefore, PreScan was used. However, to boost the strength
of the PreScan software, it was advantageous to integrate it with a traffic microsimulation
software such as PTV VISSIM to create surrounding traffic environments. When both are
applied simultaneously, a comprehensive integrated platform is built that is more powerful
than the individual components. This allows for the investigation of driving behaviors and
vehicle functionalities under different traffic conditions and scenarios.

The framework developed in this research consists of a sub-microscopic traffic simula-
tion software (PreScan) that sends ego-vehicle information, while the microscopic traffic
simulation software (PTV VISSIM) sends the information about the locations and kinematic
characteristics of surrounding traffic. These two simulators exchange data through the
Transmission Control Protocol/Internet Protocol (TCP/IP) during every simulation step
(20 Hz). The architecture of the integrated simulation platform is summarized in Figure 4.
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3.2.3. Ontology of Simulation Experiments

A traffic conflict scenario depends on a number of factors, such as the ego-vehicle and
the behavior of the surrounding vehicles, and the sensors employed and the driving style of
road users. These factors need to be modeled in a sub-microscopic simulation environment
in the network. Based on these factors, benchmark scenarios were developed. These
scenarios are able to be completely quantifiable, controllable, and reproducible. Therefore,
the prediction of lane change conflicts, rear-end conflicts, and a mixture of both conflicts
from the developed prediction algorithm can be evaluated and validated. Based on the
criteria discussed for lane change conflicts and rear-end conflicts (see Section 3.1), several
scenarios were formulated.

Scenario development follows a four staged process, as represented in Figure 5. Firstly,
the network for the study area is built using an aerial photograph. This includes building
the derived scenario in the PreScan GUI, where Open Street Map and Google Earth images
are used as underlays to create the road network. Besides the static road information,
other parameters, such as the ego-vehicle model, do not vary between the scenarios. The
environmental sensors of the ego-vehicle system are then modeled (e.g., radar, laser, camera,
infra-red, GPS) within the submicroscopic simulator. The sensor design and benchmarking
are made easier by modification of the sensor type and sensor characteristics from the
PreScan GUI.

Subsequently, PTV VISSIM is used to represent the network section to generate the
surrounding traffic flow based on the real data. The network development involves defining
model parameters, vehicle composition, the number of lanes, the required input traffic
data, and driving behavior characteristics. Nevertheless, for the simulation model to
replicate real-world road traffic conditions, calibration of the road network and simulation
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parameters are required. This is carried out to minimize the deviation between observed
field data and simulated data to prevent any misleading conclusions.
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Typical parameters requiring calibration include simulation period, resolution, random
seed number, and simulation runs [31]. These parameters are initiated with the default
parameters set by VISSIM and real-world traffic counts of flow, speed, and headway used
as inputs. Multiple simulation runs are then performed to obtain simulation outputs
comparable to the real-world values. If the error is within the acceptable range, this
indicates that the simulation model has been properly validated. Should the traffic model
not be properly validated, the calibration and confirmation procedures are repeated until
the differences between simulated and observed values are within an acceptable range. To
quantify the model calibration performances, the Geoffrey E. Havers (GEH) statistic is used.
GEH is defined as:

GEH =

√
2(M−C)2

M + C
(10)

where M is the simulated values and C is real-world values. Based on the guidelines by the
Federal Highway Administration (FHWA) [32], a GEH lower than 5 for more than 85% of
the observed pairs is acceptable for using traffic flow and travel times as inputs.

Thirdly, the microsimulation model is linked to PreScan (GUI) over a component
object model server (Matlab), where the surrounding traffic is simulated at the same time
as the conflict vehicles. Every change in the PreScan GUI is associated with a change in
the Matlab/Simulink software. This Matlab/Simulink interface allows the user to design,
add, implement, or validate the developed traffic conflict prediction algorithm within
the ego-vehicle through a compilation sheet. The compilation sheet is composed of the
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infrastructure, vehicle tracking information, display ports, and the sensors in the scenario
developed in PreScan.

