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Abstract: Underwater target detection and identification technology are currently two of the most
important research directions in the information disciplines. Traditionally, underwater target de-
tection technology has struggled to meet the needs of current engineering. However, due to the
large manifold error of the underwater sonar array and the complexity of ensuring long-term sig-
nal stability, traditional high-resolution array signal processing methods are not ideal for practical
underwater applications. In conventional beamforming methods, when the signal-to-noise ratio is
lower than —43.05 dB, the general direction can only be vaguely identified in the general direction.
To address the above challenges, this paper proposes a beamforming method based on a deep neural
network. Through preprocessing, the space-time domain of the target sound signal is converted into
two-dimensional data in the angle-time domain. Subsequently, we trained the network with enough
sample datasets. Finally, high-resolution recognition and prediction of two-dimensional images are
realized. The results of the test dataset in this paper demonstrate the effectiveness of the proposed
method, with a minimum signal-to-noise ratio of —48 dB.
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1. Introduction

With the development of precision detection instruments, the accurate detection and
identification of short-range targets became possible [1,2]; therefore, scholars have turned
to the positioning and identification of long-distance signals. Beamforming is an effective
method to identify long-distance target signals, which has been widely used in radar,
MIMO and other fields [3]. The general classical beamforming method is based on Fourier
transform in the directional domain, where the input signal-to-noise ratio condition must be
satisfied to ensure high resolution. The conventional beamforming method (CBF) achieves
better adaptability by exploiting the phase deviation without prior knowledge of the
number of signal sources, such as minimum variance distortion-free response (MVDR)
and multiple signal classification (MUSIC) [4,5]. Although there are many beamforming
methods for long-distance signals, the conditions of a high signal-to-noise ratio generally
cannot be met. Furthermore, challenges remain in the detection of underwater targets under
conditions of low signal-to-noise ratio, particularly when large distances exist between the
sensor array and the target.

In recent years, with the rise of artificial intelligence and neural networks, an increasing
number of fields have introduced and applied deep learning to practical problems and
achieved satisfactory results. Deep learning was first applied to speech recognition and
image segmentation and has since been further developed beyond its limitations. For
example, Dong et al. proposed the neural network framework of the U-Net model [6],
which integrates motion information into the network input and gives different motion
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constraints for each pixel; compared with the best-performing algorithm PSNR (peak signal-
to-noise ratio), its value was improved by 0.14 dB. Hu et al. introduced a novel end-to-end
U-Net and SAS network (U-SAS-Net) to extract and fuse local and semantic hierarchical
features from a relatively large receptive field, resulting in an improved PSNR by 0.6 dB [7].
Zhang et al. used the improved U-Net deep neural network to extract data features through
compression channels and restore data details through expansion channels, forming a
nonlinear mapping from noisy data to denoised data, and finally outputting the denoised
results [8]. Chen proposed an automatic segmentation algorithm for brain tumor MRI
images based on an improved U-Net. Introducing residual blocks in U-Net to replace
convolution blocks and adding attention modules to skip connections enables the model to
converge faster during training and focus on the area to be segmented to obtain a better
actual segmentation effect [9]. Wang proposed a superpixel segmentation method based on
the U-Net network. This method embeds a norm layer after the convolution layer of each
feature scale in the U-Net network, which is used to enhance the sensitivity of the network
to parameters and effectively improve the segmentation accuracy of the medical image
superpixels [10]. Jahn developed a method based on a neural network that can jointly
estimate the spectral masks of all frequencies, and then estimate the cross-power spectral
density matrix of speech and noise, so that the signal and noise can be accurately identified
during beamforming [11]. Therefore, the neural network has an immeasurable ability for
target recognition. Compared with the fuzzy recognition of conventional beamforming, if
the deep neural network is combined with beamforming, it may obtain better results. Thus,
this paper combines the U-Net network with beamforming, which can accurately identify
the signal under the condition of a low signal-to-noise ratio. The lowest signal-to-noise
ratio is improved from —40.6 dB to —48 dB compared to the traditional method. In addition,
the deep neural network realizes the conversion of graph to graph, that is, both the input
and the output are two-dimensional images. For the learning (training) process of a neural
network, what the dataset learns is particularly important, as the quality of the dataset
determines the learning of the network and the quality of the prediction results.

