Optical Properties of a Tapered Optical Fiber Coated with Alkanes Doped with Fe3O4 Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Technology
3. Results
4. Conclusions
- -
- It is possible to design sensors/devices working in a wide range of 500–2000 nm at room temperature for different wavelengths;
- -
- A single-mode fiber should be applied with the cut-off wavelength correlated with this wavelength to prevent multi-mode operation and increase the dynamic range;
- -
- It is possible to manufacture in-line optical fiber sensors of the magnetic field with a high dynamic range of losses (of) about 15 dBm @ 1550 nm;
- -
- The mixture used has well-chosen optical parameters; it does not make large losses to the structure at room temperature;
- -
- By using the C16 + NPs Fe3O4 mixture and controlling its position in different TOF regions, there is the possibility to influence or change polarization parameters, i.e., ellipticity or azimuth;
- -
- Transmission changes and losses may be caused by the fact that some NPs may be deposited on the taper during the liquid shift;
- -
- The best and the biggest changes for a 1550 nm wavelength were obtained. For shorter waves, the changes were smaller which is connected to a smaller penetration depth, and thus the light is more trapped in the TOF structure; thus, there is less influence of external factors on the propagating light beam.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mauricio, M.D.; Guerra-Ojeda, S.; Marchio, P.; Valles, S.L.; Aldasoro, M.; Escribano-Lopez, I.; Herance, J.R.; Rocha, M.; Vila, M.; Victo, V.M. Nanoparticles in medicine: A focus on vascular oxidative stress. Oxidative Med. Cell. Longev. 2018, 2018, 6231482. [Google Scholar] [CrossRef] [Green Version]
- Ahamed, M.S.; AlSalhi, M.K.J.; Siddiqui, M. Silver nanoparticle applications and human health. Clin. Chim. Acta 2010, 411, 1841–1848. [Google Scholar] [CrossRef]
- Lohse, S.E.; Murphy, C.J. Applications of colloidal inorganic nanoparticles: From medicine to energy. J. Am. Chem. Soc. 2012, 134, 15607–15620. [Google Scholar] [CrossRef] [PubMed]
- Kamat, P.V. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Accounts Chem. Res. 2012, 45, 1906–1915. [Google Scholar] [CrossRef] [PubMed]
- Stark, W.J.; Stoessel, P.R.; Wohlleben, W.; Hafner, A. Industrial applications of nanoparticles. Chem. Soc. Rev. 2015, 44, 5793–5805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega-Mendoza, J.G.; Padilla-Vivanco, A.; Toxqui-Quitl, C.; Zaca-Morán, P.; Villegas-Hernández, D.; Chávez, F. Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end. Sensors 2014, 14, 18701–18710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuertes, V.; Grégoire, N.; Labranche, P.; Gagnon, S.; Wang, R.; Ledemi, Y.; LaRochelle, S.; Messaddeq, Y. Engineering nanoparticle features to tune Rayleigh scattering in nanoparticles-doped optical fibers. Sci. Rep. 2021, 11, 9116. [Google Scholar] [CrossRef] [PubMed]
- Klantsataya, E.; Jia, P.; Ebendorff-Heidepriem, H.; Monro, T.; François, A. Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends. Sensors 2016, 17, 12. [Google Scholar] [CrossRef] [Green Version]
- Korposh, S.; James, S.; Lee, S.; Tatam, R. Tapered optical fibre sensors: Current trends and future perspectives. Sensors 2019, 19, 2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Zhou, W.; Zeng, S. Optical micro/nanofiber-based localized surface plasmon resonance biosensors: Fiber diameter dependence. Sensors 2018, 18, 3295. [Google Scholar] [CrossRef] [PubMed]
