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Abstract: The complex refractive index for low-loss materials is conventionally extracted by either
approximate analytical formula or numerical iterative algorithm (such as Nelder-Mead and Newton-
Raphson) based on the transmission-mode terahertz time domain spectroscopy (THz-TDS). A novel
4-layer neural network model is proposed to obtain optical parameters of low-loss materials with high
accuracy in a wide range of parameters (frequency and thickness). Three materials (TPX, z-cut crystal
quartz and 6H SiC) with different dispersions and thicknesses are used to validate the robustness
of the general model. Without problems of proper initial values and non-convergence, the neural
network method shows even smaller errors than the iterative algorithm. Once trained and tested, the
proposed method owns both high accuracy and wide generality, which will find application in the
multi-class object detection and high-precision characterization of THz materials.

Keywords: terahertz (THz) spectroscopy; optical parameters; extraction; neural network

1. Introduction

The material properties, such as refractive index or dielectric constant, are indirectly
measured through light-matter interactions. From the aspect of optical experiment ap-
proach, the transmission-mode terahertz time domain spectroscopy (THz-TDS) [1] is a ma-
ture technique for the corresponding waveform and spectrum measurement. The THz-TDS
method has apparent advantages of simultaneously obtained amplitude and phase spec-
trum after fast Fourier transform (FFT) operation on the measured transmitted time domain
THz field, high signal-to-noise ratio (SNR) with lock-in amplifiers, easiness to analyze the
spectrum, adaptability for measuring thin samples [2,3]. The transfer function is firstly
measured for normally incident THz pulses on the parallel interfaces. Starting from the
measured data containing both amplitude and phase of the THz signal, many reference re-
quiring methods and algorithms were proposed to estimate the optical parameters and/or
the thickness of homogeneous material with the minimum error [4–10]. Based on the
Fresnel formula for materials under plane wave excitation, the simple analytical method
produces approximate results of complex refractive index with fast speed, although the
accuracy is low especially for the refractive index n of high-loss and high-dispersion mate-
rials [11,12]. The iterative algorithms have high accuracy if the initial values are properly
assigned, such as Newton-Raphson [13] and Nelder-Mead [14]. However, the problems of
non-convergence in numerical calculation and low-speed in processing a large amount of
spectroscopic data become the major disadvantages, limiting its applications in real-time
scenarios [15].

The neural network becomes a novel strategy to deal with regression and classification
problems with high accuracy, since the well-trained networks can model a nonlinear
function of arbitrary complexity [16,17]. In the THz-TDS experiment, the neural network
can be used to establish a mapping relationship between the experimental data and optical
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parameters of materials under test, which inherently replaces the inverse function via
approximate formula or numerical approach. When the trained network behaves both
extremely small (similar) values of deviation in the training set and variance in the test set,
the final predictions on the experimental data will become credible without the “over-fit”
phenomenon [18]. The artificial neural network finds initial applications in extracting
both the refractive index and thickness of single-layer optical thin films in the visible
region [19–21]. With the improvement of computer performance and the rise of many new
disciplines and technologies, the use of neural network method in material characterization
extends to quasi-crystalline alloy (Al80Mn20) [22], silicon photonics [23], 2D materials
(MoSe2, WS2, WSe2) [24], 3D nanonetwork silicon structures [25], and binary ionic liquid
system [26,27]. Recently, a new standard was proposed to evaluate the reliability of the
optical parameter measurement of thin films via the neural network method [28].

The utilization of artificial intelligence techniques in THz region mainly concerns
material reflection and/or transmission spectrum [29], and mostly solves classification
problems including tag identifications [30], recognition of cancers [31], identification of
components [32], and so on. Universal machine learning, especially the multifunctional
neural network model, has better performance than traditional modeling techniques. Nev-
ertheless, only a few such supervised regression-type applications have been demonstrated
in the refractive index extraction of THz materials to the best of our knowledge. A U-net
structure neural network was constructed to extract the thickness, refractive index, and
absorption coefficient of SiO2 thin film from the Fourier transform infrared spectroscopy
(FTIR) measurement [33], but it is only suitable for a few semiconductor materials. The
artificial neural network method was preliminarily proved to extract the complex refractive
index from THz-TDS data with higher accuracy than analytical method [34]. However,
a general and easy-to-implement neural network model is still needed in this area. We
aim to design a general network model to treat various materials with a wide range of
thickness in the frequency range covering most THz-TDS systems, which can make up for
the shortage of existing extraction methods at THz frequency.