2. Method and Implement
2.1. Traditional Beamforming Methods

In the traditional methods, the CBF is used for angular decomposition, but this method
has insufficient spatial resolution and poor noise adaptability. Therefore, in 2011, T.C. Yang
introduced a deconvolution algorithm called Richardson-Lucy for high-power spectral
estimation [12]. Deconvolution has been widely used in geological mapping and other
complex environments [13]. Su et al. proposed a subspace vector deconvolution (SVD)
method based on the deconvolution algorithm to improve its robustness [14].

In the frequency domain, depending on how the signal arrives, the receiver gets the
signal from:

R =V * Ssource + Nhoise (1)

where V represents a matrix of steering vectors with M rows and N columns; Sgource denotes
the source signal of length N; Nj,oise denotes the noise in the background and Nygjse is the
same size as V. In the time domain, Ny;ee is generally bigger than V * Sgoyree. To eliminate
the disadvantage brought by the Ny matrix, a Fourier series is used to highlight the
frequency characteristics in Equation (2):

XR(k) = N;Ol R(n) expfj(zﬂ/N)kn 2
The received data in Equation (1) can be expressed by the following Equation (3):

P= Sicleal ® K+ Ng (3)
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where ® means a Kronecker product; P replaces R as mentioned above, which stands for
the blurred data; S;geq) represents the ideal signal in the signal process; K represents PSF
with the same size as V; Ng is white Gaussian noise.

For Poisson noise distribution, the likelihood probability of the desired S;ge, can be
expressed as:

p( P|Sidea1)P = HXN (Sideal b K)XB(X) exp[— (Sideal ® K>X]B(X)! (4)
Bp(x) = Poisson((Sigea © K) () 5)

In order to obtain the solution of the above equation, the power function needs to be
minimized:
Sideal” = argmin E(Sigeal) (6)

E(Sideal) = Y _[(Sideal ® K) — P x 10g(Sigeat ® K)] (7)

Equation (7) is called Kullback-Leibler divergence (relative entropy). The Lucy—
Richardson algorithm needs two prerequisites: received data, PSF, and ideal data must
be nonnegative; the first two data must integrate to 1. The prerequisites mean that the
RL algorithm has two features: nonnegative and energy retention. By controlling the
preconditions, the iteration of the solution can be expressed as:

ot
Sicleal’[Jrl = Sidealt [KP/ (Sideal' ®K) @

where t represents the number of iterations, which varies with different inputs. For the
original discrete Fourier transform, a discrete signal of finite length can be expressed as:

X(k) =Y N x(m)YR, k=0, 1,...,N—1 )

m=0
Ylﬁ}n — e—j27T/N (10)

Then, the PSF can be replaced by:

1 T 2
Xi= Y| k) v (11)
where | denotes the length of data.
M H
Pp=Y) " Xiw'A (12)

The Plancherel theorem can acquire the strongest direction of all sensors inEquation (12),
in which Py represents the power of beamforming depending on different theta, w is the
weight vector of the beamforming, and A corresponds to Equation (2).

2.2. Processing of Array Angle Recognition Based on Neural Network

U-Net was originally proposed by Ronneberger in 2015 and applied to medical cell
segmentation [15]. Prior to that, the field of computer vision used fully connected (FCN) for
image segmentation. Ronneberger proposed a more ‘elegant’ fully convolutional network,
whose structure is divided into two parts, an encoder and a decoder, and the shape is
exactly like the ‘U’ letter, thus it was named U-Net.

The following part briefly introduces the two important components of U-Net, namely,
the encoder and the decoder.

Assuming that the initial input image size is a 572 x 572 grayscale image, after two
convolution kernels of 3 x 3 x 64 (64 3 x 3 convolution kernels, to obtain 64 feature maps),
the convolution operation becomes 568 x 568 x 64 in size. Then, a 2 x 2 max pooling
operation is performed to yield 248 x 248 x 64, and the above process is repeated four
times. Each time the first 3 x 3 convolution operation after pooling is performed, the



Sensors 2022, 22, 7909

40f13

number of 3 x 3 convolution kernels exponentially increases. When the bottom layer is
reached, that is, after the 4th maximum pooling, the image becomes 32 x 32 x 512 in size,
and then two 3 x 3 x 1024 convolution operations are performed, finally resulting in a
28 x 28 x 1024 size. The above operations constitute the downsampling process.

