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Abstract: Controlled environment agriculture (CEA) is an unconventional production system that is
resource efficient, uses less space, and produces higher yields. Deep learning (DL) has recently been
introduced in CEA for different applications including crop monitoring, detecting biotic and abiotic
stresses, irrigation, microclimate prediction, energy efficient controls, and crop growth prediction.
However, no review study assess DL’s state of the art to solve diverse problems in CEA. To fill this
gap, we systematically reviewed DL methods applied to CEA. The review framework was established
by following a series of inclusion and exclusion criteria. After extensive screening, we reviewed a total
of 72 studies to extract the useful information. The key contributions of this article are the following:
an overview of DL applications in different CEA facilities, including greenhouse, plant factory, and
vertical farm, is presented. We found that majority of the studies are focused on DL applications in
greenhouses (82%), with the primary application as yield estimation (31%) and growth monitoring
(21%). We also analyzed commonly used DL models, evaluation parameters, and optimizers in CEA
production. From the analysis, we found that convolutional neural network (CNN) is the most widely
used DL model (79%), Adaptive Moment Estimation (Adam) is the widely used optimizer (53%), and
accuracy is the widely used evaluation parameter (21%). Interestingly, all studies focused on DL for
the microclimate of CEA used RMSE as a model evaluation parameter. In the end, we also discussed
the current challenges and future research directions in this domain.

Keywords: smart farming; greenhouse; deep neural networks; indoor agriculture; plant factory;
protected agriculture; vertical farm; smart agriculture; deep learning

1. Introduction

Sustainable access to high-quality food is a problem in developed and developing
countries. Rapid urbanization, climate change, and depleting natural resources have raised
the concern for global food security. Additionally, the rapid population growth further
aggregate the food insecurity challenge. According to World Health Organization, the
food production needs to be increased by 70% to meet the food demand of about 10 billion
people by 2050 [1], of which about 6.5 billion will be living in urban areas [2]. A significant
amount of food is produced in the open fields using traditional agricultural practices, which
results in low yields per sq. ft of land used. Simply increasing the agricultural land is
not a long-term option because of the associated risks of land degradation, de-forestation,
and increased emissions due to transportation to urban areas [3]. Thus, alternative pro-
duction systems are essential to offset these challenges for establishing a sustainable food
supply chain.

Controlled environment agriculture (CEA), including greenhouses, high-tunnels, ver-
tical farms (vertical or horizontal plane), and plant factories, is increasingly considered an
important strategy to address global food challenges [4]. CEA is further categorized based
on the growing medium and production technology (hydroponics, aquaponics, aeroponics,
and soil-based). CEA integrates knowledge across multiple disciplines to optimize crop
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quality and production efficiency without sufficient arable land. Globally, the CEA market
has witnessed a growth of about 19% in 2020 and is projected to grow at a compound
annual growth rate of 25% during the 2021–28 period [5]. CEA market in the US is predicted
to be $3 billion by 2024, with an annual growth of about 24% [6]. Advocates of CEA claim
that the system is more than 90% efficient in water use, produces 10–250 times the higher
yield per unit area, and generates 80% less waste than traditional field production, while
also reducing food transportation miles in urban areas [3,7,8].

Despite all these benefits, the CEA industry struggles to achieve economic sustain-
ability due to inefficient microclimate and rootzone-environment controls and high costs.
Microclimate control, including light, temperature, airflow, carbon dioxide, and humidity, is
a major challenge in CEA, which is essential to produce uniform, high quantity, and quality
crops [9]. In the last decade, substantial research has been carried out on implementing
intelligent systems in CEA facilities such as nutrient solution management for hydroponic
farm [10], and cloud-based micro-environment monitoring and control systems for the
vertical farm [11]. Further, using artificial intelligence (AI) algorithms have also created new
opportunities for intelligent predictions and self-learning [12]. DL has gained significant at-
tention in the last few years due to its massive footprints in many modern day technologies.
DL algorithms applied to CEA across all units have provided insights into farmers’ support
and action. Computer vision and DL algorithms have been implemented to automate the
irrigation in vertical stack farms [13], and microclimate control [14], which facilitated the
growers to carry out a quantitative assessment for high-level decision-making.

CEA is an intensive production system, the labor is required year-round, and the
labor requirement is also significantly higher than traditional agriculture [15]. A small
indoor farm of fewer than 1500 sq. ft requires at least three full-time workers [16]. Intelli-
gent automation, however, could address these challenges. Furthermore, the crop cycle
in CEA is relatively small, therefore the timely decision to perform a specific operation
is critical. For instance, the harvest decision requires information about crop maturity,
which can be obtained using an optical sensor integrated with DL-based prediction mod-
els [17]. In recent years, research has been carried out to develop robotic systems for
indoor agriculture [18–20]. For target detection, various sensors are implemented such as
cameras [19], or LiDAR [21]. This increasing popularity of DL applications in CEA sparks
our motivation to conduct a systematic review of recent advances in this domain.