In this paper, we illustrate the principle and procedure of building a general neural
network model for optical parameter extraction in the THz frequency range. In view of
most applications, the ranges of refractive index n and extinction coefficient k of randomly
simulated materials in the trained model are (1, 5) and (0, 0.1), respectively. The maximal
material thickness is 5 mm and the frequency is selected up to 20 THz. Further extension
of these parameters is possible at the expense of more training time. In Section 2, the
complete process of designing, training, and optimizing the neural network is described
in detail, and the 4-layer network is found to simultaneously meet the requirements of
wide generality and high accuracy with relatively less time-consuming. In Section 3, two
measured materials (TPX, z-cut crystal quartz) and one simulated material (6H SiC) of
different thicknesses are used as typical examples to validate the accuracy of our proposed
general neural network model. Comparisons with iterative algorithm method (Nelder-
Mead) are also conducted to represent the pros of the novel method. Finally, the conclusion
is given in Section 4.

2. Neural Network Method

Figure 1 describes the complete process to train and optimize the neural network for
parameter extraction, based on the classical transfer function. The network is well trained
to extract parameters point by point in the whole frequency range. Firstly, sufficient and
reasonable data samples are generated randomly by theoretical calculation from the Fresnel
formula [1]. To ensure the wide applicability of the model, the randomly generated training
samples must cover the most possible kinds of materials. Secondly, the network is trained
by repeatedly changing hyperparameters in order to find the best network configuration.
A well-trained network should have small errors on both training set and test set, namely
with good model generalization abilities. Meanwhile, the network with less training time
to reach the expected loss goal is preferred. The model with relatively smaller errors and
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less time in the training process will be selected as the optimal one. Finally, the well-trained
network is utilized to extract optical parameters in real time with the measured/simulated
transmission spectrum. More details about the neural network method will be given in the
following part.

Figure 1. Flow chart of neural network method to extract optical parameters of materials from the
transfer function.

2.1. Data Generation

The transfer function is theoretically calculated by [35],

H(ω) =
4(n− jk)

(n− jk + 1)2 · e
−j(n−jk−1)ωd/c · FP(ω), (1)

FP(ω) =

[
1−

(
n− jk− 1
n− jk + 1

)2
· e−2j(n−jk) ωd

c

]−1

, (2)

where ω is the angular frequency, c is the light speed in vacuum, d is the material thickness
and FP (ω) is the Fabry-Perot term. n and k represent the frequency-dependent refractive
index and extinction coefficient of materials under test, respectively. If the material is
optically thick, multiple transmitted pulses (echoes) from interface reflections can be well
separated from the main transmitted pulse in the time domain signal. Therefore, the FP
(ω) term in the transfer function in the frequency domain equals 1. While for optically thin
materials, the echoes overlap with the main pulse in the time domain and therefore the
complete form of FP (ω) should be considered.

Equation (1) serves as a bridge of transfer function between material optical param-
eters and transmission from the forward direction. In the THz-TDS system, the time
domain signals of the reference and sample are measured firstly. After FFT operation and
phase unwrapping, both the amplitude and phase of the transfer function are calculated.
Therefore, the neural network N1 and N2 aims to build the expected relation from the
backward direction,

N1
(
t̃(ω), ω

)
= n(ω), N2

(
t̃(ω), ω

)
= k(ω), (3)

The network model is trained with randomly simulated material parameters, fre-
quency points and corresponding transfer function to well fit the backward relation in
Equation (3). The mechanism for the accurate parameter extraction by neural network
model relies on the internal relationship between material parameters and transmission
spectroscopic values.