At this time, the size of the image is 28 x 28 x 1024. Firstly, we perform a 2 x 2
deconvolution operation to change the image to a 56 x 56 x 512 size. Then, we copy and
crop the image before the corresponding maximum pooling layer, and deconvolve the
image obtained by stitching it together to get a 56 x 56 x 1024 size image, and then perform
a3 x 3 x 512 convolution operation. We repeat the above process four times, and in the
first 3 x 3 convolution operation after each stitching, the number of 3 x 3 convolution
kernels is doubled. When the top layer is reached, that is, after the 4th deconvolution, the
image becomes 392 x 392 x 64 in size. The image is copied and cropped, and then stitched
to obtain a size of 392 x 392 x 128. Subsequently, two 3 x 3 x 64 convolution operations
are performed to get an image of 388 x 388 x 64 size, and finally, we performal x 1 x 2
convolution operation. The above steps constitute the upsampling process.

The deep neural network used in this paper has a similar structure to the classic
U-NET (Figure 1) and is also divided into four downsamplings and four upsamplings.
Each convolution kernel is 3 x 3 x 64, the pooling layeris 2 x 2, and the activation function
is ReLU.

Input 28 e w2
image
- i e
‘123 128 256 178 '
256 256 512 258 '
|->|->| -1~
H T = Conv 3x3, Relu
== (H=-E=-N
| R 1 § Max pool 2x2
= -y == 1

= Conv 1x1

Figure 1. U-Net Network Structure Diagram.

Initially, the sampling frequency was set to 500 Hz, the underwater sound speed was
1500 m/s, the total length of the array was 1 km, the number of array elements was 101
equally spaced in the 1 km array, and the sampling time was 3600 s.

Ship trajectory generation process: within random distances of 20-100 km, and a
random angle of —55~+55, distance-time domain datasets were generated. These are then
preprocessed by the conventional beamforming (CBF) method and converted into the
azimuth-time domain. The azimuth(angle) and time are the horizontal and vertical axes of
the image, respectively. The time sampling rate is set to every 30 s, and the angle sampling
rate is set to every 1 degree, that is, a 121 x 120 image is generated, and this image is
used as the original input of the network. The actual trajectory of the ship is used as a
network label (known). Then we put the original input datasets and network labels into the
training module, where the total number of samples is 100 (1000 samples and 100 samples
are pre-generated for testing; the network learning effect is the same, because the sample
generation takes a long time (one sample takes nearly 300 s), so using 100 samples can save
a lot of time and still achieve the training effect). The training set is 70%, the validation set
is 30%, and the epoch is set to 200.
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3. Data Example
3.1. Noise-Free Conditions

The preprocessed time-angle map is used as the input of the network, and the known
real ship trajectory map (that is, the real time-angle map) is taken as the label of the network
and put into network training.

It can be seen from the Figure 2 that the CBF method and the deconvolution method
have low resolution (the recognition result is shadowy and blurry) for the identification
of the ship’s trajectory (azimuth), and they do not meet the current requirements for high-
precision detection. Meanwhile, the U-Net neural network used in this paper greatly
improves the angular resolution through its training, and the final prediction results are
basically consistent with the original real data (clear and without shadows), which proves
the effectiveness of the network.

Network Deconvolu-  Network Network
ion prediction

Raw data  input(CBF)
o |

Time/min

o, Theta/
Figure 2. Comparison of angle recognition results by different methods under noise-free conditions,
the input of the network (the abscissa is the angle, and the ordinate is the time, which are the same
below), deconvolution method, the prediction of the network, and the network label (true trajectory).

3.2. Noisy Conditions

Considering that in practical applications, the array reception is affected by a series of
environmental factors, it is not practical to test only at a noise-free level, therefore, we take
the actual noise into account.

Marine environmental noise is caused by natural and human factors, such as sea
surface wind and waves, underwater undercurrent surging, ship operation, wind power
project construction and operation periods, and submarine construction operations. The
sound wave signal forms a relatively complex background noise field after reflection and
absorption associated with seawater, sea level, seabed, etc. The academic community
generally believes that ship noise and windborne noise are the two main components of
this noise. The former mainly affects the noise in the middle and low frequency bands
(10-500 Hz), and the latter mostly influences the noise in the higher frequency bands (500
to 25,000 Hz). In addition to the above two major components, in the low frequency band
(1-100 Hz), tides, surges, waves, large-scale turbulence, and distant earthquakes and storms
all contribute to marine environmental noise [16—18].