With every run, the output files are stored in a database for post-processing. A 3D
visualization viewer allows the user to analyze the results of the experiment by providing
multiple viewpoints, pictures, and video generation capabilities. A summary of these stages
is presented in Figure 5. The evaluation of the traffic conflict algorithm was carried out by
analyzing the output of the developed algorithms. An AUC value for each simulation run
was obtained by comparing the traffic conflict predictions from the developed algorithm to
the traffic conflicts ground truth data. The traffic conflicts ground truth data was obtained
by applying the criteria developed in Section 3.1 on the simulated data.

3.2.4. Demonstration Experiment

This section investigates the simulation experiments that are adopted to highlight the
usefulness and flexibility of the framework. The motorway scenery, the scenario adopted
for testing, and all the different parameters are presented in this section. It is important to
note that since this work is carried out in the UK, the speed limits are given in miles per
hour (mph) and the simulation assumes left-hand driving.

Scenery Description and Parameters

Scenario testing was carried out on a section of the M1 motorway between Junction
19–21. This section was designed from the actual real-world motorway and represented as
scenery. This provides a major advantage over artificial scenery, since the environmental
parameters were taken from an on-site inspection. The environmental parameters include
the position of roadside elements, lane widths, and shoulder widths. Figure 6 shows three
pictures of a section of the M1 motorway environment that was utilized to test and validate
the algorithm together with the slip roads and hard shoulders. Figure 6 includes the actual
representation and how it is represented in PreScan and PTV VISSIM.
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All simulation parameters required to build the scenery are presented in Table 2. Some
parameters were extracted from Google Maps, such as total number of lanes, if a hard
shoulder is presented, and lane markings. On the other hand, lane width was approximated
by the average lane widths of motorways.

Table 2. Simulation parameter setup related to the scenery.

Road Scenery Parameters Values

Area Motorway

Number of lanes 3–4

Road markings Yes

Lane width 3.65 m

Roadside Shoulder near slip roads

Speed limit 70 mph

Light conditions Daylight

Horizontal geometry Straight

Scenario Description and Parameters

This section presents how the derived scenarios were transferred to a sub-microscopic
traffic simulation environment. It also includes the process of the evaluation of the traffic
conflict prediction algorithm. The scenario was defined by the parameters of the ego-
vehicle, the opponent road user, and the control systems. In this study, the opponent user
performs either a harsh deceleration or a lane change in front of the ego-vehicle to create a
conflict.

• Ego-Vehicle:

PreScan vehicle library provides detailed information on the ego-vehicle, ranging from
vehicle body characteristics to vehicle components such as engine, suspension, steering,
tires, and brakes. The library allows the user to create a virtual vehicle which replicates the
behavior of a real vehicle. However, there are vehicles already available in the library that
can be employed. This method was utilized for this study (Figure 7). A Ford Focus was
implemented in order to replicate the instrumented vehicle used to collect real-time data as
best as possible.
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Table 3. Ego-vehicle’s parameter setup.

Vehicle Model Parameters Value

Vehicle model Ford Focus

Transmission Automatic

Mass 1471 kg

Reference area 2.74 m2

Max acceleration 2.934 m/s2

Max deceleration −2.934 m/s2

Roll coefficient 0.01

Drag coefficient 0.31

• Sensors;

In PreScan, a number of sensors can be implemented on the ego-vehicle in order to
mimic the same information gathered from the ego-vehicle. It is also possible to modify
the range and angle of view of the sensor in order to replicate similar data. PreScan
distinguishes the sensors into three groups of physical models: idealized, detailed, and
ground truth.

The idealized models replicate sensors that gather ground truth data of all the signif-
icant information needed from objects, such as position, size, type, and velocity. These
sensors are used as a source from which the traffic-related factors can be estimated. They
are positioned at approximately 400 m apart to mimic the Inductive Loop Detector (ILD)
data within the motorway.