- Urrutia, A.; Goicoechea, J.; Arregui, F.J. Optical fiber sensors based on nanoparticle-embedded coatings. J. Sens. 2015, 2015, 805053. [Google Scholar] [CrossRef] [Green Version]
- Pawar, D.; Kale, S.N. A review on nanomaterial-modified optical fiber sensors for gases, vapors and ions. Mikrochim. Acta 2019, 186, 253. [Google Scholar] [CrossRef]
- Socorro, A.B.; Rivero, P.J.; Hernaez, M.; Goicoechea, J.; Matias, I.R.; Arregui, F.J. Optical fiber pH sensor based on gold nanoparticles into polymeric coatings. Smart Sens. Actuators MEMS VII Cyber Phys. Syst. 2015, 95171, 480–485. [Google Scholar] [CrossRef]
- Wang, S.; Feng, M.; Wu, S.; Wang, Q.; Zhang, L. Highly sensitive temperature sensor based on gain competition mechanism using graphene coated microfiber. IEEE Photon. J. 2018, 10, 6802008. [Google Scholar] [CrossRef]
- Lu, H.; Tian, Z.; Yu, H.; Yang, B.; Jing, G.; Liao, G.; Zhang, J.; Yu, J.; Tang, J.; Luo, Y.; et al. Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing. Opt. Express 2014, 22, 32502–32508. [Google Scholar] [CrossRef] [PubMed]
- Corres, J.M.; Arregui, F.J.; Matías, I.R. Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings. Sens. Actuators B Chem. 2007, 122, 442–449. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Ibrahim, R.K.; Naimee, K.A.; Naje, A.N.; Ibrahim, O.A.; Majeed, K.A. Enhance the performance of liquid crystal as an optical switch by doping CdS quantum dots. J. Phys. Conf. Ser. 2018, 1003, 012093. [Google Scholar] [CrossRef]
- Vahed, H.; Ghazanfari, E. Sensitivity enhancement of a nanocomposite-based Fiber optics sensor with platinum nanoparticles. Opt. Appl. 2019, XLIX, 65–74. [Google Scholar] [CrossRef]
- Aneesh, R.; Khijwania, S.K. Zinc oxide nanoparticle based optical fiber humidity sensor having linear response throughout a large dynamic range. Appl. Opt. 2011, 50, 5310–5314. [Google Scholar] [CrossRef] [PubMed]
- Blanc, W.; Dussardier, B. Formation and applications of nanoparticles in silica optical fibers. J. Opt. 2015, 45, 247–254. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, Y.; Tong, L. Micro-/nanofiber optics: Merging photonics and material science on nanoscale for advanced sensing technology. iScience 2020, 23, 100810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Wang, Z.; Qi, Y.; Jin, W.; Ren, W. Improved evanescent-wave quartz-enhanced photoacoustic CO sensor using an optical fiber taper. Sens. Actuators B Chem. 2017, 248, 1023–1028. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, W.; Wu, N.; Zou, X.; Wang, X. Tapered optical fiber sensor for label-free detection of biomolecules. Sensors 2011, 11, 3780–3790. [Google Scholar] [CrossRef] [Green Version]
- Stasiewicz, K.A.; Musial, J. Threshold temperature optical fibre sensors. Opt. Fiber Technol. 2016, 32, 111–118. [Google Scholar] [CrossRef]
- Moś, J.E.; Stasiewicz, K.A.; Matras-Postołek, K.; Jaroszewicz, L.R. Thermo-optical switching effect based on a tapered optical fiber and higher alkanes doped with ZnS: Mn. Materials 2020, 13, 5044. [Google Scholar] [CrossRef]
- Stasiewicz, K.A.; Jakubowska, I.; Korec, J.; Matras-Postołek, K. Modification of higher alkanes by nanoparticles to control light propagation in tapered fibers. Micromachines 2020, 11, 1006. [Google Scholar] [CrossRef] [PubMed]
- Freund, M.; Csikds, R.; Keszthelyi, S.; Mozes, G. Optical Properties, in Paraffin Products Properties, Technologies, Applications; Elsevier: New York, NY, USA, 1982; pp. 102–107. [Google Scholar]
- Said, A.; Salah, A.; Fattah, G.A. Enhanced thermo-optical switching of paraffin-wax composite spots under laser heating. Materials 2017, 10, 525. [Google Scholar] [CrossRef] [Green Version]