1.1. Review Scope

Table 1 presents the existing review articles covering DL applications in different
sections of agriculture [22–28]. From the table, it is evident that the reported studies
(based on the authors’ knowledge) lacks a critical overview of recent advancements in DL
methodologies for CEA. Thus, a need to review the recent works in CEA is consequential to
determine state of the art, identify current challenges, and provide future recommendations.
Figure 1 shows the bibliometric network and co-occurrence map of the author-supplied
keywords.

Table 1. Summary of the recent important related reviews.

Ref. Year Focus of Study Highlights

[22] 2018 Deep learning in agriculture 40 papers were identified and examined in the context of deep learning
in the agricultural domain.

[23] 2019 Fruit detection and yield estimation The development of various deep learning models in fruit detection and
localization to support tree crop load estimation was reviewed.

[24] 2019 Plant disease detection and classifi-
cation

A thorough analysis of deep learning models used to visualize various
plant diseases was reviewed.

[25] 2020 Dense images analysis
Review deep learning applications for dense agricultural scenes,
including recognition and classification, detection counting, and
yield estimation.
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Table 1. Cont.

Ref. Year Focus of Study Highlights

[26] 2021 Plant disease detection and classifi-
cation

Current trends and limitations for detecting plant leaf disease using deep
learning and cutting-edge imaging techniques.

[27] 2021 Weed detection
70 existing deep learning-based weed detection and classification tech-
niques cover four main producers: data acquisition, datasets preparation,
DL techniques, and evaluation metrics approaches.

[28] 2021 Bloom/Yield recognition Diverse automation approaches with computer vision and deep learning
models for crop yield detection were presented.

Our
Paper 2022 Deep learning applications in CEA Review developments of deep learning models for various applications

in CEA.

Figure 1. Bibliometric visualization produced by VOSviewer Software using the author’s specified
keywords.

1.2. Paper Organization

The article’s organization is as follows: Section 2 features the methodology of the
review process, including establishing review protocol, keywords selection, research ques-
tions formation, and data extraction. Section 3 presents the results of the review, including
data synthesis and answers to the core research questions. Existing challenges and future
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recommendations are discussed in Section 4. The overall conclusions of the review is
presented in Section 5.

2. Research Methodology
2.1. Review Protocol

In this research, we adhered to the SLR standard approach as described by Chitu
Okoli and Kira Schabram [29]. Using this approach, we identified, specified, and analyzed
all the publications in DL for CEA applications from 2019 to date, in order to present a
response to each research question (RQ) and identify any gaps. Planning, conducting,
and reporting the review are the three parts we divided the SLR process into. Figure 2
depicts the actions taken at each level of the SLR. During the planning phase we identified
RQs, relevant keywords, and databases. After the RQs were prepared, the search protocol
was created, along with which databases and search strings should be used. Search
string for each database was generated using selected keywords. Wiley, Web of Science,
IEEEXplore Springer Link, Google Scholar, Scopus, and Science Direct are the databases
used in this study. The databases were chosen to ensure adequate coverage of the target
sector and to increase the scope of the assessment. By going through all the eligible studies,
pertinent studies were chosen for the conducting review stage. Significant information
was retrieved from the publications that met the selection/inclusion criteria in response to
the RQs. Extracted data from selected publications were used to answer the RQs during
the reporting stage, and the outcomes were presented using accompanying visuals and
summary tables. This type of literature analysis demonstrates the most recent findings of
DL research in CEA.

Figure 2. Planning and reporting process of systematic literature review (SLR).

2.2. Research Questions

Identifying RQs is essential to the systematic review. At the start of the study, we set
the RQs up to adhere to the review procedure. The searched articles were examined from a
variety of aspects, and the following RQs were established.

• RQ.1: What are the most often utilized DL models in CEA, and their benefits and
drawbacks?

• RQ.2: What are the main application domains of DL in CEA?
• RQ.3: What evaluation parameters are used for DL models in CEA?
• RQ.4: What are the DL backbone networks used in CEA applications?
• RQ.5: What are the optimization methods used for CEA applications?
• RQ.6: What are the primary growing media and plants used for DL in the CEA?
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2.3. Search Method

In order to focus the search results on papers that were specifically relevant to the
SLR’s scope, a methodical approach was taken. The original search was conducted using a
generalized search equation that included the necessary keywords “deep learning” AND
“controlled environment agriculture” OR “greenhouse” OR “plant factory” OR “vertical
farm” to obtain the expanded search results. From the search results, a few studies were
selected to extract the author supplied keywords, and synonyms. The discovered keywords
produced the general search string/equation: (“controlled environment agriculture” OR
“greenhouse” OR “plant factory” OR “vertical farm” OR “indoor farm”) AND (“deep
learning” OR “deep neural network”). All seven databases were searched using the same
keywords. Following search strings were used for different databases:

• Science Direct: (“controlled environment agriculture” OR “greenhouse” OR “plant
factory” OR “vertical farm”) AND (“Deep Learning”) NOT (“Internet of Things” OR
“GREENHOUSE GAS” OR “gas emissions” OR “Machine learning”)

• Wiley: (“controlled environment agriculture” OR “greenhouse” OR “plant factory”
OR “vertical farm*”) AND (“deep learning”) NOT (“Internet of Things” OR “green-
house gas” OR “Gas emissions” OR “machine learning” OR “Review”)

• Web of Science: (AB = (((“controlled environment agriculture” OR “vertical farm” OR
“greenhouse” OR “plant factory”) AND (“deep learning” ) NOT ( “Gas Emissions” OR
“Internet of Things” OR “Greenhouse Gas” OR “machine learning” OR “Review”))))

• Springer Link: (“deep learning”) AND (“Greenhouse” OR “controlled environment
agriculture” OR “vertical farm” OR “plant factory”) NOT (“Internet of things” OR
“review” OR “survey” OR “greenhouse gas” OR “IoT” OR “machine learning” OR
“gas emissions”)

• Google Scholar: “greenhouse” OR “vertical farm” OR “controlled environment
agriculture” OR “plant factory” “deep learning”—“Internet of Things”—“IoT”—
“greenhouse gas”—“review”—“survey”—“greenhouse gases”—“Gas Emissions”—
“machine learning”

• Scopus: TITLE-ABS-KEY ((“deep learning”) AND (“vertical farm*” OR “controlled
environment agriculture” OR “plant factory” OR “greenhouse”)) AND (LIMIT-TO
(PUBYEAR, 2022 ) OR LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO ( PUBYEAR, 2020)
OR LIMIT-TO ( PUBYEAR, 2019 )) AND (LIMIT-TO (LANGUAGE, “English” )) AND
(EXCLUDE (EXACTKEYWORD, “Greenhouse Gases”) OR EXCLUDE ( EXACTKEY-
WORD, “Gas Emissions”) OR EXCLUDE (EXACTKEYWORD, “Machine Learning”)
OR EXCLUDE (EXACTKEYWORD, “Internet of Things”))

• IEEEXplore: (“controlled environment agriculture” OR “greenhouse” OR “plant
factory” OR “vertical farm”) AND (“Deep Learning”) NOT (“Internet of Things” OR
“GREENHOUSE GAS” OR “gas emissions” OR “Machine learning”)

After all the results were processed, a total of 751 studies were found using the
aforementioned search strings.

2.4. Selection/Inclusion Criteria

To establish the limits for the SLR, the inclusion Criteria (IC) and exclusion Criteria
(EC) were defined. To choose the pertinent research based on the IC and EC, the studies
that were obtained from all databases were carefully examined. The search outcomes from
several databases were combined in a spreadsheet and compared to all of the IC and EC.
A study must meet all of the ICs and ECs in order to be considered for the review. Upon
passing the IC and EC, all studies that could respond to the RQs were deemed pertinent
and chosen. The ICs and ECs are presented below:
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• IC.1: Peer-reviewed journal publications and conference papers.
• IC.2: Studies published during the period between 2019 and April 2022.
• IC.3: Studies should offer answers to the RQs.
• EC.1: Study unrelated to DL for CEA.
• EC.2: Full text not accessible.
• EC.3: Duplicate or obtained from another database.
• EC.4: Publication is a review or survey article.
• EC.5: Publications such as book reviews, editorials, and summaries of conferences

and seminars are not subjected to peer review.
• EC.6: Studies published before 2019.

Applying the ICs and ECs produced a total of 72 eligible articles were selected, which
were then shortlisted for additional examination. An overview of article search and se-
lection procedure is shown Figure 3. The distribution of selected papers from different
databases is shown in Table 2.

Table 2. Distribution of papers selected from different databases.

Source Number of Papers in the
Initial Search

Eligible Papers with
Duplicates

Google Scholar 330 27
Scopus 127 25

Science Direct 119 19
Wiley 40 4

IEEEXplore 51 9
SpringerLink 44 4

Web of Science 40 17

Total 751 105

2.5. Data Extraction

Tables 3 and 4 presents the summary of studies that fulfilled the selection criteria. The
necessary data required to answer the RQs, were extracted from the selected studies. The
extracted data were summarized using a spreadsheet application. In the spreadsheet, each
study was assigned to separate row, and the column was assigned to different parameters.
Tasks, DL model, training networks, imaging system, optimizer, pre-processing augmen-
tation, application domain, performance parameters, growing medium, and publication
year, journal, and country, as well as challenges were retrieved from the selected studies.
To properly respond to the RQs, all of the extracted data were categorized and synthesized
into various classifications. The following sections present the results of this SLR.
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Table 3. Summary of studies for deep learning applications in greenhouses.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

