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Abstract: In this work, new results are presented on the implementation of predictive diagnosis
techniques on isolated photovoltaic (PV) systems and installations. The novelties introduced in
this research focus on the additional advantages obtained from the point of view of predictive
diagnosis of faults caused by partial shading in isolated PV installations using maximum power
point tracking (MPPT) regulators. MPPT regulators are comparatively more appropriate than pulse
width modulation (PWM) solar regulators in order to implement fault diagnosis systems. MPPT
regulators have a physical separation between the electrical parameters belonging to the part of the
solar panel with respect to the batteries part. Therefore, these electrical parameters can be used to
obtain early predictive symptoms of the effects of partial shading with a greater level of observation
and sensitivity. Additionally, modifications are proposed in the PV system assembly to obtain greater
homogeneity of all the panels regarding the solar irradiance reception angle.

Keywords: solar panel; predictive maintenance; fault diagnosis; photocell; partial shading degradation;
hotspots

1. Introduction

The appearance of hotspots in a photovoltaic installation (PVI) is a problem of great
importance because it affects not only the production, but also the useful life of installation.
The occurrence of hotspots produces premature degradation and aging of the photovoltaic
modules (PVMs). This fact is worrying if one considers that PVMs are normally designed to
function properly for more than 20 years. Photovoltaic hotspots, a well-known phenomenon
for more than 50 years [1], still persist today [2,3]. Frequently, the appearance of hotspots
occurs when a panel is partially exposed to shaded areas, and consequently, the affected cell
or group of cells operates in reverse polarization conditions, dissipating energy instead of
generating it. This condition favors the appearance of hotspots at very high temperatures,
gradually degrading both the generated power and the components of the encapsulation
material of the photovoltaic module [4].

One of the reasons for the greater frequency of the appearance of hotspots has been
the tendency of PVM manufacturers to use wafers that are thinner but less resistant to the
appearance of microcracks, with a greater propensity to develop them in the manufacturing,
transportation, and even installation phases [5,6].

Reports from the UK have highlighted annual power losses of 18.9% associated with
shadowing and persistent inverter failures [7]. In addition, in the “1000 rooftop PV systems”
program implemented in Germany, it was recorded that the operation of the 41% of the
installed PV systems had been affected by shading, with energy losses of the order of
10% [8]. The same results were found in a Japanese field test program [9]. In Spain, an
investigation into hotspots in two large grid-connected PV plants was presented in [10].

In [11], a specific method based on the online analysis of the time-series data of random
and seasonal I–V parameters was proposed for the comparative trend analyses of solar
power generation focused on isolated installations using PWM charge regulators
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The main purpose of a PV charge regulator is to ensure efficient and safe charging and
discharging of batteries in order to prolong their useful life. PWM-type solar regulators help
regulate the voltage coming from the photovoltaic panels to protect the system’s batteries
from possible overcharges. When a solar installation has a PWM regulator connected, the
regulator controls the battery charge by constantly checking the current state of the battery
to adjust the delivery of the correct amount of charge.

For this purpose, a PWM solar regulator emits on/off pulses to control the energy
transfer. It also checks the battery status to determine the duration of the pulses and their
frequency. That is, the PWM regulator essentially operates as a fast on/off switch. When
the battery is nearly discharged, the pulses will be wide and continuous, while when the
load increases, the pulses will be proportionally reduced or filtered (Figure 1).
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Figure 1. PWM solar charge regulators.

PWM and MPPT regulators are two different types of solar charge controllers used
to manage the electrical current between the battery, the solar panel, and the load. Both
are commonly used in installations isolated from the general electrical network. However,
the choice between a PWM regulator and an MPPT regulator depends on a diverse set of
additional considerations such as the type of panels that are going to be used. If 60-cell
panels are used or if the voltage of the photovoltaic field is higher than the voltage of the
battery bank, an MPPT regulator is necessary. For small installations that deal with the
lighting of a small house and that supply power to a few appliances, the use of a PWM
regulator can be a cheaper solution. However, if the photovoltaic installation must provide
a lot of power, the best option is to use an MPPT controller.

MPPT solar regulators reduce losses because they always work at the most appropriate
voltage and are able to extract the maximum power and obtain a greater performance from
photovoltaic modules (Figure 2). Additionally, they allow the use of solar panels that
cannot be used with PWM regulators due to issues of compatibility between the voltage of
the panels and the batteries. MPPT solar regulators also allow the addition of panels in
series with a total voltage higher than that of the battery bank, which avoids the typical
losses due to low voltage and high DC current.

Figure 2. Maximum power point curve.
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The importance of the intersection point of the I-V values comes from the fact that
the power reached is lower when the voltage is too high or too low. In other words, the
point of maximum power is reached when the area of the lower square of the curves is the
maximum.

In an initial analysis, MPPT regulators may show some disadvantages due to their
higher initial cost, but if analyzed from a broader point of view, they have a series of
additional characteristics that make them more convenient for certain applications. On
the one hand, they usually house more complex and intelligent algorithms conducive to
prolonging the useful life of the batteries. MPPT regulators are also more convenient when
it comes to implementing predictive diagnosis techniques using the parametric analysis of
the electrical power generated in the solar panel part.

In addition to a protection diode, an MPPT regulator, also called a solar maximizer, has
a DC–DC voltage converter and a maximum power point tracker (Figure 3). This allows it
to perform the following functions:

• The DC–DC voltage converter (from high voltage in the photovoltaic field to low
voltage in the batteries) allows operation at different voltages in the photovoltaic field
and in the batteries.

• The maximum power point tracker (MPPT) adapts the operating voltage in the photo-
voltaic field to the one that provides the maximum power.
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Therefore, as in PWM regulators, in an MPPT regulator the energy that enters and
leaves the regulator is the same but the voltage and current are different on each side,
which increases the voltage of the solar panel and increases solar production by more than
30% compared to PWM charge regulators.

By being able to operate at higher voltages in the photovoltaic field, the energy losses
caused by low voltages are reduced (since the losses are proportional to the current—the
lower the current, the lower the losses), making MPPT regulators especially suitable for
high photovoltaic power because they seek to generate the maximum energy.

To reduce possible losses that can occur in solar panels due to the phenomenon
of partial shading, shade or power optimizers are used; these devices are part of the
photovoltaic installation that help to maximize efficiency. The optimizer, unlike the inverter,
has to be placed in each panel so that it can work individually and optimize the maximum
power point separately. It does not transform the energy, but instead maximizes the direct
current before redirecting it to the inverter [12,13].

The MPPT charge regulator is also known as a maximizer because its operation takes
advantage of the maximum production of the solar panel, causing it to operate at its
maximum point to charge the battery. It is the best option to obtain the best performance
for PVMs and more than compensates for its possible extra cost. It can work with panels
and batteries with the same nominal voltage but its operation is more efficient if the voltage
of the photovoltaic field is increased [14,15].

In short, the advantages of using MPPT charge controllers are:

• Better performance than PWMs (10 to 40%).
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• Better performance when there is partial shading.
• Better performance in case of low solar radiation.
• Any photovoltaic panel can be used.
• Lower voltage drops in installations in which the panels are far from the regulator

when working with high DC voltage (250 V).
• Lower installation cost and lower wiring losses. By installing more panels in series, the

number of parallels, the cable section, and the number of protections can be reduced.

