High-Performance Pockels Effect Modulation and Switching in Silicon-Based GaP/Si, AlP/Si, ZnS/Si, AlN/3C-SiC, GaAs/Ge, ZnSe/GaAs, and ZnSe/Ge Superlattice-On-Insulator Integrated Circuits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Superlattice-on-Insulator Photonics
2.2. Theoretical Background
3. Numerical Results
3.1. Pockels Coefficient in Superlattice Platform
3.2. EO 1 × 1 Modulators Based on the SLOI Platform
3.3. Broad Spectrum EO 2 × 2 MZI Crossbar Switches in the SLOI Platform
4. Multi-Function Superlattice Circuits
5. Integrated Photodetectors That Use One Superlattice Semiconductor
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Soref, R.; Shastri, B.J.; Tait, A.N. The Silicon-Based XOI Wafer: The Most General Electronics-Photonics Platform for Computing, Sensing, and Communications. IEEE J. Sel. Top. Quantum Electron. 2022, 1–9. [Google Scholar] [CrossRef]
- Soref, R.; De Leonardis, F. Classical and quantum photonic sources based upon a nonlinear GaP/Si-superlattice micro-ring resonator. Chip 2022, 1, 100011. [Google Scholar] [CrossRef]
- De Leonardis, F.; Soref, R. Harmonic Generation in GaP/Si and GaP/AlP Superlattice-based Waveguides. IEEE J. Lightwave Technol. 2022, 40, 5646–5653. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, X.; Wang, P.; Laleyan, D.A.; Sun, K.; Sun, Y.; Ahn, C.; Kira, M.; Kioupakis, E.; Mi, Z. Monolayer GaN excitonic deep ultraviolet light emitting diodes. Appl. Phys. Lett. 2020, 116, 013101. [Google Scholar] [CrossRef]
- Ahnk, C.H.; Rabeand, M.; Triscone, J.M. Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures. Science 2004, 303, 488–491. [Google Scholar] [CrossRef]
- Jackson, M.E.; Boishin, G.I.; Aifer, E.H.; Bennett, B.R.; Whitman, L.J. Arsenic cross-contamination in GaSb/InAs superlattices. J. Cryst. Growth 2004, 270, 301–308. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Smith, D.J. Heterovalent semiconductor structures and devices grown by molecular beam epitaxy. J. Vac. Sci. Technol. 2021, 39, 030803. [Google Scholar] [CrossRef]
- De Leonardis, F.; Soref, R. Efficient Second Harmonic Generation in Si-GaP Asymmetric Coupled-Quantum Well Waveguides. IEEE J. Lightwave Technol. 2022, 40, 2959–2964. [Google Scholar] [CrossRef]
- Czornomaz, L.; Abel, S. BTO-enhanced silicon photonics–a scalable PIC platform with ultra-efficient electro-optical modulation. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 6–10 March 2022. [Google Scholar]
- Moody, G.; Sorger, V.J.; Blumenthal, D.J.; Juodawlkis, P.W.; Loh, W.; Sorace-Agaskar, C.; Jones, A.E.; Balram, K.C.; Matthews, J.C.; Laing, A.; et al. 2022 roadmap on integrated quantum photonics. J. Phys. Photonics 2022, 4, 012501. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Wemple, S.H.; Didomenico, M. Electrooptical and Nonlinear Optical Properties of Crystals. Appl. Solid State Sci. 1972, 3, 263–383. [Google Scholar]
- Hermet, P.; Fraysse, G.; Lignie, A.; Armand, P.; Papet, P. Density Functional Theory Predictions of the Nonlinear Optical Properties in α-Quartz-type Germanium Dioxide. J. Phys. Chem. C 2012, 116, 8692–8698. [Google Scholar] [CrossRef]
- Chen, C.; Yang, H.; Wang, Z.; Lin, Z. A theoretical model to calculate linear electro-optic effect in crystals. Chem. Phys. Lett. 2004, 397, 222–226. [Google Scholar] [CrossRef]
- Voon, L.L.Y.; Ram-Mohan, L.R. Tight-binding representation of the optical matrix elements: Theory and applications. Phys. Rev. B 1993, 47, 15500–15508. [Google Scholar] [CrossRef] [PubMed]
- Graf, M.; Vogl, P. Electromagnetic fields and dielectric response in empirical tight-binding theory. Phys. Rev. B 1995, 51, 4940–4949. [Google Scholar] [CrossRef]
- Bravo, S.; Correa, J.; Chico, L.; Pacheco, M. Tight-binding model for optoelectronic properties of pentagraphene nanostructures. Sci. Rep. 2018, 8, 11070. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Tijerina, D.A.; Danovich, M.; Yelgel, C.; Zolyomi, V.; Fal’ko, V.I. Hybrid k-p-tight binding model for subbands and infrared intersubband optics in few-layer films of transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 2018, 98, 035411. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.; Fathpour, S. Compact Lithium Niobate Electrooptic Modulators. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 3400114. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Stern, B.; Lipson, M.; Loncar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 2018, 26, 1547–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomaschewski, M.; Bozhevolnyi, S.I. Pockels modulation in integrated nanophotonics. Appl. Phys. Rev. 2022, 9, 021311. [Google Scholar] [CrossRef]