The detailed sensors provide the closest replication of data from real-world sensors.
This is because these sensors allow the modification of multi-path effects or erroneous
signals. Currently, PreScan provides high-fidelity sensors such as camera and radar, which
are the sensors adopted in this study. Based on the sensor characteristics, these sensors
provide an object list.

Ground truth sensors contribute by providing raw signals. For example, these sensors
provide the output of a lidar instead of a list of objects. Moreover, all of the in-vehicle factors
can be estimated using the self-demultiplexer in Simulink, which provides all required
information about the ego-vehicle. An illustration of GUI parametrization of sensors used
in this research and the conversion of the sensors into blocks in the Simulink interface
is represented in Figure 8. By using the data collected by sensors, control algorithms
are developed in the Simulink interface to estimate the factors required as inputs to the
developed algorithm.

• Simulink control blocks

The presented integrated simulation framework uses the Simulink interface as a layer
over PreScan. This layer allows the user to read and modify the signals that flow between
PreScan and the models. PreScan for Simulink consists of subsystems composed of blocks
consisting of driving maneuvers, vehicle control, and vehicle model. All are connected
similarly as with other Simulink blocks. The block modified further in this study was the
vehicle control model. Simulink blocks can also be created and added to the experiment;
examples of Simulink blocks developed to validate the prediction algorithm are presented
here:

1. To validate the algorithm, the ground truth must be generated to obtain the overall
performance of the algorithm. The criteria adopted in Section 3.1 were developed in
blocks. Using these blocks, ground truth traffic conflicts based on virtual data were
extracted. An example of a module determining if the time headway is less than 3 s to
issue a trigger warning is shown in Figure 9. To obtain an estimate of the current time



Sensors 2022, 22, 566 15 of 26

headway, the distance was divided by velocity. If the value was between 0 and 3 s, a
trigger was issued.

2. It is essential to determine whether the vehicle detected from the sensors are (i)
in the same lane as the ego-vehicle or (ii) changing lanes by measuring the angle
between both vehicles. If either is true, the signal goes into another block (Figure 9) to
determine whether a trigger should be issued. This is represented in Figure 10.

3. The vehicle’s factors, i.e., velocity and yaw rate, were obtained directly from the sensor
implemented within the ego-vehicle. The acceleration was estimated by dividing the
change in velocity with the timestep of the simulation. Figure 11 represents the logic
of how the vehicle factors were estimated.

4. An example of how to trigger harsh braking within the simulation is presented in
Figure 12. This figure shows how the two vehicles are connected in the compilation
sheet for the ego-vehicle to react when the preceding vehicle performs a random harsh
deceleration.
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4. Data

The data used to develop the traffic conflict predictor was collected from two datasets.
One dataset includes the real-world minute level traffic data from ILDs. These detectors
collect data when there is a change in field, i.e., when an object (mainly a vehicle) passes
over them. When a driver drives over a loop sensor, the loop field changes, which permits
the detection device to detect the presence of an object. Such measurements include vehicle
speed, occupancy, flow, and headway. These measurements are obtained from the loop
detector with the lowest Euclidean distance between the ego-vehicle and the loop detector.

The other dataset is made up of traffic measurements collected by a Loughborough
University instrumented car. This vehicle is equipped with multiple sensors, namely a
Continental ARS308-2 long range radar, a PointGrey Grasshopper 3 (GS3-U3-41C6C-C)
camera, a Ublox NEO-M8L GPS, a Mobileye device, a weather sensor, and an Arduino
microcontroller. Each sensor has different strengths and weaknesses; therefore, by integrat-
ing the sensor data, an enhanced result can be obtained. This is because the advantages of
using one sensor can compensate for the shortcomings of another sensor.

It is important to note that the ego-vehicle in the virtual environment was designed
with the same sensors adopted in the real world to train the algorithm to collect the same
factors for traffic conflict prediction. The data from each sensor and from the inductive
loop detectors are unified and synchronized in a central data integration architecture. This
results in a more trustworthy and safe system due to an increase in integrity and robustness
of the system, while decreasing the errors related to the sensor systems as compared with
a single sensor system [33,34]. This study is limited to considering only lane-change and
rear-end conflicts because of the sensors adopted.