On the other hand, if MPPT regulators are analyzed from the point of view of the
possibilities of applying predictive diagnosis techniques, a very important issue to consider
is the availability of parameters that MPPT regulators offer to carry out functions aimed
at predictive diagnosis, since the electrical parameters I-V-P are perfectly separated in the
part of the solar panel and in the part of the battery. Many of the most common faults and
the cause of degradation in solar panels are manifested through a reduction in the power
generated in the solar panel part. For this reason, when using MTTP regulators, supervision
and parametric observation are carried out in the right place, and more precisely because
the solar panel is the element susceptible to developing faults due to partial shading [11,16].
On the contrary, PWM regulators could mask and delay the detection of possible symptoms
or small incipient faults that are developing in the solar panel part.

The predictive diagnosis method is applied specifically to avoid the phenomenon
of degradation that leads to the development of hotspots, the appearance of which is
random in nature and is caused by any type of occasional shading due to falling leaves,
accumulation of dirt, cloudy conditions, bird droppings, manufacturing defects, etc., on
the active face of the solar panel.

In addition, with the aim of achieving early isolation after the appearance of the pre-
dictive symptom of the possible fault, a decentralized regulation structure has been applied
that was inspired by the design of distributed control systems and by the architecture
adopted by the maximizing devices. The objective was to avoid the limitations that occur
in the diagnosis of faults in structures centralized in a single regulator/inverter that make it
difficult to detect and isolate faults in specific solar panels early. The decentralized structure
also provides the advantage that in the worst case, if the fault occurs in the regulator, it will
only affect that part controlled by the regulator. Nevertheless, in this case, it is advisable to
ensure, due to its decentralized structure, the maximum functional synchronization of all
MPPT charge regulators participating in the photovoltaic system.

This manuscript is organized as follows: In Section 2, sensors and devices used in the
supervision of photovoltaic electrical energy are presented. The photovoltaic generation
system used and the tests carried out are described in detail. The proposed method for PVI
supervision and predictive diagnosis to avoid failure occurrences is explained. In Section 3,
the results of the experiments are presented. In Section 4 contains a discussion of results as
well as some additional considerations and findings obtained from the experimental trials.
Finally, in Section 5, some conclusions regarding the advantages of the proposed method
for fault prediction are drawn.

2. Materials and Methods
2.1. MPPT Regulator

The MPPT regulator is a type of solar regulator that incorporates a more complex
technology than PWM regulators. Its operation is based on the search for the voltage point
at which the panel offers the maximum possible power and operating in that condition until
there is a change caused by partial shading, an increase in cloud cover, or temperature. Its
efficiency is around 95% in terms of conversion while assuming a power gain that can reach
45% in winter and 15% in summer. Its main function is to correctly charge the batteries with
the energy that comes from the solar panels, constantly control the state of the battery, and
regulate the intensity of the charge to extend its useful life. Depending on the percentage
of charge of the batteries, if it is below 95%, it will allow the passage of all the energy
generated by the solar panels so that they are charged as quickly as possible. If the batteries



Sensors 2022, 22, 7819 5 of 34

are between 95% and 99% of their charging capacity (float state), the passage of energy will
be very controlled to allow maximum charging. If the batteries are fully charged, it will
interrupt the power supply to protect them from overheating and overloading. Therefore,
the level of charge that the solar regulators must distribute will depend on the initial state
of charge of the battery bank. With a solar charge regulator, the battery will always be
protected against overloads and the charging is carried out when it is most convenient at
any given time.

The solar charger used in this work (Figure 4) used intelligent ultra-fast maximum
power point tracking algorithms, which was especially beneficial when the intensity of
sunlight was constantly changing, such as in cloudy conditions. Other conventional
regulators, even though they use MPPT, usually select a local MPP that is not necessarily
the optimal MPP. This type of ultra-fast MPPT controller collects 30% more energy than solar
chargers with a PWM controller and up to 10% more than slower MPPT controllers [17].
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Figure 4. Victron BlueSolar MPPT Charge Controller.

The solar charger applied three charging phases (Figure 5):

• Initial charge: During the initial charge phase, the solar charger provided the maximum
charge current to rapidly charge the batteries. During this phase, the battery voltage
increased slowly. Once the battery voltage reached the set absorption voltage, the
initial charging phase stopped and the absorption phase began.

• Absorption: During the absorption phase, the solar charger switched to constant
voltage mode. The current flowing to the battery was gradually reduced. Once the
current fell below 1A (tail current), the absorption phase stopped and the float phase
began. When only surface discharges occurred, the absorption time was short. This
prevented overcharging of the battery. After a deep discharge, the absorption time
was automatically increased to ensure that the battery was fully charged.

• Float: During the float phase, the voltage was reduced and the batteries were fully
charged.
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Figure 5. Batteries’ three-phase charge process.

The Victron Connect app allowed us to select from eight preset charging algorithms.
The charging algorithm could also be fully programmed. The charging voltages, the
duration of the phases, and the charging current could be adapted.

Some types of lead–acid batteries require periodic equalization charging. During
equalization, the charging voltage will rise above normal charging voltages to balance the
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cells. If equalization charging is required, it can be enabled using applications such as
Victron Connect.

The absorption and float charge voltages were adjusted according to the battery
temperature, which is why a specific temperature sensor was required. Alternatively,
the internal temperature of the solar charger could be used, which was necessary when
charging lead–acid batteries in hot or cold weather conditions. Temperature compensation
could be enabled or disabled in the solar charger settings. The amount of compensation
could be adjusted by means of the compensation coefficient (mV/◦C).

In cases in which greater accuracy is required, the use of an external battery tempera-
ture sensor should be considered. The temperature compensation range was 6 ◦C to 40 ◦C
(39 ◦F to 104 ◦F). The solar controller’s internal temperature sensor was also used to detect
if the solar charger had overheated. Ideally, a wireless battery voltage and temperature
sensor should be considered that can be used in a complementary manner with the solar
charger with the aim of compensating to improve charging efficiency and extend the life of
lead–acid batteries. It also performs charging voltage compensation by increasing it in case
there is a voltage drop across the battery cables when charging with a high current.

2.2. Synchronization of MPPT Charge Controllers with Cerbo GX

The Cerbo GX is a general control device for a photovoltaic system (Figure 6). The
other components of the system such as solar regulators, inverters/chargers, supervision
and monitoring devices, and batteries were connected to the Cerbo GX, which guaranteed
the synchronized operation of the entire installation. The Cerbo GX can act as a passive
element and also as an active element through which a maximum charge current of the
entire network of charge controllers can be configured, such as the one used in this work. In
case such a function was needed, the distributed current and voltage control (DVCC) [18]
functions could be used. Additionally, the device allows firmware updates and configu-
ration modifications remotely from anywhere using an Internet connection and through
the Victron Remote Management portal. Cerbo GX is among the GX devices, which are
modern tracking solutions from Victron running on the Venus OS operating system.
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Figure 6. Cerbo GX Controller.

