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Abstract: In this paper, multispectral pedestrian detection is mainly discussed, which can contribute
to assigning human-aware properties to automated forklifts to prevent accidents, such as collisions,
at an early stage. Since there was no multispectral pedestrian detection dataset in an intralogistics
domain, we collected a dataset; the dataset employs a method that aligns image pairs with different
domains, i.e. RGB and thermal, without the use of a cumbersome device such as a beam splitter,
but rather by exploiting the disparity between RGB sensors and camera geometry. In addition, we
propose a multispectral pedestrian detector called SSD 2.5D that can not only detect pedestrians but
also estimate the distance between an automated forklift and workers. In extensive experiments, the
performance of detection and centroid localization is validated with respect to evaluation metrics
used in the driving car domain but with distinct categories, such as hazardous zone and warning
zone, to make it more applicable to the intralogistics domain.

Keywords: automated forklifts; intralogistics; collision avoidance; pedestrian detection; multispectral;
2.5D detection

1. Introduction

According to the paper [1], forklifts were the sole cause of 78 work-related fatalities
and 7290 non-fatal injuries requiring days away from work in 2020. To prevent accidents
caused by humans, automated forklifts play a crucial role in automated logistics. How-
ever, automated forklifts cannot prevent accidents entirely; accidents may occur when
automated forklifts fail to recognize workers due to factors such as lighting conditions and
occluded or truncated workers. Therefore, it is necessary to incorporate human aware-
ness into automated forklifts so that they can operate effectively in the aforementioned
challenging environments.

Pedestrian detection is one of the important technologies that can be used to assign
a human-aware property to automated forklifts in order to avoid unexpected accidents,
such as collisions, at an early stage. Typically, pedestrian detection for automated forklifts
can be simply performed with RGB cameras, but RGB cameras are not robust to low
illumination, complex background, and irregular lighting conditions, resulting in failure
under these conditions. For this reason, research on multispectral pedestrian detection
has been conducted in autonomous driving [2–4] and visual surveillance [5], utilizing
RGB cameras to capture abundant content information and thermal cameras to capture
infrared radiation. Utilizing the benefits of each camera, these studies were able to increase
discriminability between instances by using rich content information from RGB cameras
and could successfully detect pedestrians in a variety of challenging environments by using
the environmental robustness of thermal cameras.

Despite the advantages of multispectral pedestrian detection models, it is challenging
to implement them in the real-world. For example, in multispectral setups, aligned image
pairs are preferred to reduce annotation costs and enhance detection performance; however,
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it is difficult to align RGB and thermal images due to the dissimilar nature of the two
domains. Specifically, a disparity between image coordinates occurs during the process of
projecting the same 3D information into different 2D image coordinates. The disparity can
be calibrated by matching pixel pairs in parallel regions that are rectified by transforming
epipolar lines that lie between the two images. In this case, cost matching between pixel
intensities is required, but this cannot be accomplished easily due to the modality gap
between the RGB and thermal domains. For this reason, in the KAIST dataset, which is the
most well-known benchmark dataset for multispectral pedestrian detection, a beam splitter
is used to overlay RGB and thermal images in the same image coordinates to produce a
pair of registered images. Although this method was effective at aligning images, it could
not be used for practical applications due to the configuration of the sensor, which requires
a beam splitter that is too cumbersome and sensitive to small changes and vibrations.

To this end, in this paper, we present a pixel-level aligned dataset taken with four
cameras equipped on a real driving automated forklift, as shown in Figure 1. In the dataset,
an image registration technique is used to obtain aligned RGB and thermal image pairs
without the use of a cumbersome device by taking advantage of the disparity between RGB-
RGB images and camera geometry. Using this method, we acquire a pixel-level aligned
multispectral pedestrian dataset for automated forklifts captured with stereo multispectral
sensors and a real driving automated forklift for intralogistics. The distances between
the camera and pedestrians are then annotated based on the location of the pedestrian
in the image and stereo-camera characteristics. Specifically, the dataset comprises 19.4 k
frames including 20.2 k pedestrians with occlusion labels depending on how much the
pedestrian is occluded as follows: (1) no-occlusion (0%); (2) partially-occluded (0–50%);
(3) strongly-occluded (50–100%).

Figure 1. The camera system mounted on the actual automated forklift (Red box).