Simulation Model Calibration and Validation

The baseline traffic microsimulation model was calibrated and validated for the time
period between 11:00 and 12:00 a.m. based on traffic data from January 2016 and February
2017. The data over the total period was averaged to create a dataset that contains one
observation per minute. Some of the data parameters that can be extracted from the data
input in the simulation model include traffic flow per minute, route choice percentages,
fleet composition characteristics, speed distribution, and time headway distribution.

It is important to note that the traffic flow values obtained from the ILDs match the
simulation vehicle input points. These values are used to accurately represent the traffic
flow fluctuations and route choices. In fact, to program the vehicle route decisions, the
percentage of vehicles exiting the motorway was also derived. This was carried out by
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identifying the corresponding inductive loop detectors of the motorway and comparing
the upstream flow with the down-stream one. The corresponding percentages are then
assigned to the corresponding vehicle routes and the turning decisions of the vehicles in
the simulation software.

The data also contains vehicle fleet composition information. Since the percentage of
HGVs could not be varied temporally within the simulation, an overall average value 2qw
calculated from the data. When considering the average speed and average time headway
values, the same aggregation procedure was followed, but instead of per minute values, a
statistical distribution was followed. These distributions were averaged over all detectors.

The measures of performance adopted for calibration are travel time and traffic flow
values (following the guidelines provided by FHWA) [32]. For the real-world values,
the travel time was estimated as the product of the average speed and the total distance
traveled, while that of the simulated vehicles were collected from VISSIM. To calibrate
traffic volume values, the GEH statistic was employed (presented in Equation 10) and all
values were lower than 5. As a result, no alterations were made to the default driving
behavior parameters of VISSIM.

5. Results

To prove the effectiveness of a traffic conflict predictor, testing and validation is
essential. This was demonstrated in a virtual simulation environment. It is important
to note that the algorithm was not trained on the virtual simulation data, but on the
real-time data collected from the instrumented vehicle. PreScan (the sub-microscopic
traffic simulator) provided an appropriate testbed to validate and test the traffic conflict
predictions from the developed algorithm. PTV VISSIM was utilized to generate dynamic
traffic surrounding the ego-vehicle. By implementing the prediction algorithm for the
ego-vehicle in the Simulink interface, the algorithm was able to use the simulated data as
an input and predict traffic conflicts or safe traffic dynamics surrounding the ego-vehicle in
a virtual environment. However, the complexity of modeling all possible combinations of
traffic situations and environmental conditions makes this approach challenging. Hence,
a number of ‘benchmark’ scenarios had to be developed. These included (1) a rear-end
conflict, (2) a lane change conflict, and (3) a combinational scenario. This section may
be divided by subheadings. It should provide a concise and precise description of the
experimental results and their interpretation, as well as the experimental conclusions that
can be drawn.

5.1. Results of the Safety Performance Evaluation

This section presents the performances of the traffic conflict prediction algorithm.
The virtual data produced was used to validate and test the predictions generated by the
algorithm. Examples of particular simulation instances predicted as a (1) rear-end conflict,
(2) lane change conflict, and (3) safe traffic dynamics scenario by the algorithm are presented.
Each section describes the parameters of the ego-vehicle and the opponent vehicle during
this instance. The parameters include the time headway, velocity, acceleration, and distance
parameters. This was undertaken to determine whether these parameters satisfy the criteria
established in Section 3.1. Finally, the overall results in terms of Area Under Curve (AUC)
value, sensitivity, and accuracy of the developed algorithm are presented.

1. Example Evaluation of a Rear-End Conflict;

This section presents an example of a predicted rear-end conflict during one simulation
run. It demonstrates an example of how the parameters were changed, during which a
rear-end conflict was predicted. This scenario is presented in Figure 13.
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Figure 13. Rear-end conflict in the simulation environment from (a) top-view and (b) from
driver’s view.