To ensure synchronization of the charge controllers, the Cerbo GX controller could be
used in conjunction with four identically configured Smart Solar charge controllers. One
possible configuration was to use a Victron Networking VE Smart network to charge the
battery banks, which fulfilled the same mission as a single higher-power regulator. The
decentralized solar chargers were synchronized using the same charging algorithm between
them without the need for additional hardware and performed the bulk, absorption, and
float charge state changes synchronously. Each charge regulator could manage its own
output current, which depended mainly on the output of each photovoltaic field, the
resistance of the cable, and the maximum output current configured in the charger, but
sometimes it was convenient to configure a maximum load current of the entire network.
In case this function was needed, the distributed current and voltage control functions
(DVCC) [18] could be used. With this objective in this work, a Cerbo GX device was used
(Figure 7).
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There are certain types of systems in which synchronous charging is not necessary.
This occurs in energy storage systems (ESSs) with managed batteries and in ESSs with
unmanaged batteries that contain an inverter/charger that controls all of the solar chargers.

Two other alternative configurations for the synchronization of the chargers could
be used:

• Connecting and synchronizing them through the VE Can inputs of the Cerbo GX. The
charge controllers could be connected in series or as a daisy chain.

• Using a single USB input from Cerbo by using a powered USB hub connected to
a controller such as a Cerbo GX so there was no need to pair them on a VE Smart
network, which freed up other inputs that could be used for additional devices should
system expansion be required (Figure 8).
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The synchronization of the chargers was carried out through a type of primary–
secondary system. The algorithm chose a primary charger among the set of existing solar
chargers in the system, and that primary charger was the one that dictated the charging
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algorithm. However, all of the solar chargers that belonged to the same network had
to be configured for the same type of batteries by the designer [19]. Then the primary
will ensure that all the chargers are in the same state of charge and at the same voltage
setpoint. As mentioned above, the battery-charging current was not controlled by the
primary charger, but by each of the chargers individually. At the start of the day, the
primary charger measured the battery voltage before any of the other chargers on the
network began charging (to find the idle voltage of the battery). This information was
used to decide what the total absorption time should be for some types of batteries. The
idle voltage of the battery, as well as the total absorption time and the time spent in the
current state of charge, was shared with the other chargers. That information was important
because it allowed the chargers to resume the charging algorithm if for some reason the
primary charger stopped charging (i.e., the sun went down, the charger failed, the charger
lost contact with the grid, etc.).

In the absence of a specific battery current sensor, the network chargers combined
their output current to estimate a better battery-charging current. This improved the
accuracy of the tail current setting, a feature intended to finish the charging cycle sooner if
necessary. In our system, to guarantee the synchronized operation of the charge regulators,
a StarTech.com model [20] was used (Figure 9).
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Figure 9. StarTech.com port hub.

The objective of the Victron Connect App was to control, manage, configure, monitor,
and update the software of the devices that were connected to it. We could access all
available equipment parameters for easy and intuitive management to obtain real-time
information as well as real-time and historical data from any Victron product via Bluetooth,
USB, or WiFi/LAN/Internet through the GX device. Victron Connect works on iOS or
Android phones and Windows or MacOS X laptops through an intuitive and simple
interface [19,21]. To guarantee and configure the synchronized operation of the regulators
with the Cerbo GX, the distributed current and voltage control (DVCC) functions were
used (Figures 10–12).
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Figure 11. VRN online portal.
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2.3. PV System Installation

The PVM chosen to carry out the experimental tests was from the Ecosolar company
and had the characteristics shown in Table 1. It was a monocrystalline flexible panel. This
option was chosen mainly because of its weight, adaptability to curved surfaces, and
Wp/surface ratio.

Table 1. PVM technical characteristics.

Peak Power (Pmax) (W) 160 1

Production tolerance (%) ±3
Maximum power current (Imp) (A) 8.88
Maximum power voltage (Vmp) (V) 18.0

Short circuit current (Isc) (A) 9.59
Open circuit voltage (Voc) (V) 21.6

Weight (Kg) 2.7
Dimensions (mm) 670 × 1510 × 3

Maximum system voltage (VDC) 500
Cell technology Type Monocrys

Cell brand Name Ecosolar
1 All technical data in standard test conditions. AM = 1.5 E = 1000W/m2 Tc = 25 ◦C.

Four PVMs of the type and model described above were used in this experimental
study. The four isolated panels were each connected in parallel through MPPT charge
regulators. The outputs were connected to a common connection that fed a system of 12 V
service batteries with a total load capacity of 750 Ah. Figure 13 shows the experimental test
bench with the data acquisition system and associated sensor devices.
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2.4. Diagnostic Algorithm

From the point of view of statistical process control (SPC) techniques, an industrial
process is subject to a series of random factors that make it impossible for two production
processes to work exactly the same. In the case of solar panels, even in initial conditions
of use and immediately after being purchased from the manufacturer, they may present
small differences in their performance; that is, they can present a certain variability in
their operation even though they are being used under equal conditions. Therefore, the
following fault causes were considered:

• Natural, random, or unassignable causes: due to chance, these were not identifiable
and they could not be reduced or eliminated. They produced small variations.

• Assignable causes: identifiable and had to be eliminated. They produced large varia-
tions.
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If the process is operating in such a way that there are small oscillations of all these
factors but in such a way that none of them has a predominant effect over the others, then by
virtue of the central limit theorem (CLT), it is probable that the quality characteristic of the
manufactured product is distributed according to a normal law. The central limit theorem
establishes that if a random variable is obtained as a sum of many independent causes
with each of them being of little importance with respect to the set, then its distribution is
asymptotically normal [22,23].

The fault diagnosis algorithm developed in this work was based on the concept of
comparative trending analysis [24,25] of time series affected by seasonal and random com-
ponents. The objective was to observe whether the quantitative values of the electrical
parameter of the electrical power generated by each one of the sets of solar panels of the
photovoltaic system were within a certain power generation range of small variability of a
random nature, or in another case, if in any of the series there was a greater comparative
deviation that was due to the occurrence of a specific assignable cause. In [26–28], tech-
niques were used specifically for fault detection and diagnosis of photovoltaic systems
based on statistical monitoring approaches; in [29], real-time fault detection in PV systems
under MPPT was also applied.

Among the main assignable causes that produce a greater deviation are the partial
shading phenomena that usually occur on one or more cells of a solar panel. The working
hypothesis used for a small isolated photovoltaic system was that the disturbances derived
from the differences in solar irradiance, irradiance plane, ambient temperature, wind
intensity, and humidity would produce small energy-production differences between the
panels. Therefore, these differences were random and not due to assignable causes such as
reductions due to the shading phenomenon in the solar panels. For this reason, to carry
out the comparative analysis, the standard element represented by the maximum value of
the quantitative values systematically obtained at each instant of synchronized sampling
obtained from each of the intervening series was used. The application of this algorithm
in [11] was based on the hypothesis that the possibility that all the panels were partially
shaded at the same time was very unlikely.

In this work, the algorithm for predictive diagnosis used to establish the predictor
parameter was adapted to the most convenient observable and accessible parameter when
using MPPT regulators.

The predictive diagnosis algorithm was based on the early detection of uncorrelated
point deviations at each sampling event over the data series of the generated input power
PSPi to each MPPT.

The nature of deviations likely to be produced by the effects of the increasing degree
of shading correlated with decreasing power deviations can be:

(a) TPD (total power decrease) due to the total activation of the bypass diodes;
(b) PPD (power percent decrease) due to quantized partial activation of bypass diodes;
(c) MTVPS (minimum threshold value of the predictive symptom) of PSPi downward

deviation for alert declaration observed during the application of the inductive shading
method. This type of shading, which does not activate the bypass diodes, also does not
prevent the degradation phenomenon. Consequently, it is the one that introduces the worst
conditions regarding the degradation mechanism that continues to develop latently.