In addition, we propose a 2.5D multispectral pedestrian detector, namely SSD 2.5D,
which is capable of detecting pedestrians and simultaneously localizing them in 3D space
in order to avoid workers and prevent collisions. The proposed model is based on SSD,
a widely used baseline network in the field of multi-spectral pedestrian detection; conse-
quently, it is designed to take multiple inputs, i.e., RGB and thermal images, and combine
RGB and thermal features in middle convolution layers. For centroid localization of pedes-
trians, we added a centroid regression branch to localize the centroid of pedestrians in 3D
space, i.e., the distance between a forklift and workers. To validate the proposed model,
we employ commonly used evaluation metrics in pedestrian detection, including average
precision (AP) and log-average-miss-rate (MR) to evaluate detection performance, and per-
cent error and average localization precision (ALP) to evaluate localization performance.
On top of that, we define subcategories, such as hazardous zone and warning zone, based
on whether the pedestrian is closer or further than a braking distance, and evaluate the
proposed model in relation to the criterion.
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1.1. Related Works

This paper mainly focuses on multispectral pedestrian detection and related datasets
for indoor applications in order to attribute a human-aware characteristic to automated
forklifts. Therefore, we will not cover all vision-guided vehicle research, but we will discuss
multispectral pedestrian detection datasets, algorithms, and indoor applications. For an
overview of vision-guided vehicles, please refer to the survey papers [6,7].

1.1.1. Multispectral Pedestrian Detection Datasets

Hwang et al. [8] proposed the KAIST multispectral dataset, which consists of 95,328
fully overlapping RGB-thermal image pairs that have been optically aligned using a beam
splitter. The KAIST dataset has been utilized by many researchers due to the absence of a
discrepancy problem. However, the sensor pack used in the dataset is too cumbersome,
making practical application of the dataset difficult. In order to mitigate the issue, datasets
collected with practical sensor configurations [9,10] have also been utilized; however, they
contain misaligned RGB and thermal image pairs and are limited to driving road scenarios.
In the meantime, Jia X. et al. introduced the LLVIP dataset [5] for visual surveillance,
which consists of 16,836 RGB-thermal image pairs, and all image pairs are precisely aligned
in time and space. Despite the fact that the dataset is accurately aligned and contains a
sufficient number of image pairs, it is still unsuitable for pedestrian detection on automated
forklifts due to the characteristics of automated forklifts. First, automated forklifts typically
operate indoors (e.g., warehouses), so datasets that only account for outdoor scenarios
are not best suited for pedestrian detection on automated forklifts. Second, datasets for
automated forklifts should include various viewpoints because automated forklifts are
constantly in motion. However, the LLVIP dataset was only captured outdoors, and the
camera within the dataset is stationary, as the dataset is intended for visual surveillance.
Martin-Martin et al. [11] made an egocentric robot equipped with several sensors, such
as LiDAR, RGB-D, RGB, 360-degree fish-eye cameras, etc., and collected indoor/outdoor
datasets on the university campus. Although they utilized various sensors with a real
commercial robot and included both indoor and outdoor scenes in the dataset, they did
not include a thermal camera, so the dataset cannot be used to train models that must
operate in low-light environments. In addition, the aforementioned datasets only employed
monocular cameras for each sensor domain, whereas a stereo setup is more advantageous
for research purposes. To the best of our knowledge, there are only two datasets [12,13]
obtained from stereo setups for both RGB and thermal domains. However, none of these
datasets pertain to intralogistics, nor do they disclose datasets.

1.1.2. Multispectral Pedestrian Detection Algorithms

Since the release of the KAIST dataset [8], numerous multispectral pedestrian methods
for all-day vision have been proposed. J. Li et al. [14] designed four Faster-RCNN [15] based
DNN architectures to combine RGB and thermal features at various stages, and empirically
analyzed the results to determine the most effective fusion method. To achieve low latency
for real-world applications, Roszyk et al. and Cao et al. [16,17] conducted similar experi-
ments with a different architecture baseline, YOLOv4 [18]. According to the findings of
these three studies, Halfway Fusion, which combines RGB and thermal branches in middle
convolution layers, yields the best results regardless of the base architecture. On top of this
knowledge, many studies have proposed multispectral pedestrian detection algorithms and
have worked on how to effectively fuse two modalities [2–4]. However, these approaches
to multispectral pedestrian detection are limited to outdoor road scenes and have not been
verified for indoor applications, despite the fact that majority of automated forklifts operate
in indoor warehouses.

1.1.3. Pedestrian Detection Algorithms for Intralogistics

Liu et al. [19] collected a custom dataset and designed DNN architectures for accurate
recognition of warehouse surroundings without having to add environmental landmarks.
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Linder et al. [20] proposed a YOLO-based RGB-D fusion method that calculates the 3D
localization of humans for intralogistics in addition to detection results. To be specific,
they adopt YOLOv3 as a base architecture and design a model that fuses RGB and RGB-
D features in middle convolution layers and additionally outputs the centroid location
of pedestrians in RGB-D data. In addition to the architecture, they propose the use of
synthetic datasets in training and a depth-aware augmentation, a variant of the zoom-in
and zoom-out augmentations used in YOLOv3, and achieve state-of-the-art performance
on their intralogistics subset. However, the aforementioned methods do not incorporate
thermal images and are therefore significantly affected by illumination changes depending
on circumstances.

2. Materials and Methods
2.1. Proposed Multispectral Pedestrian Dataset

This section will discuss synchronization, stereo camera calibration, image alignment,
the annotation procedure, and the characteristics of the presented dataset.

