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Abstract: We established a web-based ubiquitous health management (UHM) system, “ECG4UHM”,
for processing ECG signals with AI-enabled models to recognize hybrid arrhythmia patterns, includ-
ing atrial premature atrial complex (APC), atrial fibrillation (AFib), ventricular premature complex
(VPC), and ventricular tachycardia (VT), versus normal sinus rhythm (NSR). The analytical model
coupled machine learning methods, such as multiple layer perceptron (MLP), random forest (RF), sup-
port vector machine (SVM), and naive Bayes (NB), to process the hybrid patterns of four arrhythmia
symptoms for AI computation. The data pre-processing used Hilbert–Huang transform (HHT) with
empirical mode decomposition to calculate ECGs’ intrinsic mode functions (IMFs). The area centroids
of the IMFs’ marginal Hilbert spectrum were suggested as the HHT-based features. We engaged the
MATLABTM compiler and runtime server in the ECG4UHM to build the recognition modules for
driving AI computation to identify the arrhythmia symptoms. The modeling extracted the crucial
data sets from the MIT-BIH arrhythmia open database. The validated models, including the prema-
ture pattern (i.e., APC–VPC) and the fibril-rapid pattern (i.e., AFib–VT) against NSR, could reach the
best area under the curve (AUC) of the receiver operating characteristic (ROC) of approximately 0.99.
The models for all hybrid patterns, without VPC versus AFib and VT, achieved an average accuracy
of approximately 90%. With the prediction test, the respective AUCs of the NSR and APC versus the
AFib, VPC, and VT were 0.94 and 0.93 for the RF and SVM on average. The average accuracy and the
AUC of the MLP, RF, and SVM models for APC–VT reached the value of 0.98. The self-developed
system with AI computation modeling can be the backend of the intelligent social-health system that
can recognize hybrid arrhythmia patterns in the UHM and home-isolated cares.

Keywords: Hilbert–Huang transform; empirical mode decomposition; intrinsic mode function;
marginal Hilbert spectrum; multiclass recognition; machine learning; ubiquitous health management

1. Introduction

In the artificial intelligence (AI) era, ubiquitous health management (UHM) and care
services have been made to be compliant with smart medical techniques. With communi-
cation computing technology, physiological signals can be routinely tracked by wearable
sensors at home for clinical diagnosis of chronic diseases (e.g., arrhythmia) and even
home-isolated cares (e.g., COVID-19) [1,2]. Medical informatics with AI computation can
be targeted in a recognition model to efficiently identify clinical data characteristics for
health risk assessment and prevention [3–5]. The AI-enabled machine learning (ML) model
typically consists of featuring and data training, which pre-processes the labeled samples
(e.g., specific symptoms in the electrocardiogram (ECG) of arrhythmia) and explores the
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features to recognize clinical data [6–8]. Hybrid ML methods were qualified for coupling
analysis of comprehensive features.

The neural network (NN) and dimension separation were both classification types
of the typical ML methods. The multilayer perceptron (MLP) [9] was a well-known NN-
based ML method that simulates the neurons in the biological nervous systems to enable
the forward and backward iterations in the input, hidden, and output layers for training
data. The dimension separation derives the mathematical formulations for recognizing
the multiclass labels of the features in which the support vector machine (SVM) [10], naive
Bayes (NB) classifier [7], and random forest (RF) for ensemble analysis [11] are popular
for identifying biomedical data. With training of the clinical samples, both types of ML
methods generated prediction models that recognize physiological signals and provide
indicators of chronic diseases (e.g., arrhythmia ECG) [12]. A hospital can apply trained ML
models in UHM using the Internet of Things (IoT) for intelligent social health services, such
as a patient wearing a mobile ECG device at home and delivering daily measured signals
to a cloud server through customized apps for AI computation and recognition of disease
symptoms. The ML models in the present ubiquitous health (uHealth) scope that combines
mobile functions with cloud services for the UHM are limited to a few arrhythmia samples
for monitoring cardiovascular diseases [13–15].

A conventional 12-lead ECG examination measures the voltage of ten electrodes for
six limb leads and six chest leads. The modified limb lead ECG is subjected to atrial activity
enhancement during rest or exercise. The analytical signals are typically measured by the
modified limb lead II (MLII), the voltage between the electrodes on the specific intercostal
space to the left leg and the right arm [16]. Early studies proposed a three-dimensional
dynamic model that mathematically formulated the heart rhythm to the space position
and the time when a particle moves along the heart pulse waveforms [17]. At present, the
MIT-BIH arrhythmia database provided by the Massachusetts Institute of Technology is
a valuable open data source of ECGs for academic research [18,19]. The original source
involved a set of over 4000 recordings by the Beth Israel Hospital Arrhythmia Laboratory
from between 1975 and 1979. The analytical database contained 23 records (#100–#124) ran-
domly chosen from this set, and 25 records (#200–#234) with various important phenomena.
Every ECG data set with a sampling frequency of 360 Hz was recorded for approximately
30 min in the database. A variety of arrhythmia symptoms were annotated, such as atrial
premature atrial complex (APC or PAC), atrial fibrillation (AFib), ventricular premature
complex (VPC or PVC), and ventricular tachycardia (VT), in addition to normal sinus
rhythm (NSR), which had the most records. Recent studies have utilized machine and deep
learning to detect arrhythmia and displayed good recognition of a combination of specific
symptoms [20,21].

The ECG signals usually involve time–domain features such as waveforms of PQRST
waves and the intervals of PR, QRS, QT, ST, RR, and QRS complex waves. Following
the international measurement standard of heart rate variability (HRV), the low and high
frequencies of heart pulses were defined for analysis of power spectral density (PSD) to
classify the features of heart rhythm in a frequency domain [22]. These past studies explored
the HRV-related characteristics in both domains. In general, the time–domain approaches
compared the PQRST wave positions to observe rhythm changes for clinical monitoring.
The fast Fourier transform (FFT) is a well-known method to filter noise and calculate a
spectrum for classifying frequency–domain features [23]. A wearable ECG device could
help to identify the hybrid symptoms of arrhythmia while measuring HRV at home [24–26]
and would improve UHM.

