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Abstract: Jamming is a malicious radio activity that represents a dreadful threat when employed in
critical scenarios. Several techniques have been proposed to detect, locate, and mitigate jamming.
Similarly, counter-counter-jamming techniques have been devised. This paper belongs to the latter
thread. In particular, we propose a new jammer model: a power-modulated jammer that defies standard
localization techniques. We provide several contributions: we first define a new mathematical model
for the power-modulated jammer and then propose a throughout analysis of the localization error
associated with the proposed power-modulated jammer, and we compare it with a standard power-
constant jammer. Our results show that a power-modulated jammer can make the localization process
completely ineffective—even under conservative assumptions of the shadowing process associated
with the radio channel. Indeed, we prove that a constant-power jammer can be localized with high
precision, even when coupled with a strong shadowing effect (σ ≈ 6 dBm). On the contrary, our
power-modulated jammer, even in the presence of a very weak shadowing effect (σ < 2 dBm),
presents a much wider localization error with respect to the constant-power jammer. In addition to
being interesting on its own, we believe that our contribution also paves the way for further research
in this area.

Keywords: jamming; jamming localization; power-modulated jammer; security; wireless

1. Introduction

Jamming is a malicious radio activity carried out with the purpose of disrupting
wireless communications. Jamming can be considered a physical-layer denial-of-service
attack, where the adversary intentionally prevents one or more wireless communications
by affecting the capability of the receiver(s) to correctly detect and receive a transmitted
message [1]. Deploying jamming is extremely easy and cost-effective. Indeed, cost-effective
software-defined radios (SDRs) make the design and implementation of a jammer straight-
forward, are able to eavesdrop on the radio spectrum, identify the target frequency to be
jammed and finally, transmit a disrupting signal that prevents the receiver discriminat-
ing the purported one. Although jamming can be used by network nodes to exclusively
guarantee wireless communications capabilities to a specific set of (ally) devices, the most
practical and dangerous purpose of jamming is to completely disrupt the communications
in a target area. Typical examples of critical targets are airports, sensitive infrastructures,
or tactical military scenarios [2]. Jamming mainly involves three research areas: (i) detection;
(ii) localization; and (iii) mitigation [3,4]. A jammer, by definition, is exposed—in order to
disrupt the communications, it has to transmit; therefore, the jammer has to deploy smart
techniques to avoid detection and localization. Common techniques for going undetected
imply shaping the jamming signal in a way to make it indistinguishable from “normal”
interference. Moreover, as per the vast majority of denial-of-service techniques, jamming
cannot be completely prevented. Indeed, jamming mitigation involves the combination
of different techniques to evade the jamming signal [5,6], thus enabling the receiver (and
the transmitter) to work in a clear portion of the spectrum. Finally, jammer localization
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techniques resort to the estimation of the received signal strength (RSS) to infer the distance
to the jammer (ranging) [7]. When multiple collaborating sources perform such a ranging
technique, the position of the transmitter (jammer) can be precisely estimated.

Contribution. In this paper, we propose a new type of jammer, i.e., the power-
modulated jammer. Our intuition is that a jammer that randomly changes its transmission
power can make the localization process much harder (even impossible in some cases).
In particular, after defining the power-modulated jammer model, we test a standard jam-
mer (constant power) against a power-modulated jammer in the presence of a network of
nodes running a classical localization technique, i.e., linear least square (LLS). Our findings
confirm our intuition. In particular, we show that the power-modulated jammer—when
compared against the constant-power jammer—makes the localization process particularly
difficult, even in the presence of a high density of sensing nodes (10 nodes in a 40× 40 m
area) and under conservative assumptions of the (shadow) fading process of the wireless
channel (σ < 3 dBm).

Paper organization. The remainder of this paper is organized as follows. In Section 2,
we review background information and related work, while in Section 3, we introduce the
system and the adversary model discussed in this work. In Section 4, we compare the new
proposed jammer model (power modulated) with the classical one (constant-power) in
terms of localization error. We provide a comprehensive discussion on the performance of
the proposed jammer model and some potential mitigation technique in Section 5, while in
Section 6, we draw conclusions and discuss future work.