From Equation (3), the neural network consists of three input variables (angular
frequency, amplitude, and phase of transmission at each frequency point) and two output
variables (refractive index and extinction coefficient at each frequency point), which is
also shown in Figure 1. The ∠t denotes the phase of the transfer function. The dataset is
randomly generated beforehand by varying the three variables (n, k, and ω) in suitable
ranges. For common materials in THz frequencies, the refractive index n is normally smaller
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than 5 and the extinction coefficient k for low-loss THz materials is normally hundreds of
times smaller than n [34]. Therefore, the range of n and k in the dataset is chosen as (1, 5)
and (0, 0.1) in the first step of data generation, respectively. The angular frequency range is
2π × (0.1, 20) THz, which covers the measured frequency range of most THz-TDS systems
nowadays. The other required dependent variables (|t| and ∠t) are theoretically calculated
with Equation (1). For the number of data samples, an optimal value of 14,000 data samples
(10,000 for training, 2000 for validation, and 2000 for the final test) is adopted in this
regression task after numerous trials. If more data samples are used, the training time will
dramatically increase while the loss level cannot be reduced further.

The thickness of most optically thick materials can be measured with high accuracy
if a digital micrometer is used, and the thickness value is kept constant in the process of
neural network training and prediction throughout this paper.

2.2. Neural Network Design

Deep neural networks can fit functions with high complexity due to the strong gradient
descent algorithm, which is used in optimizing the internal weights to achieve very high
precision. The extraction of optical parameters from the transmission spectroscopy data is
essentially considered to be a fitting of Equation(3), and therefore the basic fully connected
neural network is the best choice, which is believed to own better performance on normal
regression tasks than other specific functional deep networks, like recurrent neural network
(RNN) in natural language processing (NLP) [18], convolutional neural network (CNN) and
generative adversarial network (GAN) in image processing [36,37]. Generally speaking, the
optimal neural network model should basically meet the requirements of wide generality. In
other words, the model must be applicable for common materials with different parameters
(thickness, dispersion, dielectric constant, and losses) measured with most types of THz-
TDS systems (operation frequency).

The schematic diagram of the neural network model is shown in Figure 2, with three
input variables in the input layer (layer 0), two output variables in the output layers (layer
4), and three fully connected hidden layers (each layer has 16 neurons). The input layer is
not counted in the total number of layers of neural network. The total input of the network
is a 10,000 × 3 matrix, and the output is a 10,000 × 2 matrix. To eliminate the dimension
inconformity and obtain faster convergence, each variable in the generated data samples
should be normalized beforehand. The total five variables are normalized between 0 and 1
with the linear normalization method, namely x * = (x − xmin)/(xmax − xmin). In the struc-
ture optimization process of neural network, only the number of layers and neurons is
changed, since it has the greatest impact on network performance while other hyperparame-
ters are kept the same. For the choice of activation functions, Tanh(z) = (ez − e−z)/(ez + e−z)
is utilized in hidden layers because it is well suitable for the central symmetry problem and
owns fast convergence speed in the training process. The neural network is trained with
Levenberg-Marquardt (LM) algorithm, which behaves well in fitting a nonlinear function.
LM is a second-order optimization algorithm which has faster and better convergence for
neural network models than the basic first-order back propagation (BP) algorithm. All the
programs are written and executed with the internally installed deep learning toolbox 14.4
in MATLAB R2022a.

The choice of the number of layers and neurons is critical in the design of neural
network. The predefined validation sets are used to evaluate the performance of each
network. As the simplest case, the 2-layer neural network with a single hidden layer can
theoretically fit any continuous mapping relation in a short time [16], but the prediction
accuracy still needs further improvement. For instance, if the number of neurons increases
from 16 to 128, the error of n decreases dramatically while the error of k sustains high,
due to the lack of network complexity. This negative effect could be alleviated by using
the 3-layer neural network with two hidden layers. After a large amount of test with
different combinations of neurons (8, 16, 32, 64, and 128) in the two hidden layers, the
prediction accuracy could only be obtained for a few cases with specific combinations of
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neuron numbers (such as 128 × 8, 32 × 16 and 64 × 16), where the magnitude of deviation
from the real values of n and k reaches the level of 10−4 and 10−5 at most frequency
points, respectively. However, the time consumed in the training of the 3-layer network is
constantly more than 10 h, which limits its practical applications in parameter extraction.
Finally, the 4-layer neural network with three hidden layers (16 × 16 × 16 neurons) is
selected, as shown in Figure 2. It possesses both higher accuracy and less training time.
The evaluation of the optimal 4-layer network model will be discussed in the following
part for a specific simulated material. In our work, we only tried several combinations of
certain specific neuron numbers and satisfying results are produced in consideration of
both accuracy and time. This could also be realized by the hyperparameter optimization
framework (Optuna) at the sacrifice of much more time consumed [38].