2.1.1. Multi-Modal Camera Configuration

The proposed sensor system consists of two RGB cameras and two thermal cameras,
as depicted in Figure 2, and the gigabit ethernet (GigE) type is used to achieve a fast shutter
speed. To collect the dataset, frame-grabbing software was used, such as FlyCapture
SDK for RGB and eBus SDK for thermal images, which were provided by the camera
manufacturers. The following is a summary of specific hardware information for the
proposed sensor system.

• 2 × PointGrey Flea3 color camera (FL3-GE-13S2C 1288 × 964, 1.3 MP, Sony ICX445)
GigE 84.9(H) × 68.9(V) with Spacecom HF3.5M-2 Lens 3.5 mm

• 2 × FLIR A35 thermal camera (320 × 256, 7.5 13 µm GigE 63(H) × 50(V) with 7.5 mm.

Figure 2. The sensor configuration (Left). The system wiring diagram (Right), which is used to
supply power to the cameras and synchronize them hardware-wise. GND and VCC are represented
by the black and red lines, respectively. Synchronization signals originate from Thermal 1 and are
transmitted to Thermal 2 via Internal Trigger (Blue line). Then, the Thermal 2 camera distributes
synchronization signals via External Trigger to RGB 1 and RGB 2. (Green line).

In most cases, GigE-type cameras are powered by power over ethernet (PoE), which
is one type of Ethernet power supply. However, the proposed sensor system leverages
general-purpose input-output (GPIO) which is an alternative way to supply power in
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consideration of lightweight and portability. 14.4V 4C lithium polymer battery is used,
and the wiring diagram of GPIO is shown in Figure 2. In order to connect multiple cameras
simultaneously to a portable laptop, which has a limited number of ports, an Ethernet-
to-USB converter and a USB hub are included in the proposed sensor pack. In addition,
the MacBook Pro 2012 Late with USB 2.0 is used to acquire images from four distinct
cameras without significant packet loss. Ethernet-to-USB3.0 adapter and USB3.0 hub
specifications are summarized as follows.

• j5create USB3.0 Gigabit Ethernet Adapter (JUE130).
• j5create USB3.0 HUB (JUH377).

2.1.2. Multi-Modal Sensor Synchronization

For multiple cameras, images must be synchronized precisely; otherwise, significant
performance degradation may occur. In the proposed camera setup, each image from
multiple cameras is hardware-wise synchronized to overcome the limitations caused by an
accumulated error when using software-based synchronization methods on a timestamp
basis. As shown in Figure 2, this is accomplished by connecting four cameras using a
master-slave interface. The signal for synchronization originates from one of the thermal
cameras, which is referred to as self-master, and is transmitted to the other thermal camera,
which is referred to as external-master. The signal is then simultaneously distributed to both
RGB cameras by the external-master. As a result, four cameras can share synchronization
signals, which contributes to the reduction of synchronization error; this direct method of
reducing synchronization error is considered a more accurate method of synchronizing
cameras than timestamp-based software methods. Figure 2 and Table 1 illustrate the
configuration of the setup and the specifications of each camera, respectively.

Table 1. Camera Configuration.

RGB 1,2 Thermal 1 Thermal 2

Width 1288 320 320
Height 964 256 256

Sycn. Mode Mode 14 Self Master External Master
VCC 4 1 1

Ground 5 2 1
Sync. In 4(GPIO 3) x 5

Sync. Out x 3 3
Image Format Raw8 Mono8 Mono8
Shutter Speed 15 x x

2.1.3. Multi-Modal Sensor Calibration

Stereo system calibration must be performed by matching image correspondences in
both modalities in order to calibrate multispectral cameras. However, a general checker-
board is not visible in the infrared domain, unlike conventional stereo systems. Therefore,
Line-board [21], a copper grid pattern board, was utilized to maintain a high contrast in
thermal images, as copper lines are more conductive than background areas. By heating the
board for a few seconds with a blow dryer or other heat source, the checkerboard maintains
a uniform thermal distribution despite its simplicity.

As shown in Figure 3, all images for the calibration are captured at a distance of 0.5 m
from the checkerboard to handle a wider range of lens distortion with fewer images. Due to
the differing viewpoints of the cameras, it is difficult to cover all areas of the checkerboard,
resulting in an imprecise calibration, especially near the edge lines. To alleviate the issue,
we performed additional calibration by adjusting the distance between the checkerboard
and camera during the image capturing process.
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Figure 3. For 0.5m distance, every image is divided into four square-shaped insets to be able to cover
all areas on the image when performing a camera calibration (Left). Likewise, sixteen insets are used
for 1m distance (Right).