Moreover, the Hilbert–Huang transform (HHT) performs a process of empirical mode
decomposition (EMD) to factorize nonlinear and non-steady signals into a combination
of the intrinsic mode functions (IMFs) [27]. The order of computational complexity of the
EMD is equivalent to FFT [28]. The IMF can further constitute the Hilbert spectrum (HS)
including the instantaneous frequency and energy in the time–frequency domain. The
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HHT has been widely used for wavelet analysis of the electroencephalogram and ECG in
biomedical engineering and informatics [29–32].

In this study, we developed a prototype of a UHM system (UHMS) and conducted an
AI computation with multiclass recognition models composed of the ML methods (e.g.,
MLP, RF, SVM, and NB) and the HHT-based features to identify the hybrid patterns of four
arrhythmia symptoms (APC, AFib, VPC, and VT) versus normal sinus rhythm (NSR). The
system was constructed using the Java and MATLABTM languages.

2. Methods

The MIT-BIH arrhythmia open database was used in this study to assess multiclass
recognition modeling in the proposed UHMS. As shown in Figure 1, the AI-compliant
computation processes four analytical slices including data pre-processing, featuring,
labeling, and machine learning behind the UHMS. The self-developed modules, “ECGHHT”
and “MMLCA”, were built using MATLABTM (license no. 40697750) to progress the
featuring and machine learning processes, respectively, for achieving the recognition scope.
The computation processes request manual evaluation at the data training stage but achieve
automatic processing at the final prediction stage. As training data, the input signals were
automatically transformed to the HHT-based features by the ECGHHT module in the
slices of data pre-processing and featuring; then, they needed manual evaluation with the
MMLCA module in the slices of labeling and machine learning before prediction. The
computation skips the slices in manual evaluation and approaches completely automatic
mode for prediction.
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Figure 1. The AI-compliant modeling process with HHT-based featuring and coupling ML analysis
for multiclass recognition of arrhythmia ECG data.

2.1. Data Sampling

The MIT-BIH arrhythmia database’s resource web site [18] presents the ECG data with
annotations at the interest time points for various symptoms. We adopted the symptoms,
including the normal status (NSR) and the abnormal conditions in the atrium (APC and
AFib) and the ventricle (VPC and VT), for sampling in our model. The waveforms of the
arrhythmia described above are shown in Figure 2a–e. Their definitions referring to the
visible characteristics are addressed below.
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Figure 2. Typical ECG waveforms of the arrhythmia symptoms with annotation by screenshots from
MIT-BIH’s web site [18]: (a) atrial premature complex (APC); (b) atrial fibrillation (AFib); (c) ventricu-
lar premature complex (VPC); (d) ventricular tachycardia (VT); (e) normal sinus rhythm (NSR).

2.1.1. Normal Rhythm and Arrhythmia Symptoms

The NSR is the rhythm originating from the sinus node and is observed in a healthy
human heart. The NSR presents the heart rate in its normal range, and the P waves
are regular on ECGs with conformable rates. The APCs perform premature heartbeats
originating in the atria to cause contractions for heart palpitations or unusual heartbeats.
The beats of APCs are irregularly timed too fast or slow in an atrial cycle. The AFib is
the common arrhythmia that shows the RR intervals following no repetitive pattern and
no distinct P waves in an atrial cycle length with a PP interval less than 200 milliseconds.
The VPCs are caused by ventricular myocardium situations including patients without
structural heart disease. The VT displays a rate greater than 120 beats per minute and at
least three vast QRS complexes in a row. The symptom can be classified as sustained versus
non-sustained based on whether it lasts more or less than 30 s, respectively.
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2.1.2. ECG Waveform Patterns

We noticed the waveform of an AFib would rapidly unite the APC’s waveforms and is
similar to a VT that combines with the VPCs. This study, therefore, defined the premature
pattern (i.e., APC and VPC) and the fibril-rapid pattern (i.e., AFib and VT) for analysis.
In clinical practices, the APC and VPC often appear in ordinary people due to the fact of
anxiety and, in such cases, it is not regarded as a severe disease [33]. All points of interest
of the specified arrhythmia symptoms annotated on the MIT-BIH website were referred
to as the official samples. Their symptom ID labeled the specimens as NSR, APC, AFib,
VPC, and VT (i.e., 1, 2, 3, 4, and 5, respectively). The featuring frame, which can contain a
complete waveform for different symptoms within a unified period, was applied to screen
the samples. For example, the APC and VPC can be mixed with the NSR in a 3 s frame.

According to the MIT-BIH website’s analytical resource for all 48 patients, the 30 min
recording was adopted from each patient’s ECG, and several points of interest were an-
notated for the arrhythmia symptoms (i.e., one point denoted a symptom around the
timestamp as shown in Figure 2). One patient’s recording could have some but not all of
the five arrhythmia symptoms. We then screened the recording of five patients (#100, #105,
#202, #203, and #205), who were observed with many interesting symptoms related to our
study. For example, patient #202’s recording was annotated for NSR, APC, AFib, and VPC
with 2, 3, 7, and 4 points of interest, respectively; we also observed an additional 507, 14,
278, and 14 points (i.e., we acquired 509, 17, 285, and 18 samples of NSR, APC, AFib, and
VPC from patient #202). Finally, we extracted 4190 samples including 176 samples from all
patients’ points of interest for NSR (35), APC (11), AFib (23), VPC (24), and VT (83) and
4014 samples self-observed for NSR (2964), APC (97), AFib (649), VPC (272), and VT (32);
the total amount of NSR, APC, AFib, VPC, and VT samples were 2999, 108, 672, 296, and
115, respectively. Each sample covered a 3 s frame including a complete waveform of the
symptom for a point of interest, and the signals in a frame could be transformed to the
features set in a record through HHT processing.

However, the amounts of different symptoms were still insufficient and unbalanced in
the observed samples. We then designed three sample data sets below for analysis.

2.1.3. Sample Data Sets

With the resource limitations, we designed crucial, simulative, and test data sets in
the modeling. We arbitrarily adopted 300 equivalently labeled data (i.e., 60 records per
symptom) for the crucial data set (A) and 3890 remaining records (i.e., 2939, 48, 612, 236,
and 55 records for NSR, APC, AFib, VPC, and VT, respectively) for the test data set (B).
In addition, we created a simulative data set (C) that had 5000 equivalently labeled data
(i.e., 1000 records for each symptom) for comparison. That is, we separated the observed
samples into data set (A) and (B) for data training and testing, respectively; then, we created
data set (C) with the same amount of the five symptoms, which were produced by normal
distribution due to the mean (µ) and standard deviation (σ) of all observed data for the
simulation.