Finally, referring to the article published by Wenz [14] in 1962, we regard wind noise
as environmental noise, which is simulated according to the empirical formula summed up
by the Wenz curve for the wind noise of different energy levels. The empirical formula of
wind noise is as follows:

G(f) = —A«lg(f) +b (13)
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Among them, G(f) represents the final noise level in dB; f represents the frequency; A
and b are affected by the environment, and the values of A and b are different in different
environments. For the convenience of the experiment, we take different values of A and b
respectively, which represent the noise of different energy levels.

The above empirical formula is the wind noise on the sea surface. In fact, the sensors
we deploy are generally under the sea surface, where the impact of the wind noise is not
significant, so the noise added to the simulation is larger.

Finally, different levels of noise are added, and the signal-to-noise ratio is introduced
(the same energy level of noise, the distance between the sensor position, and the distance
of propagation will eventually lead to a large difference in the signal-to-noise ratio), and
the advantages and disadvantages of the traditional method and the network method
are compared.

3.2.1. Test One—When the Signal-to-Noise Ratio Is —26.78 dB (Relatively High)

When the value of A in the empirical formula is 14.2 and the value of b is 86.3, the
noise level is relatively small, and the signal-to-noise ratio is relatively high.

It can be seen from the Figure 3 that when the noise with the b value of 86.3 in the
empirical formula is added, the SNR is —26.78 at this time. The deconvolution method
and the input of the network (data after CBF) can roughly identify the angle, but the
angle resolution is not high, and the prediction result of the neural network is completely
consistent with the label (real data), showing that the network is very helpful for the
improvement of angular resolution, and the prediction accuracy is also high.

Network

Network
inp prediction

Ut CBF) Network
1

label

Deconvolu-
tion

. Raw data

Time/min
s

s N
Number Theta/

Figure 3. Comparison of angle recognition results between different methods when the signal-to-
noise ratio is —26.78. From left to right: raw data (the abscissa is the sensor number, and the ordinate
is the time), the input of the network (the abscissa is the angle, and the ordinate is the time, the same
below), deconvolution method, the prediction of the network, and the network label (true trajectory).

3.2.2. Test Two—When the Signal-to-Noise Ratio Is —33.57 dB~—37.18 dB (Relatively
Slightly Lower)

When the value of A in the empirical formula is 14.2, and the value of b is 91.3, it is
equivalent to increasing the noise and reducing the signal-to-noise ratio.

It can be seen from the Figure 4 that when the noise with the b value of 91.3 energy
level in the empirical formula is added, the deconvolution method and the input of the
network can also identify the approximate angle, and both show a gradual blurring trend;
however, the network can still improve the angle resolution, that is, the network output is
still highly accurate, and the prediction accuracy is also extremely high.
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Figure 4. (a,b) are respectively the angle recognition results and prediction results of different
methods under different signal-to-noise ratio conditions. (a,b) from left to right: original data (the
abscissa is the sensor number, and the ordinate is the time), the input of the network (the abscissa
is the angle, and the ordinate is the time, which is the same below), deconvolution method, the
prediction of the network, and the network label (true trajectory).

3.2.3. Test Three—When the Signal-to-Noise Ratio Is —40.6 dB~—43.05 dB (Relatively Low)

Here, the value of A in the empirical formula is 14.2 and the value of b is 96.3.

It can be seen from the Figure 5 that when the noise with the b value of 96.3 in the
empirical formula is added, the information identified by the deconvolution method is
overwhelmed by the noise, and the trajectory cannot be identified at all by the naked eye.
At this time, the network learning ability is not greatly affected.
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Figure 5. Comparison of angle recognition results of different methods for different levels of signal-

to-noise ratio. From left to right: original data (the abscissa is the sensor number, and the ordinate is
the time), the input of the network (the abscissa is the angle, and the ordinate is the time, which is the

same below), deconvolution method, network prediction, network label (true trajectory).

3.2.4. Test Four—When the Signal-to-Noise Ratio Is —44.27 dB~—50.35 dB (Relatively

Extremely Low)

Here, the value of A in the empirical formula is 14.4, and the value of b is 96.3.

It can be seen from the Figure 6 that when the signal-to-noise ratio is lower than
—43 dB, the network’s ability to recognize the angle gradually decreases, and there are
artifacts. Until the signal-to-noise ratio reaches —50 dB, the network’s recognition ability is

completely invalid.
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After sorting out the experimental data, the concept of accuracy is introduced, that
is, we correlate the prediction results of CBE, deconvolution, and U-NET with the real
trajectory (label), and if the error range between the result and the real trajectory is within
the spatial resolution (1 degree), the prediction/recognition is considered accurate, and
conversely, the prediction/recognition is wrong. Finally, the ratio of all correctly predicted
quantities to total quantities is calculated. Figure 7 below shows the accuracy change of
different methods under different signal-to-noise ratio conditions.