2.1.4. Multi-Modal Sensor Alignment

Sensor alignment is important in a multispectral setup that uses both RGB and thermal
cameras, as it makes information readily available at visually dissimilar but semantically
alike locations on images. The two most frequent approaches to aligning two images are a
homography matrix and a disparity map. In the case of a homography matrix, it is assumed
that the transformation relationship between images is based solely on the planar areas
of the ground or objects. However, a higher degree of freedom is necessary because the
target to be aligned is all regions of images containing various forms of instances, which
implies that there is a limit to matching all pixels with planar assumption alone. In contrast,
a disparity map indicates the extent of misalignment between corresponding pixels in an
image pair, allowing for robust matching regardless of the degree of freedom. Nonetheless,
in a multispectral setting, it is difficult to obtain corresponding points using pixel intensity-
based matching methods due to the visual representation difference between images
from different sensors, which leads to inaccurate disparity. In this section, to solve the
preceding problems, a disparity approximation scheme is introduced for robust alignment
independent of degrees of freedom while matching corresponding pixels between multiple
sensors more accurately.

In general, obtaining a disparity map between images captured by two RGB cameras
begins with the elimination of sensor calibration-induced distortion. After that, the epipolar
lines are calculated based on the epipole of the two images determined from extrinsic
parameters of two sensors obtained during the sensor calibration procedure, and then the
epipolar lines are rectified to lie horizontally to each other. As a result, the candidates for
corresponding pixels are located in a horizontal area of the same height in the opposite
image. Finally, the disparity map can be computed following a cost-matching operation
that selects corresponding pixels from the candidate pool in the rectified images. In this
way, cost matching after rectification is a commonly used order in calculating a disparity,
and if this order is simply applied to the multispectral setup, it can be formulated as
Equation (1). v and t refer to images acquired from RGB cameras and thermal cameras,
undistorted and resized at the same resolution, respectively. ωv·t refers to transformation
via a rectification matrix between the image pairs. φ〈·, ·〉 refers to a function that performs
a cost matching given two inputs, and it leverages the widely used Semi-Global Matching
(SGM) [22] method. dv→t refers to a disparity map containing the extent of misalignment
to overlap the corresponding points from v and t.

dv→t = φ〈ωv·t(v), ωv·t(t)〉 (1)

However, as previously indicated, data acquired from different sensors in a multi-
spectral setup depict the same scene differently in terms of pixel intensity, so utilizing the
existing cost matching algorithm that assumes input images are all in the same RGB domain
leads to a very imprecise output due to the intensity imbalance. This issue is circumvented
by exploiting the disparity between RGB sensors estimated from our synchronized multi-
spectral configuration. Specifically, the disparity map dv(l)→v(r) between left RGB v(l) and
right RGB v(r) images can be calculated because the inputs do not deviate from the assump-
tion of the cost matching function, and in this case, dv(l)→v(r) has the same resolution as v(l)
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and v(r). To approximate the disparity between the RGB camera and the thermal camera
by converting dv(l)→v(r), the inverse transformation of the rectification applied to v(l) is
performed on dv(l)→v(r) to generate a disparity of raw images. Consequently, the disparity
dv(l)→t(l) between different sensors is determined by applying the rectification operation
between v(l) and t(l) (left thermal camera) to the inverse transformed dv(l)→v(r). This
procedure can be formulated as Equation (2), and two images from multi-modal sensors
are aligned through pixel-level translation using the estimated disparity.

dv(l)→v(r) = φ
〈

ωv(l)·v(r)(v(l)), ωv(l)·v(r)(v(r))
〉

dv(l)→t(l) = ωv(l)·t(l)

(
ω−1

v(l)·v(r)

(
dv(l)→v(r)

))
(2)

2.1.5. Annotation

All images, 19,420 per camera, were manually annotated with Computer Vision
Toolbox [23] by highly experienced computer vision researchers using the following heuris-
tic rules:

• Only images captured by a single RGB camera are annotated, as the rest of the images
can be interpreted using the same annotation after being geometrically aligned using
the direct linear transformation (DLT), which includes rotation and translation.

• To obtain more accurate centroid distance annotations, we modified the SGM hyper-
parameters and then employed a hole-filling method to reduce error. After manually
removing outliers, we used the average depth value surrounding the centroid pixel of
each pedestrian.

• For a more specific annotation class, we defined three class labels, each of which repre-
sents information about what the instance contains, as follows: (1) person; (2) people;
(3) background.

• Occlusion information is also included for each annotated instance based on the degree
of occlusion, which is defined, as follows: (1) no-occlusion (0%); (2) partially-occluded
(0–50%); (3) strongly-occluded (50–100%), respectively. This information is crucial for
real-world applications, as all circumstances must be taken into account to prevent a
collision.