2. Related Work

Several contributions have been proposed to localize a jammer by taking into account
different attack models. The algorithms can be mainly classified into two categories: (i)
range-based, that estimate the distance from the jammer leveraging physical layer properties
of the transmitted signal; and (ii) range-free, that leverage information about the network
topology and the geometric features of the jammed area. The typical metrics employed to lo-
calize a jammer are: Jamming Signal Strength (JSS), Packet Delivery Ratio (PDR), Neighbor
List Change (NLC) and the network topology information [8]. Pelechrinis et al. [9] pro-
posed a distributed lightweight and generic jammer localization technique that leverages
the gradient descent minimization algorithm. The authors analyzed the spatial effects
of the jammer; in particular, they observed that the lower the PDR is, the closer we are
to the jammer. Wang et al. [10] described a solution to estimate the jammer position by
requesting the nodes in the jammed area to increase the power transmission until they
are able to transmit and receive messages. The node with the higher value of the received
JSS in the network will allow the better estimation of the jammer position. In [11], the
authors leveraged the Received Signal Strength (RSS) metric in order to localize a jammer
in a jammed area. The proposed protocol requires that the nodes are able to increase the
power transmission in the jammed area until they can exchange measurement data about
the estimation of the jammer position. A few other works proposed a solution that takes
into account neighbor changes. For instance, in [12], the authors introduced a jammer
localization algorithm that leverages the neighbor changes in the communication range
and adopts the least-squares method, while others in [13] presented a virtual-force-based
jammer localization algorithm scheme that exploits the average jammed nodes position
data, i.e., the coordinates. In [14], Liu et al. presented a jamming localization technique
that allows localizing multiple jammer devices by leveraging the changes in the network
topology. The proposed framework partitions the network topology into clusters and
estimates the positions of multiple jammers. On the other hand, Sun et al. [15] highlighted
a technique that exploits the collaboration of sensor nodes that share their locations at
the border of the jammed area to compute the coordinates of the jammer. Each node
computes the convex hull for the set of victim nodes based on their coordinates and finally
extracts the smallest circle that covers all nodes in the convex hull to identify the jammer
position. Tedeschi et al. [16] described an autonomous jamming-assisted navigation system
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that allows a drone to accomplish its mission by locating the jammer and leveraging the
discovered position to support navigation. Cheng et al. [17] designed an algorithm, namely
double-circle localization (DCL), based on minimum bounding circle (MBC), maximum
inscribed circle (MIC) and the network topology, without considering any other features of
the jammed area. The authors combined the centers of the two circles as the estimated jam-
mer position. Finally, in order to evaluate the accuracy, the authors leveraged the Euclidean
distance between the estimated and true position of the jammer as the localization error.
The authors in [18] presented two algorithms for jammer localization: (i) a multi-cluster
localization algorithm; and (ii) X-rayed jammed-area localization. The M-cluster algorithm
groups jammed nodes with a clustering algorithm, and each jammed-node group is used
to estimate one jammer location. The X-ray algorithm relies on the skeletonization of
a jammed area and uses the bifurcation points on the skeleton to localize the jammers.
Bhamidipati and Gao [19] highlighted a solution to localize multiple jammers, with the
analysis of the variation in the front-end signal power, recorded by the Unmanned Aerial
Vehicles (UAVs) on-board GPS receivers in the network. Basically, the authors leveraged a
Gaussian mixture probability hypothesis density filter over a graph framework and the
Levenberg–Marquardt algorithm as a minimizer.

Despite the large number of research contributions on jammer localization, there are
no studies based on a scenario that adopts a power-modulated jammer—such as the one
introduced in this paper.