Network  peconvolu-  Network Network
, Rawdata " input(CBF) tion prediction bl
: = -,
=
£
~
(] 30 i
S
o
O oo —ec—so 0 30 60 6030 0 0 60 -s0-30 0 50 60
Sensor R
Number Theta/
(a) SNR = -44.27
- Network
Raw data Decqolu
0
£
£
=
U 30
£
',—

|edcon

'
-60-30 0 30 60 -80-30 0 30 60 -60-30 0 30 60 -0 -30 0O 30 60

Number Theta/*®

(b) SNR = -46.36

Figure 6. Cont.
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Figure 6. (a-d) show the angle recognition results and prediction results of training different methods
under different signal-to-noise ratio conditions. (a—d) from left to right: original data (the abscissa
is the sensor number, and the ordinate is the time), the input of the network (the abscissa is the
angle, and the ordinate is the time, which is the same below), deconvolution method, the network
predictions, network labels (true trajectories).
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Figure 7. Graph of accuracy versus signal-to-noise ratio, in which the red line represents the decon-
volution method, the black line represents the CBF method, and the blue line represents the U-Net
method proposed in this paper.

To sum up, when the values of A and b in the empirical formula are different, the
signal-to-noise ratio changes greatly, and the difference between the deconvolution method
and the network identification method is also large. Among them, under the condition of
no noise, both the traditional method and the proposed network can learn the label data
well, and the prediction result is consistent with the label. Meanwhile, after adding noise,
when the signal-to-noise ratio is higher than —33.5 dB, the identification of the network is
consistent with the label, and the traditional deconvolution method is also effective; when
the signal-to-noise ratio is lower than —33.5 dB, the deconvolution method gradually blurs
and fails, but the network identification is still accurate, until the signal-to-noise ratio is as
low as —43 dB. The information in the deconvolution method and the U-Net network input
is completely overwhelmed by noise; the deconvolution method basically fails, and at this
time, the accuracy of the network decreases slightly, and some small artifacts appear in the
network identification. When the signal-to-noise ratio is lower than —43 dB, the network
identification ability gradually declines, but it can still identify a part of the trajectory
information; until the noise ratio is lower than —50 dB, the network fails completely.

4. Discussions and Conclusions

The orientation recognition of underwater sound sources is a hot research topic in
hydroacoustics. The existing conventional beamforming method (CBF) has a certain
efficiency in the identification of ship trajectories, but there are still problems, such as
inaccuracy and low resolution. In this paper, we use the U-Net deep neural network to
train and learn the preprocessed time-angle ship trajectories and put the pregenerated
label dataset into the network. According to the final prediction results of the network, in
the absence of noise, the U-Net network can accurately identify the specific orientation
of the ship’s trajectory. Compared with CBF, the angular resolution is greatly improved.
After adding wind noise, when the signal-to-noise ratio is higher than —43 dB, the U-Net
network can learn and predict the true trajectory of the ship; when the signal-to-noise ratio
is lower than —43 dB, the noise is completely drowned out by the true trajectory, and the
U-Net network can also partially identify the true trajectory of the ship, accompanied by
a few artifacts. When the signal-to-noise ratio reaches —50 dB, the learning ability of the
network becomes completely invalid.

The deconvolution methods compared in this paper have certain conditions of appli-
cability conditions, that is, when the difference between the energy level of the target and
the energy level of the interference is large (usually 40 dB), these methods are effective, but
for the background noise simulated in this paper, they are no longer applicable. At the



Sensors 2022, 22, 7909 12 of 13

same time, the neural network method proposed in this paper is more accurate and effec-
tive. Therefore, compared with the traditional method, our U-Net neural network method
reduces the lower limit of the signal-to-noise ratio to —48 dB, which has a significant effect
on the improvement of angular resolution.

Compared with the traditional methods, the neural network is data driven and does
not rely on a priori assumptions, but has requirements on a known label dataset. The deep
neural network used in this paper is based on U-Net. Subsequent experiments may verify
the recognition of the target trajectory angle under noisy conditions by different types of
neural networks, and compare the similarities, differences, advantages, and disadvantages
of each network.
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