2.1.6. Considerations Made during Dataset Collection Process

In the KAIST dataset, they used a braking distance range when cars have a typi-
cal driving speed, analyzed the corresponding height sizes in pixels when a pedestrian
is approximately 1.7 m tall, and used the sizes to establish subcategories to determine
performance differences based on the size of pedestrians. However, directly using the
same criterion is not reasonable due to the distinguishing features of cars and forklifts.
Specifically, forklifts are relatively slower than cars. According to industry standards and
guidelines ANSI B56.1 [24], there is no such a strict regulation but it is recommended that
the speed of indoor forklifts should not exceed 10 km/h, and even some companies limit
the speed to 5 km/h [25]. Therefore, for better safety, we adopt the 5 km/h speed limit and
define subcategories based on the braking distance at 5 km/h, as follows: (1) hazardous
zone when the distance of pedestrians is closer than the braking distance; (2) warning zone
when the distance of pedestrians is greater than the braking distance.

In order to calculate the braking distance at 5 km/h and the corresponding height
size of pedestrians in pixels, we first analyzed the characteristics of forklifts. Forklifts
are designed to transport heavy objects, such as containers and palettes. In other words,
heavy payloads can have a substantial effect on the braking distance of forklifts, resulting
in a different braking distance from that of cars. Consequently, the braking distance of
forklifts can be calculated using the velocity, total weight including payloads, and the
floor status [26]. However, the theoretical braking distance and the actual braking distance
may differ for a variety of reasons, including inaccurate measurements, the shape of
payloads, the drag force, etc. Therefore, we applied linear interpolation to statistical values
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presented in the article [26] to determine the actual braking distance at 5 km/h, and we
believe this is reasonable because the statistical values nearly follow a linear distribution.
As a result, the braking distance of forklifts operating on a flat, dry concrete surface or
equivalent is approximately 2.2 m at 5 km/h, and the corresponding height size is about
320 pixels in our dataset domain. Consequently, we set 320 pixels as a threshold value
when determining the subcategories we defined, i.e., hazardous zone and warning zone.
Moreover, for autonomous vehicles, it is preferable to narrow down the candidate pool
based on their sizes, as detecting too small pedestrians is redundant when braking distance
is taken into account. Therefore, we set the height range of the “warning zone” to be
between 55 and 320 pixels, and the height of the “hazardous zone” to be greater than
320 pixels.

In addition, the distance traveled while a driver responds to an emergency is approxi-
mately 4.17 m [26]. Ideally speaking, automated forklifts do not need human supervision,
so the distance traveled while a driver responds to an emergency does not have to be
considered. However, for automated forklifts that still need human supervision and for
a safety margin, we determined the reasonable distance range to be from 0 meters to the
sum of two distances 5.63 m + 4.17 m = 9.8 m. Therefore, when capturing images, the dis-
tance of pedestrians is mostly set between 0 and 10 m, which corresponds to the braking
distances when the forklift is at a standstill and at its speed limit, including the human’s
response time.

2.2. Proposed 2.5D Multispectral Pedestrian Detection Algorithm

SSD [27] is regarded as one of the most fundamental architectures for pedestrian
detection among single-stage detectors. In SSD, default boxes and multi-scale features are
used, and this strategy achieved remarkable performance in light of the trade-off between
speed and accuracy. Since the advent of SSD, many recent works [2,28] have also used
the main concepts that were introduced in SSD. Therefore, to make it more general, we
developed 2D and 2.5D multispectral pedestrian detectors based on SSD for baseline
performance and validated the presented dataset using these detectors. To achieve the
objective, we first modified SSD to take multi-modal inputs. In particular, in contrast to
single-modal models, multispectral detectors take RGB and thermal images as inputs to
extract meaningful embedding features from them. Therefore, we design two independent
CNN layers to extract features from both modalities and fuse them in middle convolution
layers, as it is shown in Figure 4. For the fusion method, we employ the same technique
called Halfway Fusion referring to previous studies [14,16,17] to combine features from both
modalities. Specifically, the feature fusion process can be simply formulated, as follows:

f i
m = F(0.5f i

R + 0.5f i
T) (3)

where i indicates the index of the layer i ∈ {4_3, 6, 7, 8, 9, 10} in which the feature fusion
occurs. In Equation (3), multi-modal features f i

m can be calculated by adding weighted RGB
features 0.5f i

R and thermal features 0.5f i
T . As a result, six multi-modal features f i

m that have
the same resolution and channels as the input features from both modalities are obtained.

Predj = Conv4_3
j ( f 4_3

m )⊕ Conv6
j ( f 6

m)⊕ · · · ⊕ Convi
j( f i

m)⊕ · · · ⊕ Conv10
j ( f 10

m ) (4)

where f i
m refers to multi modal features and j ∈ {bbox, cls, loc} indicates one of the fol-

lowing: (1) bounding box regression bbox; (2) classification cls; (3) 2.5D localization loc.
The multi-modal features f i

m are fed into the detection head and independently pass
through the ith convolution layer Convi

j with a 3 × 3 kernel, padding size 1, and the

different number of output channels depending on j. For example, Convi
bbox has 6 × 4

output channels, which represent the estimated offsets in cartesian coordinates, i.e., x, y,
w and h, for six anchor boxes. Similarly, Convi

cls has 6 × 2 output channels, including
background and person class for six anchor boxes, and the number of output channels of
Convi

loc is 6 × 1, which represents the centroid depth values for six anchor boxes. The six
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independent feature maps Convi
j( f i

m) are all concatenated in a channel axis with a concate-
nation operator ⊕. As a result, the aggregated feature map Predj containing all default box
information from low-level features to high-level features for j is obtained.