Climate
Condition
Prediction

Transpiration
rate hydroponic ANN ANN NS Adam 31,033 data

points NS
RMSE = 0.07–0.10-

gm−2 min−1,
R2 = 0.95–0.96

[30]

temp (°C),
humidity

deficit (g/kg),
relative

humidity (%),
radiation

(W/m2), CO2
conc.

soil-based RNN-TCN LSTM-RNN NS Adam NS NS

RMSE (Dataset1):
10.45(±0.94), RMSE

(Dataset2): 6.76
(±0.45),

RMSE(Dataset3): 7.40
(±1.88)

[31]

temperature,
humidity,

CO2
concentration

soil-based ANN NS NS Adam NS NS

ANN at 30 min, R2 =
(temp: 0.94, humidity:

0.78, CO2: 0.70),
RMSEP = (temp: 0.94,
humidity: 5.44, CO2:
32.12), %SEP = (temp:
4.22, humidity: 8.18,

CO2: 6.49)

[32]

NARX

NARX at 30 min, R2
= (temp: 0.86,

humidity: 0.71, CO2:
0.81),

RMSEP = (temp: 1.32,
humidity: 6.27, CO2:
28.30), %SEP = (temp:
5.86, humidity: 9.42,

CO2: 7.74)
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Table 3. Cont.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

RNN-LSTM

RNN-LSTM at 30
min, R2 = (temp: 0.96,
humidity: 0.8, CO2:

0.81),
RMSEP = (temp: 0.71,
humidity: 5.23, CO2:
28.30), %SEP = (temp:
3.15, humidity: 7.85,

CO2: 5.72)

temp.,
humidity,

pressure, dew
point

soil-based RNN-LSTM NS NS NS NS NS Temperature, RMSE
= 0.067163 [33]

temp.,
humidity,

illumination,
CO2 conc.,

soil temp. and
soil moisture

soil-based LSTM NS NS NS NS NS

Temp., RMSE = 0.38
(tomato), 0.55

(cucumber), 0.42
(pepper)

[34]

Humidity, RMSE =
1.25 (tomato), 1.95
(cucumber), 1.78

(pepper)

Illumination, RMSE =
78 (tomato), 80
(cucumber), 30

(pepper)

CO2, RMSE = 3.2
(tomato), 4.1

(cucumber), 3.9
(pepper)
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Table 3. Cont.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

Soil temp., RMSE =
0.07 (tomato), 0.08
(cucumber), 0.045

(pepper)

Soil moisture, RMSE
= 0.14 (tomato), 0.30

(cucumber), 0.15
(pepper)

Yield
Estimation

corn crop and
leaf weeds

classification
soil-based Dual PSPNet ResNet-50

rotation, shift
(height,
width,

vertical,
horizontal,

pixel
intensity),
zoom and

Gaussian blur

SGD with
Nesterov

Momentum
6906 images RGB

Balanced Accuracy
(BAC) = 75.76%,
Dice-Sorensen

Coefficient (DSC) =
47.97% (for dataset

A+C)

[35]

green pepper
detection soil-based Improved

YOLOv4-tiny
CSP

DarkNet53

Gaussian
noise

addition, HSL
adjustment,
scaling and

rotation

NS 1500 images RGB
P: 96.91%, R: 93.85%,
AP: 95.11%, F1 Score:

0.95
[36]

cherry tomato
clusters
location

detection,
tomato’s
maturity

estimation

soil-based SSD MobileNet V1
horizontal flip
and random

crop

Adam or
RMSprop 254 images RGB

IoU = 0.892 (for
tomato’s cluster

location detection),
RMSE: 0.2522 (for
tomato’s maturity

estimation)

[37]

tomato organs
detection soil-based Improved

FPN ResNet-101 NS SGD 8929 images RGB mAP: 99.5% [38]
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Table 3. Cont.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

mushroom
recognition soil-based Improved

SSD MobileNet V2

flip, random
rotation,
random

cropping, and
random size,
brightness
and tone

conversion,
random
erasure,
mixup

NS 4600 images RGB
P: 94.4%, R: 93%,

mAP: 93.2%, F1 Score:
0.937, Speed: 0.0032s

[39]

tomato
detection soil-based Mask R-CNN ResNext-101 NS SGD 123 images RGB P: 93%, R: 93%, F1

Score: 0.93 [40]

mushroom
localization soil-based YOLOv3 DarkNet53 NS NS 500 images RGB

Average prediction
error = 3.7 h, Average

detection = 46.6
[41]

tomato
detection hydroponic Faster

R-CNN ResNet-101 gamma
correction momentum 895 images RGB, HSV detection accuracy:

88.6% [42]

cherry tomato
detection soil-based SSD MobileNet

rotating,
brightness
adjustment
and noising

RMSProp 1730 images RGB AP = 97.98% [43]

InceptionV2 AP = 98.85%

SSD300 Adam AP = 92.73%

SSD512 AP = 93.87%
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Table 3. Cont.