In this study, data set (C), independent of the extracted samples but containing an
abundant quantity of every arrhythmia feature, supplemented the sufficient and balanced
data compared to data set (A) for machine learning. In other words, we applied the feature’s
mean and standard deviation, as shown in Table 1, and employed MATLAB’s “normrnd”
function that can generate a random data set in normal distribution to create the simulative
data set. The data set can randomly fill enough data into the same range as crucial feature’s
distribution. We created several simulative data sets for analysis with the randomized
process and adopted the appropriate one for demonstration. The data sets (A) and (C)
were taken for training data with 5-fold cross-validation in the modeling. This means that
80% and 20% of the data sets were separated for training and validation in each fold to
deliver the performance information for modeling evaluation. We tried the cross-validation
processes several times to evaluate the proper model, while the training and validating
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data sets were independent of each other every time. The samples, including the training
and testing data points, were applied for the ML models of the MLP, RF, SVM, and NB.

Table 1. HHT-based feature distribution of the observed samples for the symptoms.

Symptoms NSR APC AFib VPC VT

Features IMF1 (µ, σ)

Frequency 4.772, 0.787 4.241, 0.798 3.571, 0.558 3.283, 0.973 3.120, 1.123
Power 1.167, 0.864 0.791, 0.567 2.683, 1.214 3.196, 2.170 6.504, 6.250

Features IMF2 (µ, σ)

Frequency 1.478, 0.527 0.932, 0.504 1.049, 0.455 0.993, 0.503 1.013, 0.489
Power 1.344, 1.605 1.223, 1.294 2.824, 2.053 4.548, 3.909 6.923, 7.274

Features IMF3 (µ, σ)

Frequency 0.288, 0.261 0.378, 0.257 0.327, 0.263 0.340, 0.264 0.315, 0.265
Power 0.645, 1.997 1.461, 2.762 1.183, 2.024 1.449, 2.011 1.184, 1.070

IMF1’s Frequency IMF2’s Frequency IMF3’s Frequency

Pattern p-Value Patterns p-Value Pattern p-Value

NSR–APC <0.001 NSR–APC <0.001 NSR–APC 0.0003

NSR–AFib <0.001 NSR–AFib <0.001 NSR–AFib 0.0009

NSR–VPC <0.001 NSR–VPC <0.001 NSR–VPC 0.006

NSR–VT <0.001 NSR–VT <0.001 NSR–VT 0.3482

APC–AFib <0.001 APC–AFib 0.0286 APC–AFib 0.037

APC–VPC <0.001 APC–VPC 0.3926 APC–VPC 0.1081

APC–VT <0.001 APC–VT 0.2015 APC–VT 0.0407

AFib–VPC <0.001 AFib–VPC 0.0871 AFib–VPC 0.6571

AFib–VT <0.001 AFib–VT 0.5691 AFib–VT 0.6032

VPC-VT 0.0302 VPC-VT 0.6266 VPC-VT 0.4894

IMF1’s Power IMF2’s Power IMF3’s Power

Pattern p-Value Pattern p-Value Pattern p-Value

NSR–APC <0.001 NSR–APC 0.4453 NSR–APC <0.001

NSR–AFib <0.001 NSR–AFib <0.001 NSR–AFib <0.001

NSR–VPC <0.001 NSR–VPC <0.001 NSR–VPC <0.001

NSR–VT <0.001 NSR–VT <0.001 NSR–VT <0.001

APC–AFib <0.001 APC–AFib <0.001 APC–AFib 0.0024

APC–VPC <0.001 APC–VPC <0.001 APC–VPC 0.0024

APC–VT <0.001 APC–VT <0.001 APC–VT 0.0052

AFib–VPC 0.3851 AFib–VPC <0.001 AFib–VPC 0.4177

AFib–VT <0.001 AFib–VT <0.001 AFib–VT 0.3471

VPC-VT <0.001 VPC-VT 0.0028 VPC-VT 0.7985

2.2. Featuring by Marginal Hilbert Spectrum

We established the module, ECGHHT, to enhance the HHT functions in the featuring
process. The HHT drives the EMD process to produce the Hilbert spectrum (HS) for
deriving the features in a time–frequency domain. The EMD assumes that the signals are
empirically composed of several IMFs that present waveforms with a sum of peaks and
troughs equal to one or more of the number of zero-crossing points. In addition, the average
of the upper and lower envelopes due to the waveforms should be close to zero. Each EMD
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cycle, comprising six steps in the “data pre-processing block”, as shown in Figure 1, can
obtain an IMF component in the HHT. The steps were repeated until the residue function
was monotonic.

The IMF can be expressed by Equation (1) that contains a sine wave function ω(t) with
a decomposable mode function sj(t). The IMF can be converted into the HS by a sparse
matrix with the Hilbert transform as shown in Equation (2). The spectrum entails the
instantaneous frequency and energy for nonlinear phase change.

X(t) =sj(t)e
i
∫

ωj(t)dt (1)

H(ω, t) =
{

sj(t), ω = ωj(t)
0, otherwise

(2)

On the HS’s time–frequency plane, the amplitude of the frequency can be inte-
grated along the time axis to approach the marginal Hilbert spectrum (MHS) as shown in
Equation (3). The MHS represents the total energy corresponding to the frequency.

MHS(ω) =
∫

H(ω, t)dt (3)

Therefore, ECG signals can be decomposed by various IMFs that may include the
specific symptoms corresponding to arrhythmia. Figure 3a,b compare the IMFs of the NSR
and the VPC signals, respectively, decomposed with the HHT process. The instantaneous
frequency and energy, as shown in Figure 3c,d, may present the HRV with the waveform
of IMF1 (i.e., the first-order IMF). The MHS, as per the examples shown in Figure 3e,f,
performs the valid regions and the centroids (i.e., x- and y-coordinates with respect to
frequency and power) of various IMFs in a range of frequency distribution. For this data
pre-processing step, the loss-pass filter was employed to filter the noise of the signals for
the HHT. Past studies approved a filter at 16 Hz that well-exhibited characteristics of the
NSR and arrhythmias [34,35]. Referring to the literature’s approach for the Butterworth
filter, the cutoff frequency with a low-pass order between 4 and 8 was one of the suggestive
parameters to remove ECG’s noise [36]. We then suggested a 5th-order low-pass digital
Butterworth filter with a normalized cutoff frequency of 16 Hz for the data sampled at
360 Hz. The parameter adopted in the modeling must be identical for the processing in
recognition. In practice, the proposed parameters should be adjusted once the clinical data
applied for training are different from the samples in this study.