Then loss terms for bounding box regression, classification and 2.5D localization can
be calculated, as follows:

Lbbox =
1
N

N

∑
k=1
|Predk

bbox − gk
bbox| (5)

Lcls = −
1
N

N

∑
k=1

(
gk

cls · log
(

Predk
cls

)
+
(

1− gk
cls

)
· log

(
1− Predk

cls

))
(6)

Lloc =
1
N

N

∑
k=1
|Predk

loc − gk
loc| (7)

where k, N and log indicate the index of the anchor boxes, the number of anchor boxes
in Predj, and the natural logarithm, respectively. gk

j is the ground truth corresponding to

Predk
j . Finally, the total loss term Ltot can be simply calculated by the weighted summation

of three loss terms, as follows:

Ltot = αLbbox + βLcls + γLloc (8)

where α, β, γ are the weight factors of each loss term. In all experiments, α, β, γ are all set
to 1.

Figure 4. Architecture of the 2.5D detection model proposed. The proposed 2.5D detection model
receives RGB and thermal images as inputs, fuses both features in middle convolution layers by
adding two features after multiplying both features by a weight factor of 0.5, and employs six different
fused features to perform pedestrian detection and centroid localization. In this manner, the proposed
2.5D detection model can exploit low-level and high-level features. Then the detection head processes
the six feature maps independently before concatenating all predicted outputs along a channel axis
for use in the final detection results.

3. Results
3.1. Proposed Multispectral Pedestrian Dataset

In order to determine the advantages of the proposed dataset, we compare the pro-
posed dataset to previous benchmark datasets used in thermal pedestrian detection in
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Table 2. First, the LSI, KMU, CVC-14, and PTB-TIR datasets only collected thermal images,
so texture information is insufficient due to the absence of an RGB image. In order to
take advantage of RGB images, the KAIST dataset, which consists of pixel-level aligned
multispectral image pairs, was proposed; the KAIST dataset has been used as a benchmark
dataset for multispectral pedestrian detection. However, all of the aforementioned datasets
were captured in a street domain for driving cars, making it challenging to apply them to
other domains. In the meantime, the LLVIP dataset was proposed, which is a large-scale
aligned pixel-level dataset for a visual surveillance domain. However, the LLVIP dataset is
still not suitable for automated forklifts and the intralogistics domain due to the domain
gap between indoor and outdoor applications. In addition to the limitations, the aforemen-
tioned datasets only include mono cameras in their camera sensor packs, whereas stereo
cameras are more advantageous for stereo-vision research.

Table 2. Comparisons between pedestrian datasets.

Training Testing Properties

Peds Images Peds Images Frames RGB Ther. Depth Occ. Labels Moving Cam Vid. Seqs Aligned Domain

KAIST [8] 41.5 k 50.2 k 44.7 k 45.1 k 95.3 k Mono Mono - Streets
CVC-14 [9] 4.8 k 3.5 k 4.3 k 1.4 k 5.0 k Mono Mono - - - Streets

LSI [29] 10.2 k 6.2 k 5.9 k 9.1 k 15.2 k - Mono - - Streets
KMU [30] - 7.9 k - 5.0 k 12.9 k - Mono - - - Streets

PTB-TIR [31] - - - - 30.1k - Mono - - -
LLVIP [5] 33.6 k 12.0 k 7.9 k 3.5 k 15.5 k Mono Mono - - - Surveillance

FLIR-ADAS [10] 22.3 k 8.8 k 5.7 k 1.3 k 10.1 k Mono Mono - - - Streets
Ours 12.6 k 7.3 k 20.6 k 12.2 k 19.5 k Stereo Stereo Intralogistics

Distribution and Characteristics of Proposed Dataset

To validate the alignment method applied to the proposed dataset, we visually com-
pare the RGB-thermal image pairs before and after the alignment method is applied by
overlaying RGB and thermal images. As a result, as shown in Figure 5a, RGB-thermal
image pairs are not properly aligned, particularly for the pedestrian in the image. After ap-
plying the alignment method, however, it is demonstrated that the RGB-thermal image
pair is pixel-level aligned (Figure 5b), making the proposed dataset more applicable to
practical applications.

Occlusion is one of the most important issues that must be addressed in order to
prevent an accident. For instance, if a warehouse worker is severely occluded by objects,
automated forklifts may fail to detect the worker or estimate the distance accurately, result-
ing in a collision. Consequently, it is essential to know how many occluded pedestrians the
dataset contains. For these reasons, we included occluded pedestrians in all size ranges,
as shown in Figure 6.