Application
Classification Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

plant
classification soil-based The

LNet270v1 custom

random
reflection (X

and Y), Shear
(X and Y), Scale

(X and Y),
Translation (X

and Y), rotation

Adam 13,766 images RGB

mean accuracy:
91.99%, mIoU: 86.5%,

mean BFScore:
86.42%

[44]

tomato
detection soil-based Mask R-CNN ResNet-50 None used SGD 123 images RGB

Average result @ 0.5,
(ResNet-50,

P = 84.5%, R = 90.5%,
F1 Score = 0.87)

[45]

ResNet-101

Average result = 0.5,
(ResNet-101,

P = 82.5%, R = 90%,
F1 Score = 0.86)

ResNext-101

Average result @ 0.5,
(ResNext-101,

P = 92%, R = 93%, F1
Score = 0.925)

Lettuce
seedlings
identifica-

tion

hydroponic YOLO-
VOLO-LS VOLO

rotation,
flipping, and

contrast
adjustment

NS 6900 images RGB

Average results =
(recall: 96.059%,

Precision: 96.014%,
F1-score: 0.96039)

[46]

Fig detection soil-based YOLOFig ResNet43 NS NS 412 images RGB P = 74%, R = 88%,
F1-score = 0.80 [47]

strawberry
detection soil-based Improved

Faster-RCNN ResNet-50

brightness,
chroma,

contrast, and
sharpness

augmentation
and

attenuation

NS 400 images RGB Accuracy = 86%, ART
= 0.158s, IoU = 0.892 [48]
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Table 3. Cont.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

sweet pepper
detection soil-based SSD custom NS NS 468 images RGB, HSV

Average
Precision = (Flash-

only: 84%,
Flash-No-Flash
image: 83.6%)

[49]

tomato
detection soil-based Faster

R-CNN

ResNet-50,
ResNet-101,
Inception-
ResNet-v2

resizing, crop,
rotating,
random

horizontal
flip

NS 640 images RGB

F1 score = 83.67%
and AP = 87.83% for

tomato detection
using Faster R-CNN

with ResNet-101,
R2 = 0.87 for tomato

counting

[50]

tomato
detection soil-based SSD MobileNetv2

rotation,
translate, flip,

multipley,
noise

addition,
scale, blur

NS 1029 images RGB, HSV

mAP = 65.38%,
P = 70.12%,
R = 84.9%,

F1-score = 85.81%

[51]

YOLOv4 CSP
DarkNet53

mAP = 65.38%,
P = 70.12%,
R = 84.9%,

F1-score = 85.81%
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Table 3. Cont.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

muskmelon
detection soil-based YOLO

Muskmelon ResNet43 NS NS 410 images RGB
IoU = 70.9%, P = 85%,
R = 82%, AP = 89.6%,
F1 = 84%, FPS = 96.3

[52]

tomato
detection soil-based SSD MobileNet V2

rotation,
scaling,

translation,
flip, blur

(Gaussian
Filter),

Gaussian
Noise

NS 5365 RGB

mAP = 51.56%,
P = 84.37%, R =

54.40%, F1 = 66.15%, I
= 16.44 ms

[53]

InceptionV2

mAP = 48.54%,
P = 85.31%, R =

50.93%, F1 = 63.78%, I
= 24.75 ms

ResNet-50

mAP = 42.62%,
P = 92.51%, R =

43.59%, F1 = 59.26%, I
= 47.78 ms

ResNet-101

mAP = 36.32%,
P = 88.63%, R =

38.13%, F1 = 53.32%, I
= 59.78 ms

YOLOv4-tiny CSP
DarkNet53

mAP = 47.48%,
P = 88.39%, R =

49.33%, F1 = 63.32%, I
= 4.87 ms

Arabidopsis,
Bean,

Komatsuna
recognition

soil-based CNN ResNet-18
scaling,

rotation and
translation

Adam 2694 images RGB

mA = 0.922
(Arabidopsis), mA =

1 (Bean), mA =1
(Komatsuna)

[54]
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Table 3. Cont.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

Disease
Detection and
Classification

Tomato
(powdery

mildew (PM),
early blight)

and cucumber
(PM, downy

mildew (DM))
recognition

soil-based CNN PRP-Net

ShiftScaleRotate,
Random-

SizedCrop,
Horizon-

talFlip

SGD 4284 images RGB

Average results
(Accuracy = 98.26%,
Precision = 92.60%,

Sensitivity = 93.60%,
Specificity = 99.01%)