Figure 2. Schematic diagram of the optimal 4-layer neural network model.

2.3. Parameter Extraction

To quantitatively evaluate the accuracy of extracted results, appropriate parameters
of statistical error are defined and utilized. If the real values of n and k are known (sim-
ulated materials SiC), the mean square error (MSE) and mean absolute percentage error
(MAPE) are frequently used parameters to quantitatively evaluate the accuracy of the
neural network, such that

MSE =
1
N

N

∑
i=1

(
Yi − Ŷi

)2, (4)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣, (5)

where N is the total number of frequency points, and i is the index of a specific frequency
point. Variables with and without hat symbols are the corresponding extracted and real
values. However, for the parameter extraction from actual THz-TDS data, the real values
are unavailable (measured materials TPX and quartz) and the mean absolute error (MAE)
of transfer function is utilized to compare the accuracy in an indirect way, between the
neural network model and the iterative algorithm. It is defined as,

MAE =
1
N

N

∑
i=1

∣∣|ti| −
∣∣t̂i
∣∣∣∣+ 1

2π

∣∣|∠ti| −
∣∣∠t̂i

∣∣∣∣, (6)

An ideal non-dispersive thick material is used as the simulated material (test set)
to preliminary test the actual extraction performance of the proposed 4-layetr network
(16 × 16 × 16 neurons). Its thickness, refractive index and extinction coefficient are taken
in the simulation as 3 mm, 2 and 0.005, respectively. The refractive index and extinction co-
efficient extracted with the neural network method are compared with the real values up to
20 THz, as shown in Figures 3a and 3b, respectively. The magnitude level of deviation for n
(k) reaches as low as 10−5 (10−6), which indicates the further improvement of accuracy over
the case of 3-layer network. The average time needed for training such a 4-layer network
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is less than 2 h, which is much less than that for the 3-layer network. The time consumed
in the prediction process is much less than that in the training process. For instance, the
prediction time is 24.75 ms for 100 frequency points, 27.63 ms for 1000 frequency points and
27.96 ms for 10,000 frequency points. Obviously, the prediction time is not proportional to
the number of frequency points, which is also the attractive nature of the neural network
method. It should be noted all the programs run on a PC with CPU Intel Core i7-12700 and
32 GB RAM.

Figure 3. Comparison of extracted optical constants from neural network method and real values for
a simulated non-dispersive material (n = 2 and k = 0.005) with a thickness of 3 mm: (a) Refractive
index n; and (b) Extinction coefficient k.

The thickness of sample is indeed an important parameter in the whole extraction
process. In our proposed model, if the thickness of the material under test varies, the neural
network should be re-trained with the new thickness. The dependency of the training time
and the accuracy level on the material thickness has also been quantitatively calculated.
Table 1 shows the values of MSE and MAPE of n and k for the same simulated material
with varying thicknesses from 1 to 5 mm. Both the maximum values of MSE (5.91 × 10−9

for n and 3.93 × 10−11 for k) and MAPE (0.00225% for n and 0.191% for k) indicate that the
4-layer neural network has even higher accuracy than the iterative algorithm [35]. With
regard to the training time, Table 1 also lists the averaged time consumption of the 4-layer
network for material with different thicknesses. Besides, the training time of an individual
4-layer network reduces more than three times in comparison with the 3-layer network
(>10 h).

Table 1. Training time, MSE and MAPE values of the 4-layer network for material with different thick-
nesses.