In order to design a depth regression model, we analyze the correlation between depth
and the size of bounding boxes, i.e., width and height, as shown in Figure 7. According
to MonoLoco [32], if the height of pedestrians is consistent, there should be no ambiguity,
and their distribution is linear depending on age and gender groups. However, in real-
world applications, the height of pedestrians cannot be a fixed value because of their
individual identities. Therefore, it is worthwhile to analyze the relationship between the
size of bounding boxes and depth to determine what types of features to employ for a
depth regression model.
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Figure 5. RGB and thermal images are overlaid to determine whether they are overlapping each
other. The pedestrians in RGB and thermal images (Red box) are misaligned (a), but after applying
the proposed method, they are pixel-level aligned (b).

Figure 6. Distribution of the number of pedestrians over their height sizes in pixels depending on
occlusion labels (Left). Distribution of the number of pedestrians depending on their centroid depth
value (Right Top). Distribution of the centroid locations of pedestrians (Right Bottom). # refers to
’the number’ in the figure.

Figure 7. Relationships between depth and width (Left) and depth and height (Middle). Height
distribution in the warning zone and hazardous zone (Right).



Sensors 2022, 22, 7953 12 of 16

3.2. Results of Proposed 2.5D Multispectral Pedestrian Detection Algorithm

In this section, the outcomes and implications of the proposed 2.5D multispectral
detection algorithm will be discussed. In contrast to conventional detection algorithms,
the proposed algorithm includes a 2.5D localization branch that estimates the distance of
detected pedestrians’ centroid w.r.t. the camera’s position in order to inform automated
forklifts of the 3D location of warehouse workers.

Before discussing the results of the proposed 2.5D detection model, we would like to
briefly discuss our first attempt to obtain the centroid distance in this section. In Section 3.1,
it is demonstrated that centroid distance values correlate with the width and height of
pedestrians. In addition, according to MonoLoco [32], the localization error caused by
variations in human height at different camera distances follows nearly a linear distri-
bution depending on age and gender groups. Therefore, the most naive approach is to
directly regress the centroid distance from the given bounding box coordinates, so we first
designed a centroid regression model consisting of fully connected (FC) layers with and
without activation functions in order to compare the performance of centroid regression
models with linear and non-linear representation capabilities, which we call naive centroid
regressor (NCR).

Then, as described in Section 2.2, we designed a 2.5D localization model by adding
an additional branch to the SSD 2D model to determine which method between the naive
approach and the additional branch to SSD is more effective for 2.5D localization.

3.2.1. Experiment Setups

The implementation is based on SSD in PyTorch with a 2.10 GHz Intel(R) Xeon(R)
Gold 5218R CPU and an NVIDIA GeForce RTX 3090 GPU. As a backbone network for
feature extraction, VGG16 pre-trained on ImageNet is used. The aspect ratio for anchor
boxes are set to 1/1 and 1/2 with fine scales [20, 21/3, 22/3], while scale levels are set to 40,
80, 160, 200, 280, and 360. The model is trained using stochastic gradient descent (SGD)
with initial values for learning rate, momentum, and weight decay of 0.001, 0.5, and 0.0005,
respectively. For the naive centroid distance regression, two FC layers followed by dropout
and batchnorm are used. The first FC layer takes 4 inputs, namely x, y, w, and h, while the
subsequent FC layer receives the 64 inputs and outputs a centroid depth value.

3.2.2. Evaluation Metrics

To evaluate detection performance, average precision (AP) and log-average miss-rate
(MR) [33] are adopted. These two metrics are commonly used for evaluating detection
performance of multispectral pedestrian models [2–4]. Particularly, MR is utilized more
frequently for pedestrian detection, where a low miss rate is essential for driving safety.

In addition, we employ percent error to evaluate the predicted centroid distance
referring to [34].

Percent Error =
1
N

N

∑
n=1

∣∣∣∣Zn − Ẑn

Zn

∣∣∣∣× 100% (9)

where N is the number of predicted bounding boxes. Zn and Ẑn indicate the predicted
and ground truth distance values between the centroid of nth pedestrian and camera
position, respectively. We also adopted average localization precision (ALP) [32] for the
same purpose. ALP considers a prediction to be correct if the error between the predicted
centroid distance and the ground truth centroid distance is less than a threshold.

3.2.3. Experimental Results

To verify the proposed 2.5D multispectral detection model, we first evaluate detection
performance w.r.t. AP and MR depending on modalities, i.e., RGB, thermal, and multi,
and dimensions, i.e., 2D and 2.5D. As it is shown in Table 3, the detection performance of
the model is at its peak when the centroid regression branch is added and both RGB and
thermal modalities are employed. The results indicate that the proposed 2.5D model can
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not only localize detected pedestrians in 3D space, but also maintains or even outperforms
the detection performance of 2D models by exploiting both modalities.

Table 3. Detection performance of the proposed SSD 2.5D model w.r.t. AP and MR on the proposed
dataset. Warn. and Hazard. refer to the warning zone and hazardous zone, respectively. The highest
performance is highlighted and bolded.