3. Scenario and Assumptions

Let us consider a playground constituted of a set of randomly deployed sensing nodes
{n1, . . . , nN}, where N spans between 3 (minimum number of sensors to perform localiza-
tion) and 10. Moreover, we assume the presence of a jammer at coordinates [0, 0] (center
of the scene). Figure 1 shows typical deployment in an area of 40× 40 m. The jamming
power is reset at each simulation-run to fit the node deployment, thus covering all the
communication links. In particular, we assume that the jammer is deployed at the center of
the scene without being aware of the actual position of the nodes. However, before starting
the jamming activity, it eavesdrops the radio spectrum to infer the relative position of the
furthest node, thus subsequently adapting its jamming power.

Figure 1. A typical random deployment: 10 nodes and the jammer (black cross) at the center of the
scene. The black dashed circle represents the jamming area.
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We assume that the jammer is able to continuously transmit a (either constant or
power-modulated) jamming signal. Moreover, we assume that the sensors are able to sense
the jamming signal and resort to a non-jammed communication channel to communicate
with each other. Indeed, sensors collaborate to locate the jammer: without loss of generality,
we can assume that one of the sensors collects readings from the other ones and processes
them to generate the approximated jammer location. Assuming the existence of an out-of-
band communication channel to exchange information useful to locate the jammer—while
we aware is not a realistic scenario—it is nevertheless a worst case for the jammer, and this
is specifically what is needed to compare the performance of the jammer in terms of their
capacity of delaying/denying localization. We adopted a classical multi-lateration approach
to estimate the position of the jammer [20], and we also conducted an extensive simulation
campaign using MATLAB©2021b. We remark that the objective of this paper was not to
perform jamming localization but to discuss the impact of power modulation on jamming
localization, especially in comparison with a standard power-constant jammer. Figure 2
shows typical three-lateration (3 sensors collaborating for jamming localization) to estimate
the jammer position. Sensors {n1, n2, n3} estimate the distance to the jammer by mapping
the received jamming signal strength to a distance value. By combining the three distances
{d1, d2, d3}, it is possible to approximate the position of the jammer.

N1

Jammed Area

N2

N3

J

d1

d2

d3

Figure 2. Jammer localization by three-lateration: 3 sensors collaborating to estimate the
jammer position.

Path loss model. We adopted the standard log-normal path loss model as depicted
by Equation (1) where Rx(t) is the received signal strength, Tx(t) is the jamming power, γ
is the path loss exponent, and d0 is a reference distance at which the path loss PL(d0) is
measured. Finally, Xσ is a log-normal random variable with a mean µ = 0 and standard
deviation σ taking into account the shadowing effect of a flat-fading channel:

Rx(t) = Tx(t)− PL(d0)− 10γ log
d
d0
− Xσ(t) (1)
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In this paper, we considered a jammer that is randomly varying the jamming power
Tx(t) as a function of time t. Moreover, we assume that the shadowing effect being modeled
by the random variable Xσ(t) is independent of the jamming power variations, i.e., Tx(t)
and Xσ(t) are independent random variables.

Jamming power. As previously mentioned, the jamming power is the result of a
trade-off between the actual available transmission power of the jammer and the power
requested to jam the whole area, i.e., the jammer wants to jam all the playground with a
minimum amount of transmission power. Without loss of generality, we assume a node
receiver sensitivity Srx is equal to Srx = −80 dBm, and we dynamically set the minimum
transmission power as a function of the deployment as depicted by Equation (2):

Tx

∣∣∣∣
min

= Srx + PL
(

max
i∈{1,...,N}

d(J, ni)

)
+

PL
(

min
(i,j)∈{1,...,N}

d(ni, nj)

) (2)

The first packet loss term (PL) takes into account the maximum distance between
the jammer and the nodes in the playground, while the second term considers the power
margin (guard) to enable the communication between the closest possible pair of nodes.
By considering Equation (2), we are guaranteed that the jammer transmission power
overwhelms all the ongoing communications in the playground.