Thickness
(mm)

Time Consumed
(Hour, Minute)

MSE MAPE

n k n k

1 1, 56 3.59 × 10−9 3.93 × 10−11 0.00175% 0.0746%
2 1, 39 5.91 × 10−9 3.13 × 10−11 0.00225% 0.0900%
3 1, 41 4.37 × 10−9 3.35 × 10−11 0.00171% 0.0906%
4 1, 34 3.49 × 10−9 3.07 × 10−11 0.00178% 0.191%
5 1, 06 1.88 × 10−9 2.36 × 10−11 0.00146% 0.174%

It must be pointed out that the proposed neural network method can also deal with
the case of taking the material thickness as an additional input variable. For example,
the frequency range is chosen between 0.5 and 5.5 THz, and both n and k are constant
as shown in Figure 3. Table 2 lists values of MSE and MAPE for extracted n and k with
the neural network method, where different ranges of sample thickness are considered.
In comparison with the case of fixed thickness, the accuracy of both n and k for the case
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of variable thickness becomes lower, in particular for material thickness in large ranges.
Therefore, the neural network method with fixed material thickness is highly recommended
for occasions of wide frequency range and high generality and accuracy.

Table 2. MSE and MAPE values for n and k with sample thickness as a variable with different ranges.

Thickness Range
(mm)

MSE MAPE

n k n k

(0.1, 1) 5.59 × 10−8 7.68 × 10−11 0.010% 0.133%
(0.1, 2) 2.90 × 10−7 1.59 × 10−9 0.022% 0.677%
(0.1, 3) 6.89 × 10−6 2.70 × 10−8 0.106% 2.384%
(0.1, 4) 4.89 × 10−5 7.40 × 10−8 0.282% 4.950%
(0.1, 5) 6.33 × 10−5 1.94 × 10−7 0.362% 7.298%

Finally, if the sample thickness is expected as an output parameter besides the optical
constants based on the transfer function, the present neural network model will need further
modification because it only considers the principle transmitted pulse in the measured
transmission spectrum. A possible solution to predict the unknown thickness is to include
the 1st echo signal of the transmission spectrum in the neural network model. This
method has been successfully tested for ideally simulated materials, and the feasibility and
robustness need experimental verification in our future work.

In the next Section, we will further demonstrate the network performance with three
specific materials with different levels of dispersion and different thicknesses to prove
the generality.

3. Application Examples

The generality and robustness of the 4-layer neural network method is investigated
in the optical parameter extraction of three types of low-loss actual materials (TPX, z-cut
crystal quartz and 6H SiC) from the transfer function. For TPX with low-dispersion and
z-cut crystal quartz with moderate dispersion, the spectroscopic data were obtained by
the transmission-mode THz-TDS measurement from 0.5 to 4.5 THz. We use the general
model to extract the optical parameters, and the results were compared with those obtained
from the homemade code based on the Nelder-Mead algorithm [35]. For SiC with strongly
dispersive behavior in the THz region, the transmission spectrum was simulated up to
8 THz to account for the resonant properties in the dielectric function. Besides, the extracted
results from simulated transfer function are obtained by both neural network method
and Nelder-Mead algorithm. Moreover, we will discuss the case of optically thin SiC
material (0.05 mm) considering Fabry-Perot effect in the transmitted signal. In this situation,
a specific deep neural network method was adopted by dividing the wide frequency range
into small segments with equal length for the purpose of better training and prediction.

3.1. TPX and Quartz with THz-TDS Measurement

In the TDS measurement system (Advantest TAS7500TS), two optical fiber lasers
(pulse duration 50 fs, center wavelength 1.55 µm, repetition frequency 50 MHz, average
power 20 mW) were used in both THz generation and detection by photoconductive
antenna [39]. The measurement is carried out in the dry air environment and the speed
without mechanical delay line is fast (8 ms per scan), with an average time of 10 s for each
sample. The original time scan range is 130 ps and the time and frequency resolution of the
generated signal is 2 fs and 7.6 GHz respectively.