[55]

tomato virus
disease

recognition
soil-based SE-YOLOv5 CSPNet

Gaussian
noise

addition,
rotation,

mirroring,
intensity
random

adjustment

NS 150 images RGB, HSV

P = 86.75%, R =
92.19%, mAP@(0.5) =

94.1%,
mAP@(0.5:0.95) =
75.98, prediction

accuracy = 91.07%

[56]

cucumber PM,
DM and the
combination
of PM and

DM
recognition

soil-based Efficient Net EfficientNet-
B4

flip
(horizontal,

vertical),
rotation

Ranger 2816 images RGB

Train Accuracy =
99.22%, Verification
accuracy = 96.38%,

Test accuracy =
96.39%

[57]

Tomato (PM,
early blight),

cucumber
(PM, DM,

virus disease)
recognition

soil-based ITC-Net ResNet18 and
TextRCNN

Cropping,
Normaliza-
tion, word

segmentation,
word list

construction,
text

vectorization

Adam 1516 images RGB

Accuracy: 99.48%,
Precision: 98.90%,

Sensitivity: 98.78%,
Specificity: 99.66%

[58]
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Table 3. Cont.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

leaf mold,
tomato yellow

leaf curl
detection

soil-based CNN ResNet-50,
ResNet-101

filtering,
histogram NS 115 images RGB, HSV

Testing Accuracy =
98.61%, Validation

accuracy = 99%
[59]

spider mite
detection soil-based CNN ResNet18 NS NS 850 images

multi-
spectral,

RGB
accuracy: 90% [60]

cucumber DM
prediction soil-based LSTM NS Min-Max nor-

malization Adam 11,827 images RGB
A = 90%, R = 89%,

P = 94%, F1-Score =
0.91

[61]

tomato
disease

detection
soil-based Faster

R-CNN VGG16

resizing,
cropping,
rotation,
flipping,
contrast,

brightness,
color, noise

NS 59,717 images RGB mAP = 89.04% [62]

ResNet-50 mAP = 90.19%

ResNet-50
FPN mAP = 92.58%

various
tomato

diseases (i.e.,
leaf mold,
gray mold,
early blight,
late blight,

leaf curl virus,
brown spot)

detection

soil-based YOLO-Dense DarkNet53 NS NS 15,000 images RGB mAP: 96.41% [63]
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Table 3. Cont.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

wheat disease
detection soil-based CNN ResNet-101 cropping NS 160 plants NIR, RGB

Accuracy = 84% for
tan spot disease, 75%
for leaf rust disease

[64]

Small
Insect

Detection

Pests
(whitefly and

Thrips)
detection

soil-based TPest-RCNN VGG16 Resizing,
Spliting NS 1941 images RGB AP: 95.2%, F1 Score:

0.944 [65]

whiteflies
(greenhouse
whitefly and

cotton
whitefly)
detection

hydroponic Faster
R-CNN ResNet-50 mirroring SGD 1161 images RGB

RMSE = 5.83,
Precision = 0.5794,

Recall = 0.7892
[66]

whitefly
detection soil-based YOLOV4 CSP

DarkNet53 cropping Adam 1200 images RGB
Whitefly: (precision =
97.4%, recall = 95.7%),

mAP = 95.1%
[67]

Thrips
detection

Thrips: (precision =
97.9%, recall = 94.5%),

mAP = 95.1%

flies, gnats,
thrips,

whiteflies
detection

soil-based YOLOv3-tiny DarkNet53 cropping Adam NS RGB
average F1-score:

0.92, mean counting
accuracy: 0.91

[68]
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Table 3. Cont.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

Nutrient
Estimation

and
Detection

lead content
detection soil-based

WT-MC-
stacked

auto-
encoders

NS

standard
normalized

variable
(SNV), 1st

Der, 2nd Der,
3rd Der, 4th

Der

NS 2800 images
hyper-

spectral
data

pb content detection
= 0.067∼1.400

mg/kg, RMSEC =
0.02321 mg/kg, RM-

SEP = 0.04017mg/kg,
R2C = 0.9802,
R2P = 0.9467

[69]

soyabean leaf
defoliation
estimation

soil-based CNN AlexNet
Resizing,
Binarized,
Rotation

NS 10,000 images RGB RMSE (AlexNet) =
4.57(±5.8) [70]

VGGNet RMSE (VGGNet):
4.65 (±6.4)

ResNet RMSE (ResNet):
14.60 (±18.8)

PN: (light
level CO2

concentration,
temperature)

prediction

soil-based DNN custom NS Adam 33,000 images NS

accuracy: 96.20% (7
hidden layer with 128

units per hidden
layer), accuracy:

96.30% (8 hidden
layer with 64 units
per hidden layer)

[71]

nutrient
concentration

estimation
hydroponic CNN VGG16

width, height
shift, shear,

flipping,
zoom, scaling,

cropping

Adam 779 images RGB

Average
Classification

Accuracy (ACA) =
97.9%

[72]

VGG19

Average
Classification

Accuracy (ACA) =
97.8%
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Table 3. Cont.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing
Augmenta-

tion
Optimizer Dataset

Type
Imaging
Method Performance Ref.