The spectral characteristics of IMFs are available for different signal patterns to explore
the features in which the instantaneous frequency and energy of the IMFs perform a stable
variation for the normal rhythm with respect to the arrhythmias. Meanwhile, the MHS-area
centroids (i.e., the mean frequency and the energy per second (or power) in a featuring-
frame period) are distributed in the different ranges for various symptoms. We then
considered the MHS-area centroids of the first three orders of IMFs as the features for data
training in the ML process. In addition, we referred to the mean and standard deviation
of the features in the limited data source (i.e., data sets (A) and (B)) to produce sufficient
and balanced trainable data (i.e., data set (C)) for evaluating the ML model’s efficacy in
different data set groups.

2.3. Comprehensive Machine Learning Models

The ML models were bundled into the recognition module, “MMLCA”, for coupling
the same HHT-based features in analysis. The MMLCA was expandable to compose
comprehensive ML methods, such as the MLP, RF, SVM, and NB, which were well known
in biomedical data analysis. We, therefore, adopted them in the modules to recognize the
hybrid symptom patterns. For comparison, all modules can be applied to screen the ECG
data, including the four arrhythmias. The methodology details can be referred to in the
literature [7–11] and their brief highlights are addressed below.
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IMFs due to the fact of EMD; (c) NSRs’ instantaneous frequency and energy; (d) VPCs’ instantaneous
frequency and energy; (e) NSR MHS and centroid (red star) for IMF1; (f) VPC MHS and centroid (red
star) for IMF1.

2.3.1. Multiple Layer Perceptron (MLP)

The MLP presents a feedforward neural network to transfer information among the
input, hidden, and output layers. The MLP involves enough neuron nodes in a hidden layer
for mapping the input-output features of the patterns. The nodes in the hidden and output
layers can activate the nonlinear functions to separate the initially heterogeneous data from
the linear perceptron. The functions can optimize weight values for bias evaluation, such
as backpropagation, regularization, or conjugate gradient descending. Inside the MLP,
the learning mechanism can adjust the nodes’ correlation to enhance data training with
self-adaptive weighting factors.

2.3.2. Random Forest (RF)

The RF ensembles abundant decision trees that enable non-parametric supervised
learning with conditional classification rules for classification. The bagging and boosting
algorithms are usually applied for the ensemble analysis according to various sub-samples
to enhance the model’s predictive efficacy.
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2.3.3. Support Vector Machine (SVM)

The SVM in analysis follows three principles: (a) separating dimensions in the feature
space, (b) calculating projection through the inner product of the kernel functions, and
(c) optimizing data separation to obtain the support vector. The categorical features could
approach good efficacy with analyses due to past research [37]. The method looks for the
support vector with an optimized boundary in a feature space due to the kernel function
that minimizes the errors between different dimensions. For nonlinear projection, the
kernel function is applied to reduce the features’ dimensions through two eigenvectors,
such as the linear, polynomial, or Gauss radial basis functions (RBFs), to identify the
dimension’s similarity [38,39]. In this study, a RBF was employed to classify the four
arrhythmia symptoms and NSR.

2.3.4. Naive Bayes (NB)

The NB drives the independence assumptions conditionally between feature pairs to
calculate the probability of features based on Bayes’ theorem. The NB classification can fast
estimate the targets with few training data since the parameters can be linearly functioned
with the relative variables.

We employed the MATLAB™ modules “patternnet”, “fitcensemble”, “fitcecoc”, and
“fitcnb” to wrap up the MLP, RF, SVM, and NB models, respectively, in the MMLCA.
The parameters optimized for the ML models are suggestive in Table 2. For enabling
the multiclass recognition capability, we compared the coding design modes “one-versus-
one” (OVO) and “one-versus-all” (OVA), which were built in the modules to reduce the
multiclass problem to a series of binary problems. We then explored the best option with
the OVO mode, which takes a binary pair for positive and negative classes but ignores the
rest for the approach.

Table 2. Essential parameters of the ML models in data training.

ML Model Parameter Value

MLP
hidden layer size 10

backpropagation training function scaled conjugate gradient
performance validation function cross entropy

RF
ensemble aggregation method adaptive boosting

learning cycles 100
nodes in trees 10

SVM

kernel function linear
coding design OVO

estimation output posterior probability
kernel scale parameter 1

NB
distribution for the nodes Gaussian distribution

smoothing density support real values

In this study, the recognition model drove the ECGHHT module to extract the HHT-
based features and used the MMLCA module to couple the above four ML methods for
training the features of the hybrid arrhythmia symptoms.

2.4. UHMS Infrastructure

The UHMS infrastructure, as shown in Figure 4, integrates the Java-based web plat-
form “ECG4UHM” with the MATLABTM runtime server (MRS) to enable AI computation
with the proposed ML models for cloud applications in real-time arrhythmia recognition.
The modeling and recognition tiers include the dashed and solid arrow lines, respectively,
for the manual data training and automatic recognition processes. The platform was
constructed by Java development kit 1.8.0 and MATLABTM 2020b. The infrastructure
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comprises the modeling, recognition, and management tiers to manage the MRS functions
and uHealth services.
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2.4.1. Runtime Server Architecture in Modeling Tier

The infrastructure exhibits four AI computation slices, as shown in Figure 1, to generate
hybrid patterns based on recognition modeling in the MRS. The runtime server can achieve
three procedures in the modeling tier: (i) transform ECG features, (ii) specify recognition
patterns, and (iii) identify arrhythmia labels. We engaged the MATLAB™ compiler (named
MMC Apps) to compile the MMLCA’s functions, which progress the ML models such
as MLP, RF, SVM, and NB for coupling features analysis, such as Java-based classes,
and compress them in a Java-class library (named “jar” file). The jar files are stored in
ECG4UHM’s pattern library (named “jarlib”). Referring to the MRS architecture, we created
two jars named “HHTFeature” and “TracePlot” to incorporate the recognition model with
the “javabuilder” that builds Java classes of the modules for AI computation in the MRS.
The HHTFeature conducted the ECGHHT and MMLCA modules to accomplish procedures
(i) and (ii), and the TracePlot was in charge of the procedure (iii) to export recognition
results in the traceable diagrams.