Ranging. Assuming the propagation model introduced by Equation (1), the approx-
imated distance d̃ between the sensor and the jammer can be computed as described by
Equation (3):

d̃ = 10
Tx(t)−Rx(t)

10γ . (3)

To ease exposition, we chose d0 = 1 m and PL(d0) = 0 dBm. Moreover, we assume
that Xσ(t) = 0 since we consider the case of averaging multiple consecutive channel
readings, thus being able to mitigate the shadowing effect.

Localization. The estimated distances {d1, . . . , dN} from the ranging process are
combined to generate an approximated position for the jammer [xJ , yJ ]. We first compute a
linearization of the problem by choosing one sensor (xN , yN) and its related distance to the
jammer (dn) as a reference, and by subtracting it to the n− 1 equations obtaining a system
of n− 1 equations in the form Az = b, yielding:

A = −2×


(x1 − xn) (y1 − yn)
(x2 − xn) (y1 − yn)

...
...

(xn−1 − xn) (yn−1 − yn),



b =


x2

n + y2
n − y2

1 − x2
1 + d2

1 − d2
n

x2
n + y2

n − y2
2 − x2

2 + d2
2 − d2

n
...

x2
n + y2

n − y2
n−1 − x2

n−1 + d2
n−1 − d2

n


We can now estimate the location of the jammer by solving the system Az = b with

the Linear Least Square (LLS) method, as shown in Equation (4):

z = [xJ , yJ ]
T = (ATA)

−1
ATb (4)

Constant and Power-Modulated Jammer

Classical jamming localization problems assume a jammer that keeps transmitting over
time with the same power—this one being chosen to disrupt all communications in the area.
We refer to such a behavior as constant-power jammer. Although the jammer can implement
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different strategies to stay as stealthy as possible, it cannot reduce the transmitting power
under a certain threshold, i.e., the power to cover the whole playground. Therefore, the only
significant source of uncertainty to jammer localization comes from the shadowing effect,
i.e., the random variable Xσ from Equation (1). As will be subsequently clarified (as well as
in related works), this can be mitigated by increasing both the number of sensing nodes and
the readings of the received signal strength at each node. Our intuition to make jammer
localization more difficult is to adopt a power-modulated jammer that randomly changes its
transmission power Tx(t) as a function of time t. The jamming power Tx(t) is uniformly
chosen in the interval Tx(t) ∈ [Tmin

x , Tmax
x ]. As previously discussed for the constant-power

jammer, Tmin
x is chosen in order to cover the whole playground, while Tmax

x = 25 dBm.
The maximum transmission power can be chosen as a function of different factors. As will
become clear in the following, increasing Tmax

x makes the jammer’s position more difficult to
estimate; nevertheless, this significantly affects the jammer’s energy budget. Figure 3 shows
the transmission power strategy implemented by the jammers. The constant-power jammer
sets the transmission power to the strict minimum (dotted line in Figure 3) necessary
that allows the full coverage of the playground. Indeed, given the random deployment
experienced in every simulation run, the minimum transmission power varies between
−60 and −20 dBm. Conversely, the power-modulated jammer chooses the minimum
transmission power in the same way as the constant jammer, but it also set a maximum
transmission power as depicted by the solid red line in Figure 3 being equal to 25 dBm.
Finally, the actual transmission power is randomly chosen from the current minimum and
the maximum as depicted by the solid black line in Figure 3.

-60 -50 -40 -30 -20 -10 0 10 20 30
Transmission power [dBm]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
ro

ba
bi

lit
y

Minimum
Actual
Maximum

Figure 3. Power-modulated jammer: the minimum transmission power is opportunistically chosen
in order cover the whole area.

4. Jammer Localization

In this section, we compare the previously introduced localization algorithm (LLS)
against both a constant and a power-modulated jammer. We start our analysis from the
constant-modulated jammer considering the shadowing effect with a variance σ in the
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range (1 dBm ≤ σ ≤ 6 dBm) and a number N of deployed sensors (3 ≤ N ≤ 10). Figure 4
shows the localization error as a function of σ and N for the case of a constant jammer.
The localization error was computed as the Euclidean distance between the actual [0, 0]
and estimated jammer position. Finally, our results take into account the average value of
5000 simulation runs and an average of 100 jamming signal readings.