The behavior of the time series of the quantitative PSPi values under normal conditions
of power generation without shading showed a great correlation. In some cases, some of
the series showed small or punctual deviations of a random nature individually, but the
deviations did not persist. Partial shading caused constant and persistent comparative PSPi
deviations up to 12 W. This could be used as the predictive symptom for PS that signified
that the shading phenomenon was taking place.

Therefore, the predictive algorithm for each of the point value samples applied the
following search process:

Detect the PSPi values of the set of measures in the current sample. Consider (PSPit)
N
t=1;

(PSPt : t = 1, . . . , N), where PSPit is the series sample observation number t (1 ≤ t ≤ N) for
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PVM number i for i ∈ {1,2, . . . , k} and N is the number of sample observations in the entire
series (the length of the series). To apply comparative deviation values analysis in the same
sampling time t, a set with the synchronized sampling t series power values of the k solar
panels (SSCV) such as SSCV = {PSP1t,PSP2t,...,PSPkt} is needed. The N observations can be
collected in a column vector SSCV = [PSP1t,PSP2t,...,PSPkt]′ of order N × 1.

Find the maximum value PSPimaxt from the instantaneous quantitative series values of
the current sample in the current vector SSCV. So, PSPimaxt ∈ PSPimaxt ∈ {PSP1t, PSP2t,...,
PSPkt}.

The comparative deviations analysis takes place among each of the SSCV elements
and the maximum value MaxPSPit = PSPimaxt found in vector SSCV. Calculate the deviations
of the other non-maximum series values from the maximum value PSPimax in the current
sample DevPSPt = MaxPSPt − PSPit.

Find deviations for which the condition is DevPSPt≥MTVPS. If the condition DevPSPit
≥MTVPS is true, it means that the SPi solar panel is suffering a shadowing process.

Activate the alert for SPi disconnection in the case of DevPSPit≥MTVPS as a predictor
symptom of shadowing occurrence on one or more solar panels.

Figure 14 shows the deviation trend comparative analysis algorithm flow chart.

Figure 14. Online deviation trend comparative analysis algorithm flow chart.
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3. Results

In a previous work [11], the partial shading fault inductive method was applied in the
context of PWM regulators with a main objective of establishing the minimum threshold
value of the predictive symptom (MTVPS) that could be used to diagnose faults. That
method considered the restriction that the quantitative values of the I-V parameters would
only be observable at the PWM output regulator in the battery part.

In the present work, an MPPT regulator was used for each of the four solar panels,
which provided additional advantages both from the point of view of their performance
as battery charge managers and from the point of view of their use in the application of
predictive diagnosis techniques. The MPPT regulators allowed us to carry out the phases
of early detection and isolation of faults specifically in each solar panel. Another additional
advantage was that the use of an MPPT regulator for each panel made it possible to separate
the solar panel part and the charging-battery part. In that way, the observation of the I-V-P
parameters could be obtained in a specific manner that was more precise for the element
susceptible to degradation.

With the observation of the effects of partial shading on the photovoltaic installation, a
fixed scenario was established, as shown in Figures 15 and 16. In Figure 15a, the projection
of the shadows is represented in a simplified way, where the thicker dashed line and the
irregular shape that represent the projection of the mast and the antenna of a meteorological
station are included. Figure 15b shows the actual assembly. This controlled scenario allowed
us to establish correlation among where, when, and why a decrease in the power generated
in each PVM would be produced during the day.
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Figure 15. Displacement of the dashed lines and irregular shading areas according to the daily
movement of the sun from east to southwest: (a) schematic diagram; (b) actual assembly.

The test was carried out last 30 April from 6:30 a.m. to 5:30 p.m. (UTC), during which
the shading projections that were gradually produced on the specific solar panels during
the day were described. At the beginning of the morning from 6:30 a.m. to 9:30 a.m., two
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shading lines were projected toward the SP1 and SP2 solar panels. At 9:30 a.m., the two
shadow lines began to affect only the SP2 solar panel. Between 11:30 a.m. and 12:30 p.m.,
the shadow projections remained in no man’s land without affecting any of the solar panels.
In the afternoon at 1:30 p.m., the two shadow lines were projected toward the SP3 solar
panel only. From 2:30 p.m. to 5:30 p.m., the shadows were projected toward the SP3 and SP4
solar panels at projection angles that changed gradually as the sun moved to the southwest
(Figure 16).
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The measurements were taken to carry out a comparative trend analysis of the set
of parametric series of the generated power representative of the performance of each of
the four solar panels. The comparative analysis was carried out systematically online for
each of the synchronized samples of each of the four intervening series. In order to be
able to make the best possible comparison with the analysis carried out in [11], the same
positioning of the solar panels was maintained with respect to the displacement of the sun
while trying to find the same shading effects on the panels.

The graphs that follow show the daily battery bank charge graphs with the develop-
ment of the three fundamental phases that characterized the charging, which included:
(1) initial charge (bulk); (2) absorption; and (3) float of the batteries (Figure 17a). The
associated graphs of the solar irradiance level of that same day that are shown in Figure 17b
considered the importance of its correlation with the levels of partial shading on the so-
lar panels. Finally, the four series of the power generated in the four solar panels of the
installation are shown in Figure 17c.

One of the additional capabilities of the type of MPPT regulator used is the application
of different types of intelligent charging algorithms, as was the case of that used in this
work, which had up to eight different algorithms specially dedicated to safeguarding
the batteries through the application of intelligent management methods with the aim of
avoiding battery overload combined with the operation from the maximum power point of
those panels suffering from partial shading.

The shape of the set of curves of the series was totally influenced by the three-phase
charging algorithm developed for the four MPPT solar regulators. In Figure 17a (voltage),
the initial charge (bulk) (5:13 a.m.), absorption (7:13 a.m.), and float (8:13 a.m.) phases
of the batteries were applied synchronously by the solar regulators on the battery bank.
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Figure 17c shows the four power series generated by the solar panels SP1, SP2, SP3, and
SP4 installed in the configuration shown in Figure 16.
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Figure 17. (a) Daily charge phases: initial, absorption, and flotation (26 April). (b) Solar irradiance
in W/m2 (26 April). (c) Deviation trend comparative PV power data series analysis due to partial
shading in watts (26 April).

At the beginning of the day in the left lateral band, there was a trend of reduction
in the curves that corresponded to the power produced in the solar panels SP1 and SP2
with respect to SP3 and SP4 due to the partial shading that was being projected on the
first panels.

As shown in Figure 18c, after the bulk charge phase, the charge regulators reduced the
battery voltage by decreasing the charge current and maintained the batteries’ voltage at
the predetermined voltage value for the float charge stage. In this stage, the batteries were
charged by synchronously emitting small spikes at a certain frequency in a kind of trickle
regime to ensure that the batteries remained fully charged.
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Figure 18. (a) Daily charge phases: initial, absorption, and flotation (30 April). (b) Solar irradiance
(30 April). (c) Deviation trend comparative PV power data series analysis due to partial shading
(30 April).

Figure 19a shows that regarding the battery charging, the initial charge (bulk) began
at 5 a.m. and ended at around 8:30 a.m. followed by the absorption phase. Figure 19c
shows that at the beginning of the day, the power generation series presented a trend of
the curves of the power series that adjusted to the effects of the reduction in the power
produced in the solar panels SP1 and SP2 due to the shading being cast on those panels.
On the contrary, at the end of the afternoon, the four series converged due to the increased
cloudiness produced, which is why the partial shading effect that took place on SP3 and
SP4 was blurred.