In this example, the preceding vehicle performs a harsh deceleration in front of the
ego-vehicle. During the predicted conflict, the time headway of the ego-vehicle is below
3 s at certain instances and the velocity and acceleration of both the ego-vehicle and the
preceding vehicle were examined. In this instance, the ego-vehicle satisfied a criterion
established in Section 3.1 for a rear-end conflict. For this example, vEV > vPV and the
preceding vehicle exerts a large deceleration force when tHEADWAY < 3 s. These parameters
are depicted in Figure 14.
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2. Example Evaluation of a Lane Change Conflict;

This section presents an example of a predicted lane change conflict. It demonstrates
an example of how the parameters changed during a lane change conflict prediction. This
scenario is presented in Figure 15.

In this example, the lane changing vehicle changes lane abruptly in front of the ego-
vehicle. Similarly, during the predicted conflict, the time headway of the ego-vehicle is also
below 3 s at certain instances. The velocity and acceleration of both the ego-vehicle and
the preceding vehicle were examined. Following the criteria in Section 3.1, these criteria
were also met. For this example, aEV > vPV, aEV ↑ when tHEADWAY < 3 s. Some of the
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parameters were depicted in Figure 16. It is also important to note that the criterion of
sLONGITUDINAL < 75 m was met throughout this whole example.
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3. Example Evaluation of a Safe Traffic Dynamic Scenario.

In this example, the simulation instance was chosen from a situation predicted as safe.
This scenario is presented in Figure 17.

None of the thresholds for a conflict criterion were exceeded. In this experiment,
although the opponent vehicle starts a smooth deceleration because of slight congestion
ahead, the ego-vehicle has enough time headway to react to the smooth deceleration from
the preceding vehicle. The algorithm did not predict this as a conflict. These parameters
are depicted in Figure 18.

The algorithm predicted this instance as safe. In fact, neither vehicle exceeded the
conflict criteria. The preceding vehicle smoothly decelerated because of congestion ahead
and the ego-vehicle followed suit. However, there is no critical event.
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5.2. Overall Results

The optimal traffic conflict prediction algorithm was implemented within the ego-
vehicle in the Simulink interface. Approximately 25 conflicts were manually developed in
PreScan for each simulation run. However, other conflicts also arose from the randomly-
generated surrounding traffic dynamics. Each scenario was simulated 100 times by utilizing
100 different random seeds. The ground truth data was generated by applying the criteria
in Simulink blocks. This was required in order to compare with the actual predictions from
the developed algorithm. By utilizing the evaluation script, the output of the algorithm
predictions was compared to the ground truth data and the overall performance metrics
of the algorithm in each scenario–(1) the preceding vehicle performing harsh braking
preceding the ego-vehicle, (2) a lane changing vehicle cuts in front of the ego-vehicle, and
(3) a combination of both scenarios—are presented in Table 4.



Sensors 2022, 22, 566 22 of 26

Table 4. Validation from PreScan of traffic conflict prediction algorithm in a virtual environment.