1 2 3 4 5 6
 [dBm]

0

10

20

30

40

50

60
Lo
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liz

at
io

n 
E

rr
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 [m
]

Constant jammer

N=3
N=5
N=7
N=9
N=10

Figure 4. Localization of a constant jammer as a function of σ (1 dBm≤ σ ≤ 6 dBm) and the number
N of sensing nodes (3 ≤ N ≤ 10).

We highlight that the maximum localization error is approximately 60 m for the case
N = 3 and σ = 6 dBm. Indeed, this is the worst-case scenario for a localization setting, i.e., the
minimum number of nodes and maximum variance due to shadowing. When the number
of sensing nodes increases (N > 3), and assuming smaller values for σ, i.e., σ < 4 dBm,
the localization error is reduced to less than 4.6 m.

Figure 5 shows the localization error of a power-modulated jammer varying both σ
and the number of sensing nodes in the network. The localization error for the modulated-
jammer turns out to be significantly higher than the constant jammer. Even assuming
the best configuration parameters, i.e., N = 10 and σ = 1 dBm, the localization error is
approximately 93 m. Moreover, we observe a significant improvement between N = 3 and
N = 5 deployed nodes, while further increasing the number of nodes (N > 5) does not
give any significant advantage in the localization process.



Sensors 2022, 22, 646 8 of 12

1 2 3 4 5 6
 [dBm]

0

500

1000

1500

2000

2500

3000

Lo
ca

liz
at

io
n 

E
rr

or
 [m

]

Modulated jammer

N=3
N=5
N=7
N=9
N=10

Figure 5. Localization of a power-modulated jammer as a function of σ (1 dBm≤ σ ≤ 6 dBm) and the
number N of sensing nodes (3 ≤ N ≤ 10).

We now consider the difference ∆ between the localization error of the modulated and
the constant-power jammer. Figure 6 shows ∆ as a function of 1 dBm ≤ σ ≤ 6 dBm and
N ∈ {3, 5, 7, 9, 10}. As previously observed, the number of nodes mitigates the uncertainty
associated with the jammer position, i.e., when σ = 3 dBm, ∆ varies between approximately
328 m (N = 3) and approximately 112 m (N = 9). Moreover, we observe how the combined
effect of σ and the modulated power can significantly hinder the localization; indeed, the case
N = 3 and σ = 1 dBm has approximately the same performance as N = 9 and σ = 6 dBm. Fi-
nally, we observe how even under conservative assumptions for σ, i.e., σ < 3 dBm, increasing
the number of nodes does not significantly affect the localization performance, i.e., the error
difference does not significantly increase when moving from N = 9 to N = 10. Lastly, we
consider the number of readings of the jamming signal. As previously discussed, we con-
sidered 100 readings for all the performance. In the following, we consider 5000 readings,
and we estimate the relative error εr for the modulated jammer as follows:

εr =
E5000 − E100

E100
(5)

where E5000 is the localization error for the modulated jammer assuming 5000 readings,
while E100 is the localization error for the modulated jammer assuming 100 readings
(baseline case). We observe that increasing the number of readings affects the localization
error depending on σ; indeed, the localization relative error goes from approximately 0
to −25% when σ spans between 1 dBm and 6 dBm. Higher values of readings mitigate
the randomness of the shadowing process, thus becoming more effective when σ is bigger.
Finally, we would like to stress that increasing the number of nodes only very marginally
affects the performance of the localization process—namely the four curves crossing over
at several data points, and partially overlapping for a few segments of interest.
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Figure 6. Comparison between the modulated-power and constant-power jammer: localization error
as a function of σ while the number of nodes in the playground spans between N = 3 and N = 9.