- Melcer, A.; Klugmann-Radziemska, E.; Lewandowski, W. Phase change materials. Prop. Classif. Adv. Disadv. Przemysł Chem. 2012, 91, 1000–1011. [Google Scholar]
- Sader, J.E. Method for analysis of complex refractive-index-profile fibers. Opt. Lett. 1990, 15, 105–107. [Google Scholar] [CrossRef]
- Vakhshouri, A.R. Paraffin as phase change material. In Paraffin—An Overview; IntechOpen: London, UK, 2020; pp. 1–23. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Jiang, J.; Zhang, X.; Liu, K.; Wang, S.; Chen, W.; Liu, T. Fiber optic magnetic field sensor based on magnetic nanoparticle assembly in microcapillary ring resonator. IEEE Photon. J. 2017, 9, 7105609. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, B.; Zhang, K.; Liu, Y.; Zhang, H. Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid. Appl. Phys. Lett. 2011, 98, 021103. [Google Scholar] [CrossRef]
- Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Hwang, N.-M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895. [Google Scholar] [CrossRef]
- Patsula, V.; Kosinová, L.; Lovrić, M.; Hamzić, L.F.; Rabyk, M.; Konefal, R.; Paruzel, A.; Šlouf, M.; Herynek, V.; Gajović, S.; et al. Superparamagnetic Fe3O4 nanoparticles: Synthesis by thermal decomposition of iron(III) glucuronate and application in magnetic resonance imaging. ACS Appl. Mater. Interfaces 2016, 8, 7238–7247. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The scherrer equation versus the ’debye-scherrer equation’. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef]
- Stasiewicz, K.; Krajewski, R.; Świłło, R.; Jaroszewicz, L.; Kujawińska, M. Influence of tapering process on changes of optical fiber refractive index distribution along a structure. Opto Electron. Rev. 2010, 18, 102–109. [Google Scholar] [CrossRef]
- Lu, S.-Y.; Chipman, R.A. Interpretation of mueller matrices based on polar decomposition. J. Opt. Soc. Am. A 1996, 13, 1106–1113. [Google Scholar] [CrossRef]
- Marć, P.; Stasiewicz, K.A.; Korec, J.; Jaroszewicz, L.R.; Kula, P. Polarization properties of nematic liquid crystal cell with tapered optical fiber. Opto Electron. Rev. 2019, 27, 321–328. [Google Scholar] [CrossRef]
- Marć, P.; Bennis, N.; Spadło, A.; Kalbarczyk, A.; Węgłowski, R.; Garbat, K.; Jaroszewicz, L.R. Monochromatic depolarizer based on liquid crystal. Crystals 2019, 9, 387. [Google Scholar] [CrossRef]
Material | RI (589 nm, 20 °C) | Phase Transition Temperature (°C) |
---|---|---|
C16 n-Hexadekan (C16H34) | 1.4345 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasiewicz, K.A.; Jakubowska, I.; Moś, J.E.; Marć, P.; Paczesny, J.; Zbonikowski, R.; Jaroszewicz, L.R. Optical Properties of a Tapered Optical Fiber Coated with Alkanes Doped with Fe3O4 Nanoparticles. Sensors 2022, 22, 7801. https://doi.org/10.3390/s22207801
Stasiewicz KA, Jakubowska I, Moś JE, Marć P, Paczesny J, Zbonikowski R, Jaroszewicz LR. Optical Properties of a Tapered Optical Fiber Coated with Alkanes Doped with Fe3O4 Nanoparticles. Sensors. 2022; 22(20):7801. https://doi.org/10.3390/s22207801
Chicago/Turabian StyleStasiewicz, Karol A., Iwona Jakubowska, Joanna E. Moś, Paweł Marć, Jan Paczesny, Rafał Zbonikowski, and Leszek R. Jaroszewicz. 2022. "Optical Properties of a Tapered Optical Fiber Coated with Alkanes Doped with Fe3O4 Nanoparticles" Sensors 22, no. 20: 7801. https://doi.org/10.3390/s22207801
APA StyleStasiewicz, K. A., Jakubowska, I., Moś, J. E., Marć, P., Paczesny, J., Zbonikowski, R., & Jaroszewicz, L. R. (2022). Optical Properties of a Tapered Optical Fiber Coated with Alkanes Doped with Fe3O4 Nanoparticles. Sensors, 22(20), 7801. https://doi.org/10.3390/s22207801