(1) Scenario 1—Preceding Vehicle Performs Harsh Deceleration

Average Sensitivity FAR Average Accuracy Average AUC Value

0.622 5.0% 0.903

0.916
0.797 10.0% 0.844

0.843 20.0% 0.783

0.925 30.0% 0.682

(2) Scenario 2—Lane Changing Vehicle Cuts in before the Ego-Vehicle

Average Sensitivity FAR Average Accuracy Average AUC Value

0.573 5.0% 0.853

0.883
0.730 10.0% 0.819

0.785 20.0% 0.764

0.834 30.0% 0.673

(3) Scenario 3—Combination of Both Scenarios

Average Sensitivity FAR Average Accuracy Average AUC Value

0.607 5.0% 0.875

0.901
0.774 10.0% 0.839

0.812 20.0% 0.782

0.867 30.0% 0.653

Table 4 shows that the AUC values from each derived scenario in PreScan are relatively
high, showing that the model has the ability to identify patterns that predict traffic conflicts.
This demonstrates that the model is capable of using complex and non-linear patterns to
classify and predict traffic conflicts based on a novel data set, from which the model was not
trained. The threshold value was maintained ‘constant’ when the algorithm was developed
(i.e., 0.389). The sensitivity values for this threshold are lower than when applied to the
data on which the algorithm was trained, as expected. However, the algorithm had the
ability to predict relatively sensitive results, especially in Scenario 1. For Scenario 1, for
a FAR of 5–10%, the algorithm was able to predict 62.2–79.7% of traffic conflicts. When
comparing Scenario 1 to Scenario 2, the algorithm was more sensitive in predicting rear-end
conflicts. In Scenario 2, it was able to predict 73–79% of lane change conflicts for a 5–10%
false alarm rate. In Scenario 3, it was also more sensitive than Scenario 2. This is attributed
to fewer lane change conflicts on which the algorithm trained. Overall, even though the
algorithm was applied to novel data, high sensitivity values were obtained.

6. Discussion

A plethora of studies have stated the importance of emerging vehicle technology
for safety on roads. However, most of these claims are not quantitatively supported [35].
Virtual vehicle testing and validation is the key to addressing this gap in the research.
Simulation framework has developed with different scenarios simulated under various
combinations of parameters. Exploration of this area is not cost effective in real-world tests,
as it imposes huge cost in the development cycle [17].

Several projects have assessed the safety performance of vehicle technologies in a
virtual environment [36–39]. However, testing measures have not been standardized to date.
It is challenging to assess different vehicle technologies, as numerous scenarios need to be
developed. In this research, the traffic conflict prediction algorithm was validated based on
the identification of relevant existing risky situations linked to rear-end and lane change
conflicts. The scenario considered static attributes such as road design and dynamic content
such as surrounding vehicles, their trajectories, and their behaviors. The results derived
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from the framework can be used as a pre-stage or parallel activity to field operational tests
on public roads. To the author’s knowledge, no research has been published that uses an
integrated framework to allow the assessment of vehicle-based traffic conflict algorithms
on a motorway scenario.

Traffic scenarios were developed in the simulation framework to evaluate and validate
the traffic conflict algorithm based on key conditions related to motorway operations. The
safety performance evaluation showed that the algorithm obtained a high AUC value
of 0.92, 0.88, and 0.90 for rear-end, lane-change, and a combination of both conflicts,
respectively. The validation results of the algorithm were also significant due to high
sensitivity and a low FAR, from which 80–84% and 73–79% of the rear-end and lane change
traffic conflict were predictable for 10–20% FAR, respectively. This demonstrated that
the model was capable of using complex and nonlinear patterns to classify and predict
traffic conflicts based on a novel data se, on which the algorithm was not trained. The
sensitivity values were also high, demonstrating the vehicle-based algorithm’s significant
ability to predict traffic conflicts. Moreover, it is worth noting that the algorithm is more
sensitive to rear-end conflicts, which could be due to the higher number of these events in
the algorithm training.

There is an ongoing effort in the automotive industry to develop robust and reliable
algorithms to estimate the threat assessment surrounding the ego-vehicle. These algorithms
are key to ensuring safety and efficient operations for future intelligent mobility. The virtual
experiments conducted within this research quantified the safety performance and predic-
tion capabilities of the developed traffic conflict algorithm. Three scenarios were tested
to represent (1) lane change conflicts, (2) rear-end conflicts, and (3) a combination of both.
Each simulation run was defined by different random seeds, which generated different
traffic dynamics surrounding the ego-vehicle. Parameters such as road design, driving
maneuvers, and behavior of the ego-vehicle were kept constant. The variable parameters
included the lateral and longitudinal position of the opponent vehicle and the velocity of
the ego-vehicle. Changing parameters involve high computational requirements; hence
only three essential parameters were varied. These simulation runs took approximately
4 min to be completed and the evaluation script took on average 30 s to be computed. In
total, 100 simulations were conducted for each scenario, resulting in a total of 300 simula-
tions to complete all the calculations. Though this process was time consuming, improving
the computational time was not the focus. This set of parameters was sufficient to assess
the performance of the vehicle-based traffic conflict algorithms.