- Maierhofer, C.; Kulkarni, S.; Alonso, M.; Reich, T.; Horn, K. Valence band offset in ZnS layers on Si(111) grown by molecular beam epitaxy. J. Vac. Sci. Technol. 1991, 9, 2238–2243. [Google Scholar] [CrossRef]
- Deng, H.-X.; Luo, J.-W.; Wei, S.-H. Chemical trends of stability and band alignment of lattice-matched II-VI/III-V semiconductor interfaces. Phys. Rev. B 2015, 91, 075315. [Google Scholar] [CrossRef]
- Wilks, S.P.; Williams, R.H.; Pan, M.; Dunstan, P.R.; Cowie, B.C.C. Use of ultrathin ZnSe dipole layers for band offset engineering at Ge and Si homo/heterojunctions. J. Vac. Sci. Technol. 1999, 17, 1666–1673. [Google Scholar] [CrossRef]
- Hudait, M.K.; Zhu, Y.; Jain, N. Structural, morphological, and band alignment properties of GaAs/Ge/GaAs heterostructures on (100), (110), and (111) A GaAs substrates. J. Vac. Sci. Technol. 2013, 31, 011206. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, P.; Binggeli, N.; Baldereschi, A. Band discontinuities in zinc-blende and wurtzite AlN/SiC heterostructures. Phys. Rev. B 1997, 55, R7418–R7421. [Google Scholar] [CrossRef]
SPSLs | W × H [nm] × [nm] | λ [nm] | ΔEv [eV] | |r33| [pm/V] | VπL [Vcm] | Vs [V] | C/L [F/m] | Ebit [fJ/bit] | f3dB [GHz] |
---|---|---|---|---|---|---|---|---|---|
d = 385 nm; G = 0.85 μm | 700 × 300 | 822.5 | 0.24 [3] | 89.27 | 0.08 | 0.8 | 4.105 × 10−11 | 6.57 | 77.54 |
d = 355 nm; G = 0.80 μm | 700 × 300 | 735.1 | 0.24 [3] | 91.33 | 0.068 | 0.68 | 4.193 × 10−11 | 4.86 | 75.91 |
d = 410 nm; G = 1.0 μm | 700 × 400 | 762.2 | 0.70 [22] | 103.5 | 0.10 | 1.00 | 3.92 × 10−11 | 9.9 | 81.14 |
d = 360 nm; G = 0.80 μm | 700 × 300 | 763.8 | 0.72 [23] | 114.7 | 0.062 | 0.62 | 4.214 × 10−11 | 4.08 | 75.53 |
d = 392 nm; G = 1.0 μm | 900 × 600 | 1510 | 1.12 [24] | 52.4 | 0.275 | 2.75 | 4.40 × 10−11 | 83.38 | 72.35 |
d = 395 nm; G = 0.95 μm | 900 × 550 | 1290 | 0.31 [25] | 47.24 | 0.244 | 2.44 | 4.38 × 10−11 | 65.31 | 72.68 |
d = 391 nm; G = 1.1 μm | 400 × 220 | 513.8 | 0.65 [26] | 47.29 | 0.12 | 1.2 | 3.035 × 10−11 | 11.03 | 104.9 |
SPSLs | W × H [nm] × [nm] | λ [nm] | VπL [V × cm] | Vs [V] | C [fF] | Ebit [fJ/bit] | Switch Time [ps] |
---|---|---|---|---|---|---|---|
d = 268 nm; G = 0.65 μm | 700 × 300 | 822.5 | 0.065 | 3.27 | 8.98 | 23.98 | 0.449 |
d = 295 nm; G = 0.7 μm | 1200 × 700 | 1550 | 0.204 | 10.22 | 10.75 | 280.7 | 0.537 |
d = 251 nm; G = 0.7 μm | 700 × 300 | 735.1 | 0.057 | 2.83 | 8.78 | 17.64 | 0.439 |
d = 315 nm; G = 0.75 μm | 1200 × 700 | 1550 | 0.196 | 9.8 | 10.52 | 252.9 | 0.525 |
d = 287 nm; G = 0.80 μm | 700 × 400 | 762.2 | 0.082 | 4.12 | 8.47 | 36.05 | 0.423 |
d = 253 nm; G = 0.65 μm | 700 × 300 | 763.8 | 0.051 | 2.57 | 9.05 | 15.0 | 0.453 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Leonardis, F.; Soref, R. High-Performance Pockels Effect Modulation and Switching in Silicon-Based GaP/Si, AlP/Si, ZnS/Si, AlN/3C-SiC, GaAs/Ge, ZnSe/GaAs, and ZnSe/Ge Superlattice-On-Insulator Integrated Circuits. Sensors 2022, 22, 7866. https://doi.org/10.3390/s22207866
De Leonardis F, Soref R. High-Performance Pockels Effect Modulation and Switching in Silicon-Based GaP/Si, AlP/Si, ZnS/Si, AlN/3C-SiC, GaAs/Ge, ZnSe/GaAs, and ZnSe/Ge Superlattice-On-Insulator Integrated Circuits. Sensors. 2022; 22(20):7866. https://doi.org/10.3390/s22207866
Chicago/Turabian StyleDe Leonardis, Francesco, and Richard Soref. 2022. "High-Performance Pockels Effect Modulation and Switching in Silicon-Based GaP/Si, AlP/Si, ZnS/Si, AlN/3C-SiC, GaAs/Ge, ZnSe/GaAs, and ZnSe/Ge Superlattice-On-Insulator Integrated Circuits" Sensors 22, no. 20: 7866. https://doi.org/10.3390/s22207866
APA StyleDe Leonardis, F., & Soref, R. (2022). High-Performance Pockels Effect Modulation and Switching in Silicon-Based GaP/Si, AlP/Si, ZnS/Si, AlN/3C-SiC, GaAs/Ge, ZnSe/GaAs, and ZnSe/Ge Superlattice-On-Insulator Integrated Circuits. Sensors, 22(20), 7866. https://doi.org/10.3390/s22207866