2.4.2. Pattern Repository Design in Recognition Tier

In the ECG4UHM platform, we designed the pattern repository including “data_log”,
“patt_bank”, “out_log”, and “fig_log” to save input features, suggestive patterns, recogni-
tion labels, and traceable diagrams, respectively. The uploaded ECG data sets are suggested
to unique filename with an identified number and timestamp for managing the personal
traceable diagram. The ECG4UHM saves the ECG data set in the data_log when identifying
the symptoms in the recognition tier. With the Java-class library, the “HHT” class trans-
forms the ECG data into the HHT-based features. The “Pattern-Recognition” class then
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activates the pattern recognition process by evaluating the suitable models in patt_bank for
the diverse arrhythmia symptoms and restores the results in out_log for the suggestion.
The “Data-Convert” class finally converts the output labels to Java-compliant data format
in fig_log and displays the traceable diagrams on the web interface. The interface supports
cloud computing for modeling the pattern and tracking the ECG data behind arrhythmia
recognition. Data exchange between the management and recognition tiers assists the users
to access their health data ubiquitously.

2.4.3. UHM Portals in Management Tier

The UHMS’s management tier was designed to manage arrhythmia status and daily
reports for home-isolated healthcare via uHealth services. The traceable diagram can be
retrieved from the ECG4UHM platform and be referred to physicians for clinical diagnoses.
More trainable ECG samples can be cyclically uploaded to the modeling tier to improve
the recognition patterns for more arrhythmia symptoms. Still, the web page can present
information for health education. In advance, the designed UHM functionality can be an
important portal of the intelligent social-health system.

3. Results

Following the modeling, the ML models due to the crucial data set for the NSR versus
both the premature pattern (i.e., APC and VPC) and the fibril-rapid pattern (i.e., AFib and
VT) were approved by cross-validation. Then, we applied the models to train data sets (A)
and (C) and evaluated their performance by testing data set (B). The range of feature values
in the training data set should cover that in the testing data set. The models were finally
applied to scan some ECG segments that reported the arrhythmia periods on the official
website for evaluating the feasibility.

3.1. Pre-Processing Analysis

The HHT process retrieved the features regarding the symptoms of APC, AFib, VPC,
VT, and NSR from the sample data sets. From inspecting the features due to the three
IMFs of all observed data, the VT’s mean powers were higher than VPC and similar to
those observed for AFib versus APC. In contrast, the frequencies of VT and AFib were
mainly lower than VPC and APC, respectively. The mean (µ) and standard deviation (σ) of
frequencies and powers are shown in Table 1. The NSR usually presented the lowest power
and the highest frequency for the three IMFs with respect to other arrhythmia symptoms.
The tendency of the orders attained the approach in the past study [40]. In general, the
MHS-area centroids of the orders after IMF3 were similar for all rhythms. Regarding the
values of µ and σ, the IMF1 had the lower deviation, while the IMF2 and IMF3 had the
larger deviation. We then employed a statistical test to verify significance, as shown in
Table 1, for various symptoms. The results revealed that the IMF1’s features presented
significant difference (i.e., p < 0.001) for all patterns excluding AFib–VPC; the IMF2’s
frequency was not significant for the patterns APC–VPC, APC–VT, AFib–VPC, AFib–VT,
and VPC-VT; while the IMF3’s frequency and power were not significant respectively for
the pattern sets {APC–VPC, AFib–VPC, AFib–VT, and VPC–VT} and {AFib–VPC, AFib–VT,
and VPC-VT}.

We used the features of data set (A) to train the proposed ML models with five-
fold cross-validation, and then the trained models were employed to test data set (B) for
evaluation. The same process was applied for data set (C) derived from data set (A) to
evaluate the models’ performance due to the simulative data training designs.

3.2. Modeling Evaluation

By comparing the ML models’ effectiveness in coupling analysis, we suggested the
parameters shown in Table 2 for the proposed models. With the five-symptom set {NSR,
APC, AFib, VPC, and VT}, recognition for each symptom versus the rest (i.e., one-versus-rest
mode, OVR) was evaluated by the sensitivity, specificity, and area under the curve (AUC)
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of receiver operating characteristics (ROC) in the modeling. The sensitivity and 1-specificity
constructed the ROC curve for the possible cut-point values [41]. The formulations, as
shown in Equation (4), comprised the number of true-positive (TP), true-negative (TN),
false-positive (FP), and false-negative (FN) data for calculating the accuracy, sensitivity,
and specificity due to the ROC to perform the model’s effectiveness. We computed the
average accuracy, sensitivity, and specificity of the model’s ROC for evaluation.

Accuracy = (TP + TN)/(TP + FN + FP + TN)

Sensitivity = TP/(TP + FN) = TPR (i.e., true positive rate)

Specificity = 1 − FP/(FP + TN) = 1 − FPR (i.e., false positive rate)

(4)

We compared NSR versus APC and VPC (i.e., premature pattern) in data set (A)
trained by the RF model with cross-validation, and the best ROC curves are shown in
Figure 5a. The best accuracy and AUC reached 0.99, which can be referred to in the past
study [20]. If the NSR mixed with AFib and VT (i.e., the fibril-rapid pattern), the AUC,
shown in Figure 5b, was approximately 0.99 on average. The evaluation approved the
reliability of the suggested models.
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fibril-rapid pattern due to the best performance fold in cross-validation by training data set A: (a) NSR
versus premature pattern (i.e., APC–VPC); (b) NSR versus fibril-rapid pattern (AFib–VT).