Model Modality
Detection Result [%]

AP (↑) AP Warn. AP Hazard. MR (↓) MR Warn. MR Hazard.

SSD 2D RGB 61.6 61.5 45.2 4.10 4.31 6.39

SSD 2D Ther. 59.5 59.2 41.2 4.41 4.69 7.82

SSD 2D Multi. 65.2 65.2 40.5 3.53 3.59 8.81

SSD 2.5D RGB 60.4 60.4 43.3 3.79 3.93 5.52

SSD 2.5D Ther. 58.1 58.1 41.4 4.76 5.0 7.71

SSD 2.5D
(Ours) Multi 65.7 65.7 45.7 3.24 3.33 7.83

Then, to validate the centroid regression performance of the proposed model, we
evaluate the naive centroid regression model (NCR) and the centroid regression result from
the proposed 2.5D detection model (SSD 2.5D) w.r.t. percent error and ALP. Consequently,
it is demonstrated that NCR with activation functions outperforms NCR without activation
functions, implying that the distribution between box information, namely x, y, w, and h,
and the depth value is non-linear, due to age, gender, and height of pedestrians. Therefore,
it is verified that NCR with activation functions that have a non-linear representation capa-
bility is more suitable for centroid localization. On the other hand, it is demonstrated that
the centroid localization performance of the proposed SSD 2.5D model even outperforms
NCR with activation functions for all modalities in terms of both percent error and ALP,
as it is shown in Tables 4 and 5. We believe this is due to the fact that the proposed SSD
2.5D model can account for semantic information when regressing the centroid depth value.
The qualitative results of the detection and localization depending on modalities are shown
in Figure 8. In conclusion, if you want to design a model that can simultaneously detect
pedestrians and localize them in 3D space, i.e., centroid regression, it is more advantageous
to design a model that can take semantic information around the detected pedestrian and
regress the centroid distance given the surrounding features based on experimental results.

Table 4. Percent Error of the proposed SSD 2.5D model in comparison with the naive centroid
regression method w.r.t. percent error. w/o Act. and w Act. refer to without activation functions and
with activation functions, respectively. The highest performance is highlighted and bolded.

Model Modality
Percent Error [%] (↓)

Total 1 m 2 m 3 m 4 m 5 m >5 m

NCR (w/o Act.) GT 38.25 3.97 25.88 29.48 31.46 34.30 36.27

NCR (w Act.) GT 17.06 1.23 7.63 11.17 12.27 14.18 15.56

SSD 2.5D RGB 6.16 0.36 4.27 5.84 5.98 6.08 6.1

SSD 2.5D Ther. 6.27 0.36 4.2 5.94 6.1 6.22 6.24

SSD 2.5D
(Ours) Multi 4.09 0.22 2.86 3.71 3.84 3.96 4.02
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Table 5. Average Localization Precision (10%). The highest performance is highlighted and bolded.

Model Modality
Average Localization Precision (↑)

Total 1 m 2 m 3 m 4 m 5 m >5 m

NCR (w/o Act.) GT 0.1587 0.0222 0.1406 0.2106 0.2001 0.1832 0.1712

NCR (w Act.) GT 0.4348 0.0044 0.5103 0.5166 0.5103 0.4851 0.4616

SSD 2.5D RGB 0.7958 0.5268 0.7151 0.7534 0.7709 0.7828 0.7930

SSD 2.5D Ther. 0.7594 0.4675 0.6793 0.7196 0.7359 0.7453 0.7546

SSD 2.5D
(Ours) Multi 0.8571 0.5446 0.7984 0.8383 0.8483 0.8552 0.8593

Figure 8. Qualitative results of 2D detection and 2.5D localization. (a) Detection and localization
results depending on modalities when occlusion occurs due to viewpoint differences; (b) Detection
and localization results depending on modalities under a low illumination condition.

4. Conclusions

In this paper, we have discussed multispectral pedestrian detection to assign a human-
aware characteristic to automated forklifts in order to prevent collisions in intralogistics.
To achieve this, we first collect a multispectral pedestrian dataset in a real warehouse using
four camera sensors mounted on a moving forklift. The dataset employs a method that
aligns image pairs from different domains, i.e., RGB and thermal, without the use of a
cumbersome device such as a beam splitter, instead utilizing the disparity between RGB
sensors and camera geometry. In addition, we propose a multispectral pedestrian detector
named SSD 2.5D that can not only detect pedestrians but also estimate the distance between
an automated forklift and workers. In extensive experiments, the performance of detection
and centroid localization is validated with respect to evaluation metrics used in a driving car
domain but with distinct categories, such as hazardous zone and warning zone, to make it
more applicable to the intralogistics domain. In conclusion, it is confirmed that the proposed
2.5D multispectral detection model SSD 2.5D provides the best detection performance in
most cases, and outperforms all other comparisons in terms of localization performance.
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