Calcium
Magnesium
deficiencies
prediction

soil-based

SVM,
Random

Forest (RF)
Classifier

Inception V3 NS RMSProp 880 images RGB

Accuracy = 98.71% (for
InceptionV3 with SVM)

and 97.85% (for
Inception-V3 with RF

classifier)

[73]

VGG16 Adam

Accuracy = 99.14% (for
VGG16 with SVM) and
95.71% (for VGG16 with

RF classifier)

ResNet-50 Adam

Accuracy = 88.84% (for
ResNet50 with SVM) and

84.12% (for ResNet-50
with RF classifier)

cadmium
content

estimation
soil-based PSO-DBN NS

Savitzky-
Golay(SG) to
remove the

spectral
noise

NS 1260 images
hyper-

spectral
data

When the hidden layers
is 3, the prediction result
is as follows, R2: 0.8976,
RMSE: 0.6890, and RPD:

2.8367

[74]

Nutrient
deficiencies

(Calcium/Ca2+,
Potassium/K+,

Nitrogen/N)
classification

soil-based CNN Inception-
ResNetV2

shift,
rotation,
resizing

NS 571 images RGB

Average Accuracy =
87.27%, Average

Precision = 100%, Recall
= Ca2+: 100%, K+: 100%,

N: 100%

[75]

Auto-
Encoder NS

Average Accuracy =
79.09%, Average

Precision = 94.2%, Recall
= Ca2+: 97.6%, K+:
92.45%, N: 95.23%
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Table 3. Cont.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

Growth
Monitoring

length
estimation

and interest
point

detection

soil-based Mask R-CNN ResNet-101 NS NS 2574 images RGB

Results in 2D (Banana
Tree, AP: 92.5%, Banana

Leaves, AP: 90%,
Cucumber fruit, AP:

60.2%)

[76]

internode
length

detection
soil-based YOLOv3 DarkNet53 NS NS 9990 images RGB R:92% AP: 95%, F1

Score: 0.94 [77]

plant growth
anomalies
detection

soil-based LSTM NS filtering,
cropping Adam NS RGB, HSV

2D (P: 42% R: 71%, F1:
0.52), 3D

photogrammetry with
high resolution camera

(P: 57% R: 57%, F1:
0.57), 3D low-cost
photogrammetry

system (P: 44% R: 79%,
F1 :0.56), LiDAR (P: 5%

R: 86%, F1: 0.63)

[78]

Phytomorphological
descriptor
prediction

aquaponics CNN DarkNet53 Scaling and
Resizing

SGD with
Momentum 300 images RGB

R2(Area-DarkNet53) =
0.9858, R2(Diameter-

DarkNet53) =
0.9836

[79]

Xception

R2(Centroid
x-Xception) = 0.6390,

R2(Centroid-y-
Xception) =

0.7239
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Table 3. Cont.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

Inception
ResNetv2

R2(Major Axis-
InceptionResNetv2) =
0.8197, R2(Minor Axis-
InceptionResNetv2) =

0.7460

orchid
seedlings

vigor rating
soil-based CNN ResNet-50 Cropping,

Resizing Adam 1700 images RGB, HSV
A = 95.5%, R = 97%,

P = 94.17%, F1-Score =
0.9557

[80]

spike
detection soil-based SSD Inception-

ResNetv2 NS SGD 292 images RGB
AP@0.5 = 0.780,

AP@0.75 = 0.551,
AP@0.5:0.95 = 0.470

[81]

YOLOv3 DarkNet53 NS
AP@0.5 = 0.941,

AP@0.75 = 0.680,
AP@0.5:0.95 = 0.604

YOLOv4 CSP
DarkNet53

CutOut,
MixUp,

CutMix, Ran-
domErase

AP@0.5 = 0.941,
AP@0.75 = 0.700,

AP@0.5:0.95 = 0.610

Faster
R-CNN InceptionV2 NS Adam

AP@0.5 = 0.950,
AP@0.75 = 0.822,

AP@0.5:0.95 = 0.660

spike
segmentation ANN NS NS NS AP = 0.61

U-Net VGG16

rotation [−30
30],

horizontal
flip, and

brightness

Adam AP = 0.84

Deep-
LabV3+ ResNet-101 NS AP = 0.922
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Table 3. Cont.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

Paprika leaves
growth

conditions
classification

soil-based DNN Improved
VGG-16 rotation NS 227 images

hyper-
spectral

data
Accuracy = 90.9% [82]

VGG-16 Accuracy = 86.4%

ConvNet Accuracy = 82.3%

leaf shape
estimation hydroponic

encoder-
decoder
CNNs

U-Net

random
rotation, and

random
horizontal

spatial
flipping

Adam NS RGB

Deviation of U-Net
based estimation is
less than 10% of the

manual LAI
estimation

[83]