Since the presence of multiples in the time domain signal will introduce echo oscil-
lations in the spectrum [40] and their amplitudes are comparable to the noise floor, the
original measured signal is truncated just before the appearance of the first multiple with
suitable time window, as shown in Figure 4a. After FFT operation, Figure 4b shows the
frequency domain spectrum of the transmitted pulse without (reference) and with object
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materials. In the reference measurement without sample, the SNR value becomes much
lower for frequencies below 0.5 THz and beyond 4.5 THz in the transmission spectrum, and
hence the effective frequency range is selected between 0.5 to 4.5 THz with high amplitude
of THz signal, where the optical parameters are extracted later. By making the ratio between
the sample spectrum and the reference spectrum, the magnitude and phase of the transfer
function are easily calculated, which is shown in Figure 4c,d. The magnitude for both
the two samples decreases with the increase of frequency. There is an absorption dip at
3.88 THz for crystal quartz, which is related to the lowest energy optical phonon mode [40].
As shown in Figure 4d, the slope of the phase curve for TPX is higher than that for quartz,
because the TPX material is much thicker.

Figure 4. (a) Measured time domain signals of reference (black), TPX (red) and quartz (blue);
(b) normalized transmission spectrum of reference (black), TPX (red) and quartz (blue); (c) amplitude
of the transfer function of the two materials: TPX (red) and quartz (blue); (d) phase of the transfer
function of the two materials: TPX (red) and quartz (blue).

Figure 5 shows the extracted complex refractive index of TPX from 0.5 to 4.5 THz
with both the neural network method and Nelder-Mead algorithm. The refractive index of
TPX decreases slightly from 1.4613 at 1 THz to 1.4603 at 4 THz, which agrees with existing
publications [41,42]. Good agreement between the two approaches have been achieved
especially for the extinction coefficient k (Figure 5b), and the difference of n between them
(Figure 5a) is in the order of 0.0001 or less. The value of MAE for the two materials is
listed in Table 2. For TPX, the error is slightly reduced with the neural network method in
comparison with the iterative algorithm.
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Figure 5. Comparison of extracted optical constants between neural network method and Nelder-
Mead algorithm for TPX with a thickness of 3.538 mm: (a) refractive index and (b) extinction coefficient.

The extracted optical parameters for z-cut quartz with neural network and Nelder-
Mead methods are shown in Figure 6. As for quartz, the refractive index increases from
2.107 at 1 THz to 2.152 at 4.5 THz, which shows a moderate frequency dispersion. The
derivative-like feature in the refractive index and the corresponding peak in the extinction
coefficient at around 3.8 THz is caused by the optical phonon mode, which is more obvious
at low temperatures [40], and the absorption in quartz is higher than that in TPX material,
in particular at high frequencies. Again, the results obtained from the two methods agree
quite well. The MAE value for the dispersive quartz (Table 3) is reduced more than 8 times
with the application of the neural network method.

Figure 6. Comparison of extracted optical constants between neural network method and Nelder-Mead
algorithm for quartz with a thickness of 1.068 mm: (a) refractive index and (b) extinction coefficient.

Table 3. MAE for TPX and z-cut quartz with the Nelder-Mead algorithm and Neural network method.

Nelder-Mead Neural Network

TPX 0.0059628 0.0055075
Quartz 0.0083644 0.0009987

The thickness value (3.538 mm for TPX and 1.068 mm for quartz) is kept as constant in
each network configuration. If the thickness increases or decreases by 10 µm, the maximal
relative error of n is calculated to be about 0.1% for TPX and 0.5% for quartz. The thickness
uncertainty caused by measurement tools (commercial digital micrometer) is usually within
several microns. This small variation of thickness has a negligible effect on the extracted
value of k. Generally, the estimation error caused by thickness is small enough to be ignored
for optically thick materials.
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3.2. 6H SiC with Simulated Transfer Function

6H SiC is a strongly dispersive material in the THz region, and its complex permittivity
can be expressed by the muti-Lorentzian function as [43],

ε(ω) = ε∞ +
3

∑
k=1

Wk

ω2
0,k −ω2 − jω/τk

(7)

where the parameters are ε∞ = 6.625, Wk = [0.52, 1.85, 71342] ps−1, τk = [4, 12.4, 2.61] ps,
and ω0,k = [7.034, 7.203, 23.87] THz. The relation between complex refractive index and
relative permittivity is ε = (n − jk)2. The transmission spectrum of 0.5 mm thick SiC is
theoretically simulated under the normal incidence of THz radiation without any noise
and used for parameter extraction.