Then, we mixed all the patterns for coupling analysis of the proposed ML models. The
models were trained by data set A and tested by data set B, and then the recognition results
were shown in Table 3. The average accuracy of the four ML models for all hybrid patterns
was approximately 86% but reached 90% if excluding VPC versus AFib and VT. The
recognition efficacy decreased in comparison with the previous evaluations. Most models
distinguished the NSR versus the premature and fibril-rapid patterns with acceptable
AUCs (from 0.747 to 0.942). All models validated with the pattern AFib–VT achieved an
AUC average of 0.83, but with the AFib–VPC and VPC–VT, the result was less than 0.7. The
sensitivities of hybrid patterns, except for VPC–AFib, VPC–VT, and AFib–VT, were over
0.9 for most models. On average, the respective AUCs of the NSR and APC versus AFib,
VPC, and VT were 0.94 and 0.93 for the RF and SVM. The MLP, RF, SVM, and NB models’
best sensitivities reached the value of 1 for the APC–VT pattern, while their accuracies and
AUCs were {0.964, 1, 0.984, and 0.898} and {0.96, 1, 0.98, 0.89}, respectively. The ensemble
analysis of RF obtained good sensitivity, specificity, and AUC for the patterns of NPC
and APC versus AFib, VPC, and VT in comparison with the other models. The model
performed an excellent sensitivity and specificity of 0.986 and 0.96, respectively, for the
NSR–VT, while 0.927 and 0.901 for the NSR–VPC. Figure 6a–d display the OVR ROC curves
for all models; the RF and SVM models performed better AUCs over 0.85 on average than
other models.
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Table 3. Evaluation of the ML models for the patterns of hybrid symptoms due to the training the
data set (A) and testing the data set (B), which the pattern labeled by two symptoms (e.g., NSR–APC
means normal sinus rhythm versus atrial premature atrial complex) presents their ROC’s results due
to the four models (i.e., multiple layer perceptron, random forest, support vector machine, and naive
Bayes models) for comparison.

Pattern ROC MLP RF SVM NB

NSR–APC Sensitivity 0.842 0.782 0.774 0.815
Specificity 0.857 0.837 0.907 0.889
Accuracy 0.842 0.783 0.777 0.816

AUC 0.85 0.81 0.84 0.85

NSR–AFib Sensitivity 0.913 0.916 0.941 0.812
Specificity 0.918 0.931 0.861 0.91
Accuracy 0.913 0.919 0.929 0.83

AUC 0.92 0.92 0.9 0.86

NSR–VPC Sensitivity 0.9 0.927 0.953 0.958
Specificity 0.673 0.901 0.683 0.657
Accuracy 0.89 0.925 0.936 0.943

AUC 0.79 0.91 0.82 0.81

NSR–VT Sensitivity 0.959 0.986 0.989 0.997
Specificity 0.857 0.96 0.8 0.955
Accuracy 0.957 0.985 0.986 0.996

AUC 0.91 0.97 0.89 0.98

APC–AFib Sensitivity 0.882 0.878 0.907 0.78
Specificity 0.844 0.929 0.89 0.957
Accuracy 0.847 0.925 0.982 0.943

AUC 0.86 0.9 0.9 0.87

APC–AFib Sensitivity 0.769 1 0.975 0.914
Specificity 0.826 0.862 0.826 0.784
Accuracy 0.809 0.895 0.865 0.821

AUC 0.8 0.93 0.9 0.85

APC–VT Sensitivity 1 1 1 1
Specificity 0.923 1 0.96 0.778
Accuracy 0.964 1 0.984 0.898

AUC 0.96 1 0.98 0.89

AFib–VPC Sensitivity 0.724 0.793 0.742 0.863
Specificity 0.521 0.613 0.714 0.445
Accuracy 0.676 0.75 0.736 0.77

AUC 0.62 0.7 0.73 0.65

AFib–VT Sensitivity 0.899 0.915 0.888 0.992
Specificity 0.667 0.828 0.889 0.656
Accuracy 0.879 0.909 0.888 0.97

AUC 0.78 0.87 0.89 0.82

VPC–VT Sensitivity 0.673 0.685 0.709 0.726
Specificity 0.649 0.490 0.533 0.568
Accuracy 0.667 0.636 0.665 0.682

AUC 0.66 0.59 0.62 0.65
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We further evaluated the test results by training the simulative data (i.e., data set (C))
for the proposed models. As shown in Table 4, the average AUCs of all models for both the
APC–VPC and AFib–VT patterns versus the NSR could reach approximately 0.84 and 0.92,
respectively. The ML models obtained the best AUCs at approximately 0.9 on average for
recognizing the patterns of APC–NSR versus AFib–VT. The average accuracy of the MLP,
RF, and SVM models for the APC–VT pattern reached approximately 0.983 and 0.977 for
both the crucial and simulative data sets, while the respective AUCs were 0.98 and 0.973.
However, similar to data set (A), the recognitions among AFib–VPC and VPC–VT were
ambiguous. This approach showed the acceptable efficacy of the simulative data compared
with the observed data. This implied that the mean and standard deviation of few reliable
data could produce sufficient and balanced training data for the ML model.
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Table 4. Evaluation of the ML models for the patterns of hybrid symptoms due to the training the
data set (C) and testing the data set (B), which the pattern labeled by two symptoms (e.g., NSR–APC
means normal sinus rhythm versus atrial premature atrial complex) presents their ROC’s results due
to the four models (i.e., multiple layer perceptron, random forest, support vector machine, and naïve
Bayes models) for comparison.

Pattern ROC MLP RF SVM NB

NSR–APC

Sensitivity 0.917 0.819 0.903 0.859
Specificity 0.789 0.833 0.821 0.825
Accuracy 0.917 0.819 0.902 0.859

AUC 0.85 0.83 0.86 0.84

NSR–AFib

Sensitivity 0.887 0.907 0.905 0.906
Specificity 0.815 0.82 0.787 0.808
Accuracy 0.876 0.895 0.888 0.889

AUC 0.85 0.86 0.85 0.86

NSR–VPC

Sensitivity 0.961 0.97 0.932 0.969
Specificity 0.629 0.65 0.652 0.595
Accuracy 0.945 0.953 0.918 0.951

AUC 0.8 0.81 0.79 0.78

NSR–VT

Sensitivity 0.994 0.995 0.994 0.996
Specificity 0.793 0.84 0.806 0.786
Accuracy 0.992 0.994 0.992 0.993

AUC 0.89 0.92 0.9 0.89

APC–AFib

Sensitivity 0.811 0.921 0.842 0.868
Specificity 0.952 0.722 0.929 0.913
Accuracy 0.94 0.738 0.92 0.909