On the other hand, in this case, we observed that the algorithm of the solar regulator
associated with the solar panel SP2 tended to favor the generation of the maximum power
because it was the panel that was experiencing the shading with the maximum intensity.
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Figure 19. (a) Daily charge phases: initial, absorption, and flotation (1 May). (b) Solar irradiance (1
May). (c) Deviation trend comparative PV power data series analysis due to partial shading (1 May).

At the beginning of the day until approximately 7:46 a.m., the behavior of the trends
of the SP1 and SP2 series was expected because they were experiencing the effects of partial
shading with a tendency to reduce power compared to the SP3 and SP4 panels, which,
during the first hours of the morning, did not experience any type of partial shading.

The intelligent distributed battery-management system formed by the Cerbo GX and
the Victron BlueSolar MPPT charge controller prevented the batteries from overcharging,
which was combined with the operation from the maximum power point of those panels
suffering from partial shading, as can be seen for the SP2 panel in Figure 19c. However,
from that moment on, the capacity of the MPPT solar regulator intervened to cause the SP2
solar panel to operate at the maximum power, which can be seen in Figure 16 because it
was the one that was experiencing the shading phenomenon with the greatest intensity.
This action implicitly carried out a balance of lower energy contribution by the remaining
solar panels because one of the regulator’s missions was to protect the batteries from some
type of overload. In general, we observed that the dynamics of trend changes in the power
series were determined by the changes that occurred in the series of solar irradiance.

Figure 20a shows the effects on the series due to a great variability in the solar irradi-
ance levels (Figure 20b). At the beginning and end of the day, which correspond to the left
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and right lateral bands, the series converged notably (Figure 20c), unlike the central band
in which areas of certain divergence developed between the series.
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Figure 20. (a) Daily charge phases: initial, absorption, and flotation (2 May). (b) Irradiance (2 May).
(c) Deviation trend comparative PV power data series analysis due to partial shading (2 May).

The graphs in Figure 21 were obtained during a very cloudy day accompanied by
heavy rains and characterized by a strong decrease in solar irradiance. As shown in
Figure 21c, the effects of heavy cloud cover caused the shading to blur, resulting in the
power curves tending to converge.

Figure 22c shows a characteristic shape of the power series that is repeated assiduously
in each of the sidebands of the graphs. This form of the power series without the appearance
of the phase of small load peaks was due to the fact that in cases in which there was a
strong demand for load consumption, it caused the float phase not to occur, passing from
the absorption phase back to the bulk phase. In the left lateral band of the graphs, due to
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the situation of the sun and the projection of the shadows that affected the solar panels SP1
and SP2 (red and blue colors), the power-reduction deviations affected the solar panels SP1
and SP2. The quantitative values of the generated powers can be verified in Table A1 in
Appendix A. We verified that the columns of the shaded series converged and the non-
shaded ones also converged but between the two groups, there was a notable deviation. In
the afternoon when the sun was located to the west, on the right lateral band the projection
of the shadow lines was placed first on the SP3 solar panel and later on the SP3 and SP4
panels, corresponding to the grey and yellow curves located to the east, which meant that
in the western sideband, the direction of the deviation of the powers was inverted in favor
of SP1 and SP2.
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Figure 21. (a) Daily charge phases: initial, absorption, and flotation (3 May). (b) Solar irradiance (3
May). (c) Dense cloudiness blurred the shading effect, causing the convergence of the series (3 May).

Figure 22a shows the graph of the charge stages. Sometimes the load required almost
all of the solar energy generated. If the load consumed all the energy provided by the
system, the regulator could not maintain the battery voltage in the float stage. When the
battery voltage equaled the preset value to improve recovery charging, the system exited
the float-charge stage and re-enters the fast-charge stage or even returned to the bulk phase
from the absorption phase without going through the float phase, as in the case shown in
Figure 22a.
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Figure 22. (a) Daily charge phases: initial, absorption, and flotation (14 May). (b) Solar Irradiance (14
May). (c) Deviation Trend Comparative PV Power Data Series Analysis (14 May).

As an example of the deviation with a reduction in the generated power that occurred
correlated with the shading that was projected on the SP3 and SP4 panels, Table A3 in
Appendix A shows a part of the quantitative values obtained from the sampling process
carried out by the Cerbo GX controller from 15:08:37 to 17:13:38 of the corresponding graph
in Figure 22c made on 14 May 2022. In Table A3, referring to the right lateral band of the
power series, a comparative analysis of the values generated in the two groups of series
could be carried out between the group of the two panels that did not experience partial
shading (SP1 and SP2). The deviation that occurred between both series of that group was
negligible; on the other hand the deviation that occurred between the two panels that did
experience shading (SP4 and SP3) was also negligible, but between the two groups ((SP1
and SP2) and (SP4 and SP3)), there was a notable deviation.
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Figure 23c shows the effect of the high level of irradiance that existed that triggered
the two bypass diodes in SP3, for which partial shading occurred from approximately 12:00
to 15:18. However, even though partial shading remained until 5:30 p.m., the firing of the
bypass diodes was interrupted around 3:40 p.m. as the solar irradiance levels decreased.
From that moment on, the curves of the series corresponding to the SP3 and SP4 solar
panels showed a downward deviation with respect to the curves of the SP1 and SP2 solar
panels because the shadows were projected toward the SP3 and SP4 panels.
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(c) Deviation Trend Comparative PV Power Data Series Analysis (15 May). (d) Daily partial shading
displacement by the hour.
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On the other hand, we observed that when the yellow curve corresponding to the
SP3 solar panel series fell to zero as a result of the firing of its two bypass diodes, the
intelligent control algorithm of the solar regulator acted by increasing the energy supply of
the three other solar panels to compensate for the contribution made by SP3. We verified
that a high level of solar irradiance favored the tripping of the bypass diodes in the case of
partial shading.

Figure 24 shows the tripping of the bypass diodes in the solar panel SP3 and various
unstable trippings of SP2. In the case of the latter, the unstable shots were due to the fact
that it was affected by the shading of a weather station antenna installed further to the
southwest than the backstay cables (Figure 25).
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(c) Deviation trend comparative PV power data series analysis due to partial shading (21 May).
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4. Discussion

In fault diagnosis applied to the analysis of photovoltaic installations (PVIs), numerous
works have been used based on the application of neuron network (NN) models both as
a comparison pattern for their diagnosis and to make estimates of their performance.
However, despite the attractive interest in the use of artificial intelligence techniques based
on NNs, comparisons have been made between analytical models and those based on NNs
in which the precision obtained was in favor of the analytical models [30]. In any case, both
types of models share the problem that they do not easily incorporate the changing and
adaptive nature of the natural, random, and multifactorial degradation factors that should
be considered throughout the useful period of performance, especially in installations for
which operation takes place in outdoor conditions, such as photovoltaic installations.

In [31], a relatively recent review of the literature highlighting challenges, current
approaches, and opportunities for PV predictive maintenance was carried out. In this
work, a cost-versus-detection-accuracy comparison was made. It compared: (1) manual
diagnostics; (2) FMEA approaches; (3) machine learning and forecasting; and (4) real-time
sensors as detection methods. This study concluded that (1) was the least expensive; on the
other hand, (4) was the most expensive option but offered the highest detection accuracy.
The paper concluded with a call to action to establish a collaborative agenda for prioritizing
PV predictive maintenance.