Table 4 summarizes the MSE and MAPE values of extracted n and k for the neural
network method and Nelder-Mead algorithm. The errors with the neural network method
are again extremely low, indicating a nearly perfect reproduction of real values. This is also
intuitively validated by the extracted optical parameters up to 8 THz shown in Figure 7,
where large resonances for n and k are observed at around 7 THz resulted from the strong
dispersion of the dielectric function in Equation (7). In reference to the real values, it is
evident that the extracted results with neural network method are much better than those
with the Nelder-Mead algorithm in terms of accuracy, especially in the region where the
extinction coefficient is extremely small.

Table 4. Statistical error of the prediction values of 6H SiC with the Nelder-Mead algorithm and
Neural network method.

Nelder-Mead Neural Network

MSE MAPE MSE MAPE

n 1.5105 × 10−6 0.0388% 7.85 × 10−9 0.0022%
k 1.042 × 10−10 5.6504% 1.9974 × 10−11 1.7847%

Figure 7. Comparison of extracted optical constants between real values and calculated results with
neural network method and Nelder-Mead algorithm for optically thick SiC with a thickness of 0.5 mm:
(a) refractive index and (b) extinction coefficient.

From the above results, a conclusion could be drawn that the neural network method
successfully extracts optical parameters of thick low-loss THz materials with extremely
high accuracy. However, for optically thin materials (usually dozens of microns), the
Fabry-Perot effect should be considered and therefore the transmitted signal will include
multiple echoes. For an even wider versatility, the application of neural network method in
the case of thin materials will be investigated in the following part.
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We still simulate the transmission spectrum of 6H SiC material with a thickness of
0.05 mm, where the FP (ω) term is taken as the full expression in Equation (2) in the
data generation part. In this case, the relationship between input and output variables
(Equation (3)) becomes complex and more sensitive to the minor change of variables, and
therefore the original single neural network model for training and prediction should be
revised accordingly to obtain high accuracy. After numerous tests, an effective way to
overcome the above issue is to narrow down the range of independent variables (frequency,
refractive index and extinction coefficient) for training. Among them, the frequency divi-
sion is the easiest way. We divide the frequency range 1–8 THz at the interval of 1 THz
and therefore a total of seven parallel neural networks (N1–N7) for predictions are needed.
The network training and parameters extraction take place in the same frequency segment
both in the training and extraction process. Figure 8 shows the extracted values indepen-
dently calculated by the seven different networks, which agree well with the real optical
parameters of SiC. The noise-like features in the curves of n and k can be ameliorated by
using even smaller segment at the expense of slow extraction speed (more training time for
more segment models). In order to reduce the training time for real applications, parallel
computation seems to be a feasible solution at the expense of more hardware resources.

Figure 8. Comparison of extracted optical constants between the real values and neural network
method for optically thin 6H SiC with a thickness of 0.05 mm: (a) refractive index and (b) extinc-
tion coefficient.

4. Conclusions

A general and efficient method based on 4-layer neural network has been proposed
for the optical parameter extraction of low-loss materials based on the transmission-mode
THz-TDS measurement. Three types of low-loss materials (TPX, z-cut quartz and 6H SiC)
with different level of frequency dispersion characteristics and different thicknesses in
the THz frequency range are used as typical examples to validate the robustness of the
neural network. Good agreements between the neural network method and Nelder-Mead
algorithm (TPX and z-cut quartz) or the real optical parameters (6H SiC) have been achieved.
In comparison with the traditional iterative algorithm, the advantages of neural network
method are the versatility for a wide range of materials with different thicknesses, non-
necessity of initial values and even higher accuracy (lower error values). If the thickness is
taken as an additional input variable for an unknown material, the maximal frequency and
accuracy of the extracted results will become lower. The neural network method is expected
to find applications in the multi-class object detection and high-precision characterization
of low-loss materials in THz frequencies.
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