A High-Resolution, Wide-Swath SAR Imaging System Based on Tandem SAR Satellites
Abstract
:1. Introduction
2. Imaging System Based on Tandem SAR Satellites
2.1. Working Mode of the First Satellite
2.2. Working Mode of the Second Satellite
2.3. Comparison of the Two Scanning Methods
3. Signal Model and Imaging Algorithm
3.1. Signal Model of the Sat-2
3.2. Minimum-Energy-Based Imaging Algorithm
3.2.1. Range Compression
3.2.2. Observation Vector Extraction
3.2.3. Observation Vector Extraction
3.2.4. Interpolation for Coarse Observation
3.2.5. Minimum-Energy-Based Estimation
4. Verification and Analysis
4.1. System Design Example and Imaging Performance
4.2. Verification of Real Airborne SAR Data
4.3. Analysis of the Subswath Number
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
- (1)
- Triangle inequality: for all .
- (2)
- Absolute homogeneity: for all and all scalar .
- (3)
- Positive definiteness: for all , and .
References
- An, D.; Huang, X.; Jin, T. Extended Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Data Focusing. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3595–3609. [Google Scholar] [CrossRef]
- Xu, W.; Deng, Y.; Huang, P. Full-Aperture SAR Data Focusing in the Spaceborne Squinted Sliding-Spotlight Mode. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4596–4607. [Google Scholar] [CrossRef]
- Sun, G.; Wu, Y.; Yang, J. Full-Aperture Focusing of Very High Resolution Spaceborne-Squinted Sliding Spotlight SAR Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3309–3321. [Google Scholar] [CrossRef]
- Krieger, G.; Gebert, N.; Moreira, A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing. IEEE Trans. Geosci. Remote Sens. 2008, 46, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Li, Y.; Dong, X. Performance Analysis of L-Band Geosynchronous SAR Imaging in the Presence of Ionospheric Scintillation. IEEE Trans. Geosci. Remote Sens. 2017, 55, 159–172. [Google Scholar] [CrossRef]
- Dong, X.; Quegan, S.; Yumiko, U.; Hu, C.; Zeng, T. Feasibility Study of C- and L-band SAR Time Series Data in Tracking Indonesian Plantation and Natural Forest Cover Changes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3692–3699. [Google Scholar] [CrossRef]
- Freeman, A.; Johnson, W.T.K.; Huneycutt, B. The “Myth” of the minimum SAR antenna area constraint. IEEE Trans. Geosci. Remote Sens. 2000, 38, 320–324. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, W.; Deng, Y.; Wang, R. Signal Reconstruction Algorithm for Azimuth Multichannel SAR System Based on a Multiobjective Optimization Model. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3881–3893. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Zhou, Y. Elevated Frequency Diversity Array: A Novel Approach to High Resolution and Wide Swath Imaging for Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Krieger, G.; Huber, S.; Villano, M. SIMO and MIMO System Architectures and Modes for High-Resolution Ultra-Wide-Swath SAR Imaging. In Proceedings of the EUSAR: European Conference on Synthetic Aperture Radar, Hamburg, Germany, 6–9 June 2016. [Google Scholar]
- Liu, B.; He, Y. Improved DBF Algorithm for Multichannel High-Resolution Wide-Swath SAR. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1209–1225. [Google Scholar] [CrossRef]
- Sun, L.; Yu, Z.; Li, C. A Minimum-Energy-Based Algorithm for Multichannel Reconstruction. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Xia, Z.; Zhao, Z.; Zhang, T. Wide-Swath SAR Based on Networking of Multiple Small Satellites for Maritime Applications. In Proceedings of the IET International Radar Conference, Chongqing, China, 4–6 November 2020. [Google Scholar]
- Krieger, G.; Moreira, A. Spaceborne bi- and multistatic SAR: Potential and challenges. IEE Proc. Radar Sonar Navig. 2006, 153, 184–198. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, H.; Hou, S. An Innovative Superpolyhedron (SP) Formation for Multistatic SAR (M-SAR) Interferometry. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10136–10150. [Google Scholar] [CrossRef]
- Krieger, G.; Zonno, M.; Mittermayer, J. MirrorSAR: A Fractionated Space Transponder Concept for the Implementation of Low-Cost Multistatic SAR Missions. In Proceedings of the Eusar: European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018. [Google Scholar]
- Chen, Y.; Zhao, Y.; Li, G. High-Resolution and Wide-Swath Monostatic SAR Imaging via Random Beam Scanning. In Proceedings of the 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, Hangzhou, China, 8–11 June 2020. [Google Scholar]