In [26], residuals arrays of current, voltage, and power using measured temperature
and irradiance were generated to capture the differences between the measurements and
the predictions. Then, a multivariate exponentially weighted moving average (MEWMA)
statistical monitoring chart of the residuals was used to detect faults. A similar method
was used in [28].

In [27], different statistical diagnostic methods were presented:

• A method that provided operating parameters that were not sufficient to evaluate
plant performance and detect failures; therefore, a daily corrected performance ratio
that considered weather conditions was evaluated.

• Another method used outlier detection rules that did not require weather data or
model training with detection methods such as 3-sigma, a Hampel identifier, and a
box plot to identify PV string normal operation based on individual string current
measurements.

• A third method used a monitoring system based on a power loss analysis using
statistical signal processing to be compared with another one obtained in a MAT-
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LAB/Simulink environment in real time. Based on this comparison, a residual signal
was generated. Then, a Wald test was applied to this signal in order to detect alarm
signals from data captured randomly and consequently facilitate the decision making.

In [29], a lab-implemented typical grid-connected PV system was used to validate the
fault-diagnosis performance of data-driven methods against real faults under MPPT/IPPT
modes and practical conditions. In this work, statistical methods incorporated the general
knowledge of the system’s functionality in order to construct a reliable and effective fault-
diagnosis algorithm.

The fundamental differences between our method and the procedures used in pre-
vious references was that our system was particularly suitable for isolated “real world”
installations, the characteristics of which allow a comparative trend analysis of all the
power generated by each of the solar panels in online condition monitoring. Subsequently,
for the assertion and adequacy of the type of predictive symptom associated with hotspot
failures, a criterion based on statistical process-control methods was applied in order to
assert that the predictor symptom occurred in a sustained and persistent manner over time
due to an assignable cause and not a random cause.

In [11], to carry out the tests, PWM-type regulators were used and the observations
made were in the battery part. As explained in the Introduction, in this type of regulator
there is no functional separation between the solar panel and the battery. Then, the voltage
parameter is established by the battery and not the output voltage of the panel, where
the decrease in power due to the partial shading can be precisely appreciated. In the case
of MPPT-type charge regulators, there is a functional separation that allows the specific
electrical parameters of the solar panel to be observed in the regulator. Therefore, when
using MTTP regulators, supervision and parametric observation is carried out in the right
place and more accurately because the solar panel is the element susceptible to developing
faults due to partial shading.

The application of the method of comparative analysis of the time series of the power
curves generated by the solar panels showed that the existence of the phenomenon of partial
shading of specific solar panels could be detected and isolated in an early predictive manner.
This detection could be done using the persistent comparative deviation of the decrease in
power between the PVMs as a predictive symptom that the cause of the degradation that
leads over time to the development of hotspots is occurring.

In our general test, we verified that the series showed a convergence and also a
decreasing trend that occurred between pairs that depended on whether they experienced
shading or not. Panels throughout the day experienced shaded and unshaded states that
changed based on their position and the path of the sun over the course of the day. As can
be seen graphically in Figure 22c and numerically in Tables A1–A3 in Appendix A, when
there were causes assignable to the effect of partial shading, the deviations in the series
corresponding to the affected solar panels presented notable deviations in power reduction
alternately in each of the sidebands. This phenomenon can be seen especially in the data in
Tables A1 and A3 in Appendix A.

However, it is very important to dispel the doubt that the deviations were random,
which could be resolved through the analysis of the persistence of the deviations with
prolonged periods of affectation. Therefore, regarding the concept of amplitude and range
of the deviation, it was necessary to add the criterion that the deviation was persistent in or-
der to reliably affirm that there were predictive symptoms that the degrading phenomenon
leading to the development of hotspots was taking place.

The shadow projection model in Figure 16 was a still photo obtained April 2022 (the
model of course will experience certain variations due to changes in the path of the sun
throughout the year). In the period in which partial shading effects did not occur, as
occurred approximately between 11:30 a.m. and 1:30 p.m. of the obtained fixed model
(Figure 16, Figure 22c, and Table A2 in Appendix A), the deviations that occurred were
of a random nature and in general they presented a smaller deviation; although some
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deviations were punctually of greater amplitude, they were not persistent, so based on this
behavior, we concluded that partial shading did not occur.

In this work, a new criterion was used to establish the selection of the predictive
symptom as the MTVPS threshold value (minimum threshold value of the predictive
symptom) with greater precision. In [11], the threshold value was obtained from the
induced shading method applied to a set of solar cells of one of the PVMs. In our study, to
obtain the MTVPS, the comparative value obtained from the effects of the power reduction
produced by the shading of an 8 mm diameter steel cable in the record made on 14 May
2022 was used. These data are reflected in Tables A1–A3 in Appendix A. This analysis
allowed us to affirm that the predictor symptom could be quantified in a range of deviation
between 5 and 10 watts with respect to the verification parameter DevPSPt = MaxPSPt −
PSPit.

The corresponding threshold values in the shading phases were obtained from the data
collected in the two lateral bands shown in Figure 22c, in which the lack of convergence
between the pairs of series (SP1, SP2) on the one hand and (SP3, SP4) on the other is clearly
reflected. In addition, between these pairs of series, the mutual exclusion condition was
observed; that is, when the pair (SP1, SP2) was shaded, (SP3, SP4) was not, and vice versa.

The effects of intense solar irradiance are very decisive on the effects of partial shading
and its negative effects in the possible development of hotspots. Intense cloudy climatic
conditions tended to decrease the intensity of solar irradiance so the shading was blurred;
consequently, all the power series tended to converge more closely. As solar irradiance
levels rose, the contrast of the comparative deviation of the series due to shading was more
noticeable, as well as the effect of power reduction in the affected solar panels.

In our method, no additional external sensors were necessary because the sensors
that measured the electrical parameters of the solar module part and the battery part were
inherent to the type of MPPT regulator used. The decentralized system of charge regulators
also did not imply any increase in system costs. Quite to the contrary, a charge regulator
equivalent to the sum of the total power to be regulated supposes a higher cost.

Finally, Figure 26 presents a comparative analysis between a series of a basal curves
formed by the values of each MaxPspit at each sample time and the quantitative values of
the individual series of the power generated in each module (SP1, SP2, SP3, and SP4). The
figure shows, in a very intuitive way, those persistent (non-random) deviations in power
reduction as predictive symptoms assignable to the effect of partial shading in each of the
solar modules.
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tion produced by the shading of an 8 mm diameter steel cable in the record made on 14 

May 2022 was used. These data are reflected in Tables A1, A2, and A3 in Appendix A. 

This analysis allowed us to affirm that the predictor symptom could be quantified in a 

range of deviation between 5 and 10 watts with respect to the verification parameter 

DevPSPt = MaxPSPt − PSPit. 

The corresponding threshold values in the shading phases were obtained from the 

data collected in the two lateral bands shown in Figure 22c, in which the lack of conver-

gence between the pairs of series (SP1, SP2) on the one hand and (SP3, SP4) on the other 

is clearly reflected. In addition, between these pairs of series, the mutual exclusion condi-

tion was observed; that is, when the pair (SP1, SP2) was shaded, (SP3, SP4) was not, and 

vice versa. 