AUC 0.88 0.82 0.89 0.89

APC–AFib

Sensitivity 0.909 0.921 0.914 0.917
Specificity 0.886 0.757 0.898 0.821
Accuracy 0.893 0.801 0.9 0.85

AUC 0.9 0.84 0.91 0.87

APC–VT

Sensitivity 1 1 1 1
Specificity 1 0.875 0.962 0.957
Accuracy 1 0.949 0.983 0.982

AUC 1 0.94 0.98 0.98

AFib–VPC

Sensitivity 0.805 0.776 0.692 0.849
Specificity 0.527 0.553 0.662 0.473
Accuracy 0.741 0.719 0.685 0.759

AUC 0.67 0.66 0.68 0.66

AFib–VT

Sensitivity 0.963 0.976 0.921 0.978
Specificity 0.719 0.75 0.735 0.667
Accuracy 0.945 0.958 0.905 0.955

AUC 0.84 0.86 0.83 0.82

VPC–VT

Sensitivity 0.673 0.685 0.709 0.726
Specificity 0.649 0.490 0.533 0.568
Accuracy 0.667 0.636 0.665 0.682

AUC 0.66 0.59 0.62 0.65

3.3. Implementation

With the above evaluation, we can suggest the proper models to identify arrhythmia
patterns in the UHMS. The proposed modeling was applied to practical cases through the
ECGHHT and MMLCA modules. We selected the cases reported to have APC, AFib, VPC,
or VT from the official website and screened their records by a 3 s frame with a 1 s overlap
during 30 s of an arrhythmia period. The MHS-based features were extracted from each
frame by ECGHHT. Then, the labels of APC, AFib, VPC, VT, and NSR could be recognized
by MMLCA. Both modules were activated by the HHTFeature built in the ECG4UHM to
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enable AI computation. The multiclass recognitions of the arrhythmia symptom patterns
regarding the original ECG are displayed in Figure 7a–d. Particularly, the NB and RF
algorithms recognized the hybrid patterns, including the VPC mixing AFib and VT, as
shown in Figure 7b,d, respectively. The traceable diagrams display the ECG signals on
the time axis, mapping to the symptom labels highlighted in the associated frames. The
modules approved the feasibility of AI computation for the ECG4UHM.
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Figure 7. The traceable diagrams of arrhythmia symptoms recognized by the prototype of self-
developed programs in comparison with the 30 s ECG segments around the interest timestamp:
(a) APC by SVM for case #100 at approximately 17:27; (b) AFib–VPC by NB for case #203 at approxi-
mately 3:00; (c) VPC by RF for case #105 at approximately 0:32; (d) VT–VPC by RF for case #205 at
approximately 5:15.

Furthermore, we practiced the ECG4UHM’s online recognition process. As shown
in Figure 8a, the screen snapshot presents the interface for inputting the parameters to
transform the uploaded ECG data set into the HHT-based features in the file named by the
prefix “feat”. The models available for the various symptoms were suggested for choice
as shown in Figure 8b. In addition, the user can compare the comprehensive models to
recognize the hybrid arrhythmia patterns according to the ECG data set and the relevant
feature set as shown in Figure 8c. The recognized result as shown in Figure 8d was
traceable with symptom annotations with the AI computation. All traceable diagrams were
saved in the fig_log for advanced management and review as shown in Figure 8e. The
implementation approved the feasibility of the UHMS prototype for extensive applications
of the uHealth services.
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ECG4UHM platform: (a) input of the HHT processing parameters for feature extraction; (b) selection
of the machine learning model for arrhythmia pattern recognition; (c) display of the recognition
results; (d) selection of the input ECG data and correspondent feature set to create the trace diagram;
(e) management of traceable diagram log for review; (f) review page of traceable diagrams.

4. Discussion

This study suggested four ML models for the UHMS to recognize hybrid arrhythmia
ECG patterns. The HHT-based features, including frequency and power due to the MHS
of the first three-order IMFs, were coupled with the ML algorithms for analysis. The
development of the ECG4UHM detailed the AI computation process, and the prototype
revealed the advantages of combining simulative arrhythmia ECGs in the expandable ML
modeling. We discuss the findings and limitations below.

4.1. Principal Finding

Past studies of HRV applied the spectrum to classify arrhythmias and normal heart
rhythm but rarely recognized the symptoms with various pattern waveforms simultane-
ously [42,43]. Therefore, we discovered the representative features from the HHT-based
IMFs after decomposing the ECG signals.

(1) Candidate features can be extracted from the first three-order IMFs. In the analysis, we used
the low-pass filter to remove noises from the ECG signals before the EMD process.
The past study employed this process with the SVM to achieve good performance for
recognizing the APC and VPC [20]. As inspecting the decomposed IMFs of the AFib
and VT samples, the IMF1 showed the major features of the frequency and power
due to the MHS-area centroid in a significant range. At the same time, IMF2 and
IMF3 contributed minor characteristics with a dispersed distribution. The MHS-area
centroids for the latter-order IMFs were similar for all symptoms. Therefore, the first
three-order IMFs, which used to include the hybrid patterns’ recognizable features,
are suggested for the candidate features.

(2) Symptomatic waveforms should be wholly involved in the featuring frame. The timestamps of
the arrhythmia symptoms’ interest points were annotated on the official web page [18],
but they mixed with the NSR or other symptoms in a featuring frame. The impure
waveforms of the symptoms may affect the features of the observed databases in this
study. Therefore, the appropriate sample should involve the complete waveform of
the specific symptom in the frame, which allows some NSRs to fill up the frame size
and reduce the bias.



Sensors 2022, 22, 689 20 of 24

(3) HHT-based data pre-processing can imply innovative features in the ML model. With EMD
in the HHT, the features (i.e., MHS-area centroids for various IMFs) of the multi-
class symptoms due to the limited samples were observed to scatter in a separable
distribution. The simulative features can be supplemented following the mean and
deviation of the observed samples for data training. The evaluation showed similar
performances for AFib and VPC corresponding to NSR using the simulative data set
compared to the crucial data set. However, the VPC versus AFib and VT did not
reach acceptable results, since they lacked enough samples with reliable means and
standard deviations for simulation. Various models with ensemble analysis can be
pipelined in a suitable pattern for the diverse symptoms to achieve a good recognition
in practice. Proper feature pre-processing with validation can avoid unbalanced or
insufficient samples and improve training efficacy before constructing the reliable
recognition model. This approach revealed the requirement of conventional AI-based
analysis in which the significant features can enhance the various machine learning
methods to reach good results in classification [44–46].