To evaluate the prediction ability of traffic conflict algorithms in the integrated frame-
work, the mean of the AUC values obtained from each simulation run was calculated.
However, to acquire these AUC values, traffic conflicts ‘ground truth’ data from the simula-
tion was required. This ‘ground truth’ data was obtained by the same criteria that were
adopted in Section 3.1. It is important to note that the traffic conflicts in the simulation
scenario were easier to extract compared to real-time data, since the vehicles’ trajectories
and velocities were all known. In addition, the sensors’ detection of objects in the simu-
lation has an 100% accuracy rate. This implies an ideal system, which is not the case in a
real-world scenario because of errors associated with the sensor. Therefore, to accurately
reproduce real-world behavior and the limitations of the sensors, some of the data applied
to the developed prediction algorithm was carried out using high-fidelity sensors.

The integrated simulation framework developed in this research was based on a real-
world motorway configuration in the UK. Although this is harder to implement, it has more
benefits than adopting an artificial, virtual motorway. This is because static information for
the scenario development such as lane widths, hard shoulders, and gradients can be taken
from on-site observations. The dynamic information provided by the PreScan’s GUI such
as brakes, tires, and suspension system is part of well-recognized reference models. These
reference models were all validated and represented in blocks. Each block can be enhanced,
transferred, or even replaced by other modules as long as they can provide the same
output quantities. Other blocks can also be developed based on the aim of the simulation
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experiment. For example, the criteria used to extract the traffic conflict ground truth data
was also developed in a self-contained block. These blocks have future implications for
intelligent mobility, as they are transferable and can be readily applied by other studies.

While the traffic simulation model within VISSIM was intensively calibrated and
validated using real-world data, some results may still be biased due to the underlying as-
sumptions of this software. When considering the sub-microscopic simulation environment,
one main limitation is that the scenarios developed relate to motorway operations and are
based on human-related accident situations. For example, the scenarios developed might
not reflect the new critical situations faced by intelligent vehicles. It is also important to
mention that the safety risks due to mixed traffic, i.e., both intelligent and driver-operated
vehicles, are still subject to research. For example, intelligent vehicles make use of onboard
sensors to determine their environment, but still face a number of limitations in an urban
environment, inclement weather conditions, or in a situation with unexpected behavior of
traffic participants. These challenges are not explored in this study.

7. Conclusions

Testing and validating the developed traffic conflict prediction algorithms are the key
to prove their effectiveness. However, the complexity of modeling all possible combinations
of traffic situations and environmental conditions make this approach challenging. To
validate the safety performance and prediction accuracy, the traffic conflict prediction
algorithm was placed in the ego-vehicle in an integrated simulation framework. The
framework consists of a sub-microscopic simulator, which provides an appropriate test
bed to develop different scenarios to test and validate the algorithm, and a microscopic
traffic simulation tool to simulate the surrounding traffic accurately based on real-time
data. Rear-end and lane change traffic conflict scenarios were developed in the simulation
framework to test and validate the effectiveness of the algorithm. The validation results
from the integrated simulation framework are significant due to high sensitivity and a low
FAR obtained for each scenario. As a result, this algorithm has the potential to be used in
ADAS systems to develop proactive safety management strategies for improving traffic
safety, presenting a viable solution for implementation within CAVs.

Though this framework provided several advantages for testing and validation, the
developed scenarios need regular updating with new knowledge and data. This is because
the generated scenarios might change over time, as road user behavior may alter with the
increase in the market penetration rate of intelligent vehicles. It is unclear whether new
critical situations may arise as a result, such as data inaccurately interpreted in a mixed
traffic situation or in complex urban environments.
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