The effects of intense solar irradiance are very decisive on the effects of partial shad-

ing and its negative effects in the possible development of hotspots. Intense cloudy cli-

matic conditions tended to decrease the intensity of solar irradiance so the shading was 

blurred; consequently, all the power series tended to converge more closely. As solar ir-

radiance levels rose, the contrast of the comparative deviation of the series due to shading 

was more noticeable, as well as the effect of power reduction in the affected solar panels. 

In our method, no additional external sensors were necessary because the sensors 

that measured the electrical parameters of the solar module part and the battery part were 

inherent to the type of MPPT regulator used. The decentralized system of charge regula-

tors also did not imply any increase in system costs. Quite to the contrary, a charge regu-

lator equivalent to the sum of the total power to be regulated supposes a higher cost. 

Finally, Figure 26 presents a comparative analysis between a series of a basal curves 

formed by the values of each MaxPspit at each sample time and the quantitative values of 

the individual series of the power generated in each module (SP1, SP2, SP3, and SP4). The 

figure shows, in a very intuitive way, those persistent (non-random) deviations in power 

reduction as predictive symptoms assignable to the effect of partial shading in each of the 

solar modules. 
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5. Conclusions 

Partial shading caused constant and persistent comparative PSPi quantifiable devia-

tions that could be used as the predictive symptom that the shading phenomenon was 

taking place. 

The use of MPPT regulators allowed us to observe the predictive electrical parame-

ters I-V-P of the solar panel part that were carried out in a specific way. This was an im-

portant advantage over PWM regulators, for which the observation of these parameters 

can only be carried out in the battery part, limiting the observation only to parameter I of 

the output current of the PWM regulator. 

Figure 26. Comparative analysis of the baseline obtained from each of the MaxPspit values and the
specific values of the power generated in each solar panel: (a) SP1; (b) SP2; (c) SP3; (d) SP4.

5. Conclusions

Partial shading caused constant and persistent comparative PSPi quantifiable devia-
tions that could be used as the predictive symptom that the shading phenomenon was
taking place.

The use of MPPT regulators allowed us to observe the predictive electrical parameters
I-V-P of the solar panel part that were carried out in a specific way. This was an important
advantage over PWM regulators, for which the observation of these parameters can only
be carried out in the battery part, limiting the observation only to parameter I of the output
current of the PWM regulator.
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The use of individual MPPT charge regulators in each of the intervening solar pan-
els, which was contrary to the custom of using a single regulator in the solar installation,
provided an action similar to that carried out by the maximizing devices that acted indi-
vidually on each of the solar panels. This fact allowed us to develop predictive diagnostic
techniques specifically for each of the solar panels, guaranteeing the early detection and iso-
lation of the predictive symptoms of the degrading phenomenon that led to the inevitable
development of hotspots. Additionally, the MPPT regulators used had more sophisticated
charging algorithms with the objective of safeguarding and prolonging the useful life of
the battery bank.
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Appendix A

The following tables show the quantitative values (W) of the four series and deviations
taken at a frequency of 5 min.

Table A1. SP quantitative power values and deviation registered the 14 May 2022 from 06:34:57 to
09:03:37 hours.

Time Stamp
UTC(+00:00) Charge State SP4 Power SP3 Power SP2 Power SP1 Power PSPimaxt

Deviation
Partial

Shadow

14 May 2022
06:34:57 Bulk 40 40 33 33 7 Partial

shadow on
SP1 and SP2

based on
Figure 16.

14 May 2022
06:39:57 Bulk 32 33 27 27 6

14 May 2022
06:44:57 Bulk 36 36 30 30 6

14 May 2022
06:49:57 Bulk 34 34 29 29 5

14 May 2022
06:54:57 Bulk 38 38 32 32 6

14 May 2022
06:59:57 Bulk 33 33 28 28 5

14 May 2022
07:04:57 Bulk 46 47 40 40 7

14 May 2022
07:09:57 Bulk 51 52 44 44 8

14 May 2022
07:14:57 Bulk 56 57 48 49 9

14 May 2022
07:18:38 Bulk 57 60 51 52 9

14 May 2022
07:18:47 Bulk 58 59 51 52 8
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Table A1. Cont.

Time Stamp
UTC(+00:00) Charge State SP4 Power SP3 Power SP2 Power SP1 Power PSPimaxt

Deviation
Partial

Shadow

14 May 2022
07:20:03 Bulk 60 60 52 53 8 Partial

Shadow on
SP1 & SP2
Based on
Figure 16

14 May 2022
07:20:08 Bulk 61 61 52 53 9

14 May 2022
07:23:37 Bulk 63 62 54 54 9

14 May 2022
07:28:37 Bulk 61 64 56 57 8

14 May 2022
07:33:37 Bulk 75 73 65 65 10

14 May 2022
07:38:37 Bulk 67 67 60 60 7

14 May 2022
07:43:37 Bulk 55 54 48 49 7

14 May 2022
07:48:38 Bulk 58 63 56 56 7

14 May 2022
07:53:37 Bulk 70 68 61 62 9

14 May 2022
07:58:37 Bulk 70 69 63 63 7

14 May 2022
08:03:37 Bulk 70 68 62 64 8

14 May 2022
08:08:38 Bulk 67 66 61 61 6

14 May 2022
08:13:37 Bulk 72 71 65 66 7

14 May 2022
08:18:38 Bulk 89 87 80 81 9

14 May 2022
08:23:37 Bulk 79 80 73 74 7

14 May 2022
08:28:38 Bulk 70 68 63 63 7

14 May 2022
08:33:37 Bulk 60 58 54 54 6

14 May 2022
08:38:37 Bulk 68 67 61 61 7

14 May 2022
08:43:37 Bulk 76 75 69 69 7

14 May 2022
08:48:37 Bulk 80 79 72 73 8

14 May 2022
08:53:38 Bulk 88 91 85 84 7

14 May 2022
08:58:37 Bulk 79 95 89 88 7

14 May 2022
09:03:37 Bulk 84 87 88 87 4
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Table A2. SP quantitative power values and deviation registered the 14 May 2022 from 09:03:37 to
17:13:38 hours.

Time Stamp
UTC(+00:00) Charge State SP4 Power SP3 Power SP2 Power SP1 Power PSPimaxt

Deviation
Partial

Shadow

14 May 2022
09:03:37 Bulk 84 87 88 87 4

Partial
shadow on

SP1 and SP2
based on
Figure 16.

14 May 2022
09:08:37 Bulk 86 87 89 86 3

14 May 2022
09:13:37 Bulk 90 80 91 90 11

14 May 2022
09:18:37 Bulk 89 81 94 88 13

14 May 2022
09:23:37 Bulk 91 80 89 87 2

14 May 2022
09:28:37 Bulk 93 80 91 86 13

14 May 2022
09:33:37 Bulk 92 82 87 89 10

14 May 2022
09:38:37 Bulk 90 87 88 86 6

Partial
shadow on

SP2
based on
Figure 16.