5. Discussion

The localization error associated with the position of a jammer (either constant or
power-modulated) mainly depends on three factors: the randomness of the channel (shad-
owing), the capability to observe the jamming signal (number of readings), and finally,
as proven by this contribution, the behavior of the jammer (power modulation). Power
modulation requires more energy with respect to a constant jammer that can calibrate its
power to the minimum requested to cover the target area. Nevertheless, we highlighted
how a power-modulated jammer can trade-off the increased transmission power with a
higher localization error—in many cases, the error is 10 times the width of the playground,
making the approximated position of the jammer completely inconsistent with the actual
one. By considering the constant-jammer as the baseline scenario, the power-modulated
jammer introduces significant uncertainty in the localization process (recall Figure 6). Even
under conservative assumptions of shadowing (σ ≤ 3 dBm), the position of the modulated-
power jammer cannot be identified, i.e., ∆ > 100 m, in a playground of 40× 40 m. We
observe how increasing the number of nodes in the playground is effective up to N = 10,
while subsequently, ∆ does not significantly decrease. Finally, the number of readings can
help the localization process under strong shadowing (σ > 3 dBm); nevertheless, from
combining Figure 5 with Figure 7, it emerges that the gain in localization accuracy is still not
sufficient to pinpoint the jammer: adopting 5000 readings makes the localization process
25% more accurate than in the case of 100 readings; however, the localization error remains
excessively high, i.e., at approximately 400 m, when σ ≈ 6 dBm.

Mitigation and future work. Locating a power-modulated jammer turns out to be
a challenging problem. A naive solution might involve an ultra-dense sensing network,
but this solution might be impractical in many scenarios and not scaling up with the
area to be protected by the action of the jammer. All our considerations mainly focus on
sensing devices featuring an isotropic antenna. While this set-up is very effective in the
localization of a standard transmitter (such as a constant jammer), it turns out to be much
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less ineffective against a power-modulated jammer. Conversely, a directive antenna might
be much more effective for determining the direction of the jamming signal, thus making
multiple collaborating directive antennas able to effectively locate the power-modulated
jammer. We observe how, in this case, the localization algorithm should not be based
on multilateration but on triangulation. Another consideration might be concerned with
detecting the actual presence of a power-modulated jammer in order to subsequently
deploy an ad hoc strategy for its localization. Indeed, we can assume that the sensing nodes
monitor the spectrum, and they can detect and identify the jamming signal. The sensing
nodes might be able to model the random process behind the power-modulation, thus
pre-conditioning the input to the localization algorithm. Finally, we would like to highlight
that different localization algorithms might be affected in different ways by the modulated
jammer—and in turn, the associated localization error. Our contribution aims at defining
the theoretical framework for a new jammer strategy willing to evade the localization
process. The choice of proper localization algorithm is only one of the parameters that can
mitigate the evasion and we leave this wider discussion to future works.
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Figure 7. Comparison between 100 and 5000 readings of the jamming signal as a function of σ and
the number of nodes.

6. Conclusions

In this paper, we introduced a new jammer model: the power-modulated jammer. We
proved that a jammer that randomly modulates its transmission power can make the
localization process quite ineffective. We compared our new jammer model with a classical
one (constant-power jammer), and we highlighted how a modulated jammer is much more
difficult to locate than a constant one even under very unbalanced conditions of the
shadowing effect, i.e., a weak shadow for the modulated jammer versus a strong shadow
for the constant one. Furthermore, the localization accuracy of the proposed jammer model
does not improve sensitivity while increasing the sensing nodes or the sampling frequency—
a testament to the unique features of the introduced model. Finally, we also discussed
future work, as well as preliminary mitigation strategies. We also released the source code
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of our proof of concept [21], enabling the interested community to verify our findings, as
well as to foster further research in the domain. We believe that the novelty of the proposed
model and the excellent performance achieved herein could attract the attention of the
scientific and industrial community for future research in this area.
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