- Gebert, N.; Krieger, G.; Moreira, A. Multichannel Azimuth Processing in ScanSAR and TOPS Mode Operation. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2994–3008. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Qiu, X.; Hu, D. Medium-Earth-Orbit SAR Focusing Using Range Doppler Algorithm With Integrated Two-Step Azimuth Perturbation. IEEE Geosci. Remote Sens. Lett. 2015, 12, 626–630. [Google Scholar] [CrossRef]
- Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Boston, MA, USA, 2005. [Google Scholar]
- Lao, D.; Zhu, B.; Yu, S. An Improved SAR Imaging Algorithm Based on a Two-Dimension-Separated Algorithm. In Proceedings of the 2018 China International SAR Symposium (CISS), Shanghai, China, 10–12 October 2018. [Google Scholar]
- Li, D.; Lin, H.; Liu, H. Focus Improvement for High-Resolution Highly Squinted SAR Imaging Based on 2-D Spatial-Variant Linear and Quadratic RCMs Correction and Azimuth-Dependent Doppler Equalization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 168–183. [Google Scholar] [CrossRef]
- Papoulis, A. A new algorithm in spectral analysis and band-limited extrapolation. IEEE Trans. Circuits Syst. 1975, 22, 735–742. [Google Scholar] [CrossRef]
- Parker, J.A.; Kenyon, R.V.; Troxel, D.E. Comparison of Interpolating Methods for Image Resampling. IEEE Trans. Med. Imaging 1983, 2, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Luenberger, D.G. Optimization by Vector Space Methods; Wiley: New York, NY, USA, 1969. [Google Scholar]
- Potter, L.C.; Arun, K.S. Energy concentration in band-limited extrapolation. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 1027–1041. [Google Scholar] [CrossRef]
- Sahiner, B.; Yagle, A.E. A fast algorithm for backprojection with linear interpolation. IEEE Trans. Image Process. 1993, 2, 547–550. [Google Scholar] [CrossRef]
Processing Steps | Content |
---|---|
Step one | Obtains by range compression of the original echo. |
Step two | Extracts the observation vectors from |
Step three | For i = 1: End |
Step four | Output: |
Parameters | Value |
---|---|
Carrier frequency (GHz) | 9.6 |
Range bandwidth (MHz) | 100 |
Sampling frequency (MHz) | 120 |
Pulse width (µs) | 20 |
Orbital height (km) | 630 |
Platform velocity (m/s) | 7545 |
Resolution (m) | 3 |
Look Angle in the Zero Doppler Plane (°) | PRF (Hz) | Squint Angle (°) | Subswath Width (km) | |
---|---|---|---|---|
Subswath 1 | 32.01~34.41° | 2673 | 0° | 39.90 |
Subswath 2 | 29.79~32.19° | 2673 | 8.70° | 37.58 |
Subswath 3 | 27.51~29.91° | 2673 | 15.30° | 35.55 |
Subswath 4 | 25.23~27.63° | 2673 | 19.40° | 33.82 |
Subswath 5 | 22.91~25.31° | 2673 | 22.50° | 32.31 |
Subswath 6 | 20.55~22.95° | 2673 | 26.80° | 31.00 |
Burst Duration(s) | 3 dB Doppler Bandwidth (MHz) | |
---|---|---|
Subswath 1 | 0.077 | 2446 |
Subswath 2 | 0.075 | 2428 |
Subswath 3 | 0.074 | 2323 |
Subswath 4 | 0.072 | 2231 |
Subswath 5 | 0.070 | 2148 |
Subswath 6 | 0.069 | 2032 |
BP Algorithm | L1 Algorithm | Proposed Algorithm | |
---|---|---|---|
Azimuth resolution (m) | 2.94 | 2.73 | 2.73 |
PSLR (dB) | −16.96 | −20.55 | −22.62 |
ISLR (dB) | −9.64 | −15.16 | −15.74 |
SSIM | 0.61 | 0.80 | 0.81 |
Parameters | Value |
---|---|
Carrier frequency (GHz) | 35 |
Range bandwidth (MHz) | 480 |
Sampling frequency (MHz) | 500 |
Pulse width (µs) | 25 |
Slant range (km) | 27.21 |
Velocity (m/s) | 90.86 |
Doppler bandwidth (MHz) | 600 |
Duration time (s) | 15 |
Reference | Coarse Observation | L1 Algorithm | Proposed Algorithm | |
---|---|---|---|---|
Azimuth resolution (m) | 0.6 | 3.6 | 0.6 | 0.6 |
PSLR (dB) | −12.27 | −11.77 | −10.47 | −17.84 |
ISLR (dB) | −7.37 | −9.35 | −7.97 | −17.13 |
SSIM | 1 | 0.89 | 0.87 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Li, C. A High-Resolution, Wide-Swath SAR Imaging System Based on Tandem SAR Satellites. Sensors 2022, 22, 7747. https://doi.org/10.3390/s22207747
Sun L, Li C. A High-Resolution, Wide-Swath SAR Imaging System Based on Tandem SAR Satellites. Sensors. 2022; 22(20):7747. https://doi.org/10.3390/s22207747
Chicago/Turabian StyleSun, Liwei, and Chunsheng Li. 2022. "A High-Resolution, Wide-Swath SAR Imaging System Based on Tandem SAR Satellites" Sensors 22, no. 20: 7747. https://doi.org/10.3390/s22207747
APA StyleSun, L., & Li, C. (2022). A High-Resolution, Wide-Swath SAR Imaging System Based on Tandem SAR Satellites. Sensors, 22(20), 7747. https://doi.org/10.3390/s22207747