(4) The coupling ML models can customize the UHMS to recognize hybrid arrhythmia patterns.
The model’s parameters are adjustable for the specific feature set. The current pro-
totype could recognize four arrhythmia symptoms for application and suggest the
suitable ML models with respect to the hybrid patterns for the frequency–domain
features. The user can determine the most possible symptom based on the models’
suggestion. In advance, we suggested the features in the HS for recognizing more
arrhythmia diseases. The HS offers the instantaneous energy and frequency in the
time–frequency domain, which also implies the time-dependent characteristics of the
HRV symptoms with noticeable phase changes in the wave period. The previous
study selected the features in both domains to avoid ambiguous identification for the
similar waveform of ventricular arrhythmia [47]. The HS can be reflected as more
features when the MHS-area centroids are not apparent than other symptoms [48].

4.2. Study Limitation

Some features of arrhythmia symptoms obtained at the current stage were still insuffi-
cient for classification. There were only 108, 672, 296, and 115 of the APC, AFib, VPC, and
VT, respectively, observed in the sample data sets by limited manpower, which affected
the number of equivalent labels of the crucial data set for cross validation as training the
data sets. According to the big data concept, the machine learning model would require
more training data for a better approach. We increased the supplementary data (i.e., data
set (C)) for simulation and comparison. The simulative data were randomly produced by
MATLAB’s function and surely located in the same range as the observed sample’s distri-
bution (i.e., data sets (A) and (B)). Three data sets were ensured in the same distribution
but independent for training, validation, and testing in machine learning.

In practice, the arrhythmia patients could report their experienced symptoms (e.g.,
chest pain, racing heartbeats, and shortness of breath) to the clinicians. The AI system
developed at the current stage could not identify these self-reported conditions but only
helped classify arrhythmia due to the ECG patterns. From the aspect of ML modeling, the
sample data set could involve the measured ECG features and the reported symptoms in
the clinical records for the advanced data training process (e.g., let AFib’s features contain
the label of chest pain). The improved model could be more feasible in clinical application.

The modeling’s effectiveness can be improved if more useful features and eligible
samples of the various symptoms are classified. Currently, mobile ECG apps are restricted
in some countries. Therefore, the prototype design in this study contributed to a portal of
sensing application to connect the ECG sensors with biomedical signal processing for the
uHealth services.
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4.3. Comparison with Prior Work

In practice, the multiclass discrimination usually contains unbalanced and high-
dimensional data clusters. The previous studies suggested the concept of complexity
reduction in the SVM and NN-based modeling to improve convergence efficiency [49,50].
The simulation implied that the multiple labels of the APC, AFib, VPC, and VT versus NSR
could be reduced to the pairs of binary classes to achieve the model with reliable sensitivity
and specificity. Some prior works merged the similar-property symptoms in a class, e.g.,
{supraventricular tachycardia, atrial tachycardia, sinus tachycardia} and {atrial flutter, atrial
fibrillation} to increase the model’s recognition capability [21]. In addition, the standard
deviations of the HHT-based feature distribution, as shown in Table 1, revealed the overlaps
between the features of the various symptoms, which could cause ambiguous separation
between the multiple classes and lead to difficulty in discrimination. We then verified the
statistical significance in various features and compared their p-values with the overlapped
level. The statistical test performed p-value less than 0.001 for each feature with respect to
the five symptoms in the OVR mode. We further applied the test of multiple categories
for each feature corresponding to the symptom patterns in the OVO mode and showed
all p-values in Table 1. The patterns with p-values greater than 0.05 (i.e., non-significant
difference) implied poor recognitions evaluated by ROC data as shown in Table 3. The
test could approve the proper model including the feature patterns with significant differ-
ence. Therefore, we experienced that the physicians’ knowledge was necessary in clinics
to exclude the outliers and uncertain data to ensure the cleanup sample in the modeling.
For diagnosing assistance, the multiclass recognition modeling at the current stage can
distinguish hybrid patterns of the arrhythmia symptoms against the normal heart rhythms.

Many health service developers keep in customizing a user-friendly interface for com-
mercial application. The customization process due to the wearable device’s requirement
is a major challenge for popular home-use solutions. The ML model’s development is
still undergoing to improve the UHM services with appropriate interfaces for advanced
implementation. In the next phase, we will consider the deep learning methods with
pre-processing of diverse arrhythmia ECG signals in the time–frequency domain through
HHT to improve the developed programs’ predictability.

5. Conclusions

This study proposed a prototype of the self-developed UHMS with the ML model-
ing for AI computation to recognize arrhythmia ECG in uHealth services. The studied
arrhythmia symptoms mixed the premature pattern (i.e., APC and VPC) and the fibril-
rapid (i.e., AFib and VT) at the current stage. The MIT-BIH arrhythmia open database
was applied for the modeling. We observed the limited data points from the MIT-BIH
website’s records for the training and testing processes. The modeling retrieved the features
from the IMF through the EMD process based on the HHT algorithm. The HHT-based
features included the frequency and power following the MHS-area centroids of the first
three-order IMFs. Four ML models, including MLP, RF, SVM, and NB, were trained for
coupling features analysis. The ML models’ efficacy achieved the good AUCs of ROC by
separately recognizing the premature and fibril-rapid patterns of multiple symptoms. All
models could reach the perfect sensitivity for the pattern APC–VT but recognizing the
AFib–VPC and VPC–VT requires improvement. The suggestive models were engaged to
the UHMS platform “ECG4UHM” as the backend for tracking the arrhythmia symptoms
in the real-time UHM services. The development can be integrated with the intelligent
social-health system for the home-isolated cares in the future.
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AFib atrial fibrillation
APC atrial premature atrial complex
AUC area under the curve of receiver operating characteristics
HHT Hilbert–Huang transform
MHS marginal Hilbert spectrum
MLP multiple layer perceptron
NB naive Bayes
NSR normal sinus rhythm
RF random forest
ROC receiver operating characteristics
SVM support vector machine
VPC ventricular premature complex
VT ventricular tachycardia
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