14 May 2022
09:43:37 Bulk 90 87 87 85 5

14 May 2022
09:48:37 Bulk 91 84 87 84 7

14 May 2022
09:53:38 Bulk 88 88 89 83 5

14 May 2022
09:58:37 Bulk 91 88 88 85 6

14 May 2022
10:03:37 Bulk 94 92 89 80 14

14 May 2022
10:08:37 Bulk 90 90 88 81 9

14 May 2022
10:13:38 Bulk 90 91 88 80 11

14 May 2022
10:18:37 Bulk 92 86 88 83 9

14 May 2022
10:23:37 Bulk 89 94 90 92 5

14 May 2022
10:28:37 Bulk 88 88 90 88 8

14 May 2022
10:33:37 Bulk 92 88 87 88 4

14 May 2022
10:38:37 Bulk 91 88 87 87 4

14 May 2022
10:43:38 Bulk 89 95 80 88 15
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Table A2. Cont.

Time Stamp
UTC(+00:00) Charge State SP4 Power SP3 Power SP2 Power SP1 Power PSPimaxt

Deviation
Partial

Shadow

14 May 2022
10:48:37 Bulk 86 94 86 86 8

14 May 2022
10:53:38 Bulk 88 88 89 87 1

14 May 2022
10:58:37 Bulk 88 90 90 88 2

14 May 2022
11:03:38 Bulk 88 91 88 88 3

14 May 2022
11:08:37 Bulk 88 90 88 88 2

14 May 2022
11:13:38 Bulk 94 81 95 81 14

14 May 2022
11:18:37 Bulk 88 91 85 88 6

14 May 2022
11:23:38 Bulk 96 84 84 84 12

No shadow
based on
Figure 16.

14 May 2022
11:28:37 Bulk 89 94 87 83 11

14 May 2022
11:33:38 Bulk 89 93 92 89 4

14 May 2022
11:38:37 Bulk 91 90 94 83 11

14 May 2022
11:43:38 Bulk 88 88 91 85 6

14 May 2022
11:48:37 Bulk 81 82 81 80 2

14 May 2022
11:53:38 Bulk 91 89 88 89 3

14 May 2022
11:58:37 Bulk 89 91 92 82 11

14 May 2022
12:03:37 Bulk 89 93 90 82 11

14 May 2022
12:08:37 Bulk 89 93 90 83 10

14 May 2022
12:13:38 Bulk 81 84 91 81 10

14 May 2022
12:18:37 Bulk 90 91 92 88 4

14 May 2022
12:23:38 Bulk 57 49 57 57 8

14 May 2022
12:28:37 Bulk 89 89 90 87 3
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Table A2. Cont.

Time Stamp
UTC(+00:00) Charge State SP4 Power SP3 Power SP2 Power SP1 Power PSPimaxt

Deviation
Partial

Shadow

14 May 2022
12:33:37 Bulk 95 85 92 85 10

14 May 2022
12:38:37 Bulk 72 72 73 73 1

14 May 2022
12:43:37 Bulk 91 91 92 88 4

14 May 2022
12:48:37 Bulk 77 77 78 78 1

14 May 2022
12:53:37 Bulk 84 84 86 86 2

14 May 2022
12:58:37 Bulk 87 89 88 89 2

14 May 2022
13:03:37 Bulk 88 85 99 85 14

14 May 2022
13:08:37 Bulk 89 91 89 91 2

14 May 2022
13:13:37 Bulk 89 91 89 87 4

14 May 2022
13:18:37 Bulk 82 82 83 83 1

14 May 2022
13:23:38 Bulk 57 57 58 58 1

14 May 2022
13:28:37 Bulk 70 70 72 72 2

14 May 2022
13:33:37 Bulk 90 89 90 90 1

Partial
shadow on

SP3
based on
Figure 16.

14 May 2022
13:38:37 Bulk 92 89 89 85 7

14 May 2022
13:43:37 Bulk 92 89 89 86 6

14 May 2022
13:48:37 Bulk 82 93 91 91 11

14 May 2022
13:53:37 Bulk 89 90 91 90 2

14 May 2022
13:58:37 Bulk 93 90 91 90 3

14 May 2022
14:03:37 Bulk 96 76 94 95 1

14 May 2022
14:08:37 Bulk 89 79 92 91 13

14 May 2022
14:13:37 Bulk 76 74 77 77 3
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Table A2. Cont.

Time Stamp
UTC(+00:00) Charge State SP4 Power SP3 Power SP2 Power SP1 Power PSPimaxt

Deviation
Partial

Shadow

14 May 2022
14:18:37 Bulk 88 91 96 93 8

14 May 2022
14:23:37 Bulk 97 71 99 90 28

14 May 2022
14:28:38 Bulk 92 82 98 87 16

14 May 2022
14:33:37 Bulk 101 38 108 93 70

Partial
shadow on

SP3 and SP4
based on
Figure 16.

14 May 2022
14:38:38 Bulk 87 86 93 93 7

14 May 2022
14:43:37 Absorption 93 75 102 98 27

14 May 2022
14:48:38 Absorption 86 87 95 94 8

14 May 2022
14:53:37 Absorption 74 74 80 80 6

14 May 2022
14:58:37 Absorption 89 40 100 97 60

14 May 2022
15:03:37 Absorption 86 49 96 95 55

Table A3. SP quantitative power values and deviation registered the 14 May 2022 from 15:08:37 to
15:08:37 hours.

Time Stamp
UTC(+00:00) Charge State SP4 Power SP3 Power SP2 Power SP1 Power PSPimaxt

Deviation
Partial

Shadow

14 May 2022
15:08:37 Absorption 83 55 89 92 37

Partial
shadow on

SP3 and SP4
based on
Figure 16.

14 May 2022
15:13:38 Absorption 83 79 91 90 12

14 May 2022
15:18:37 Absorption 81 80 89 89 9

14 May 2022
15:23:37 Absorption 75 69 88 86 19

14 May 2022
15:28:37 Absorption 78 64 86 85 22

14 May 2022
15:33:37 Absorption 77 59 85 85 26

14 May 2022
15:38:37 Absorption 74 61 83 83 22

14 May 2022
15:43:37 Absorption 73 61 81 81 20
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Table A3. Cont.

Time Stamp
UTC(+00:00) Charge State SP4 Power SP3 Power SP2 Power SP1 Power PSPimaxt

Deviation
Partial

Shadow

14 May 2022
15:48:37 Absorption 70 62 78 47 16

14 May 2022
15:53:37 Absorption 67 65 76 76 11

14 May 2022
15:58:37 Absorption 65 63 74 74 11

14 May 2022
16:03:37 Absorption 62 61 71 72 11

14 May 2022
16:08:37 Absorption 60 58 69 69 11

14 May 2022
16:13:38 Absorption 58 56 66 67 11

14 May 2022
16:18:37 Absorption 55 54 64 64 10

14 May 2022
16:23:38 Absorption 53 51 62 62 11

14 May 2022
16:28:37 Absorption 46 49 60 60 11

14 May 2022
16:33:38 Absorption 48 47 58 58 11

14 May 2022
16:38:37 Absorption 44 43 54 54 11

14 May 2022
16:43:38 Absorption 44 43 53 53 10

14 May 2022
16:48:37 Absorption 41 39 50 50 11

14 May 2022
16:53:38 Absorption 39 38 48 48 10

14 May 2022
16:58:37 Absorption 36 35 44 45 10

14 May 2022
17:03:37 Absorption 33 33 42 42 9

14 May 2022
17:08:37 Absorption 31 31 39 40 9

14 May 2022
17:13:38 Absorption 29 28 37 38 10
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