Robotic
Harvesting

Obstacle
Separation soil-based Mask R-CNN ResNet-101 3D HSI color

thresholding NS NS RGB Success Rate = 65.1%
(whole process) [84]

picking-point
positioning soil-based CNN custom NS NS 100 images RGB Success rate: 100% [85]

keypoints
detection soil-based TPM custom

Rotation and
brightness
adjustment

RMSprop 2500 images RGB
Qualified rate:

94.02%, Accuracy:
85.77%

[86]

pose detection Adam Accuracy: 70.05%

target
positioning
estimation

soil-based Mask-RCNN ResNet cropping NS NS RGB, Infrared

Average Gripping
Accuracy (AGA):
8.21mm, APSR:

73.04%

[87]

Others
LPDE film

lifetime
prediction

NS SVM-CNN NS NS Adam 4072 images NS NS [88]

NS: Not Specified.
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Table 4. Summary of studies for deep learning applications in indoor farms.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

Yield
Estimation

rapeseed
detection hydroponic ESPA-YOLO-

V5s CSP DarkNet

rotating,
flipping

(horizontal,
vertical)

NS 6616 images RGB
P = 94.5%, R = 99.6%,

F1-score = 0.970,
mAP@0.5 = 0.996

[89]

tomato
prediction hydroponic Improved

Mask R-CNN ResNet

random
translation,

random
brightness

change,
Gaussian

noise
addition

NS 1078 images RGB
Accuracy = 93.91%
(Fruit), Accuracy =

88.13% (Stem)
[90]

Stress
Level

Monitoring

lettuce
abnormal

leaves (yellow,
withered,

decay)

hydroponic DeepLabV3+ Xception-65
rotating,

mirroring,
flipping

NS 500 images RGB
Xception-65 (mIoU =
0.4803, PA = 95.10%,
speed = 243.4 ± 4.8a)

[91]

Xception-71
Xception-71 (mIoU =
0.7894, PA = 99.06%,
speed = 248.9 ± 4.1a)

ResNet-50
ResNet-50 (mIoU =
0.7998, PA = 99.20%,
speed = 154.0 ± 3.8c)

ResNet-101
ResNet-101 (mIoU =
0.8326, PA = 99.24%,
speed = 193.4 ± 4.0b)
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Table 4. Cont.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

water stress
classification NS CNN ResNet50 rotation,

re-scaling SGD with
momentum
/Adam
/RMSProp

800 images RGB

Average Accuracy:
ResNet-50 with

(Adam = 94.15%,
RMSProp =88.75%,
SGDm = 83.77%)

[92]

GoogLeNet
GoogLeNet with
(Adam = 78.3%,

RMSProp = 80.4%)

patch-level
detection NS YOLOv2 DarkNet19 NS

SGD with
Nesterov

Momentum 60,000 images RGB Accuracy = 87.05% [93]

pixel-level
segmentation U-Net NS

cropping,
random
jittering

Adam
mAP = 87.00%, IoU =
77.20%, Dice score =

75.02%

light stress
grading hydroponic MFC-CNN custom

90, 180, and
270-degree

rotation,
mirror

rotation, salt
and pepper
noise, and

image
sharpening

SGD 1113 images RGB
Accuracy = 87.95%
Average F1-score =

0.8925
[94]

Growth
Monitoring

plant growth
prediction NS NS NS NS NS 45 data

samples RGB
RMSE = 0.987, R2 =

0.728 for 4-7-1
network architecture

[95]
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Table 4. Cont.

Application
Classifica-

tion
Tasks Growing

Medium DL Model Networks
Preprocessing

Augmenta-
tion

Optimizer Dataset Type Imaging
Method Performance Ref.

leaf shape
estimation NS custom

Spatial
transformer

network

rotation,
scaling,

translation
Adam NS RGB PSNR = 30.61, SSIM =

0.8431 [96]

PSNR = 26.55, SSIM =
0.9065

PSNR = 23.03, SSIM =
0.8154

growth
prediction soil-based U-Net SE-ResXt101

cropping,
scaling and

padding
NS 232 plant

samples RGB F1-score = 97% [97]

plant
behaviour
prediction

hydroponic Mask R-CNN NS rotation and
scaling NS 1728 images RGB leaf area accuracy =

100% [98]

lettuce plant
biomass

prediction
hydroponic DCNN ResNet-50

rotation,
brightness,

contrast,
saturation,

hue,
grayscale

Adam 864 plants RGB

For RGBD (MAPE =
7.3%, RMSE = 1.13g),

For RGB (MAPE = 9.6%,
RMSE = 1.03g), For

Depth (MAPE = 12.4%,
RMSE = 2.04g)

[99]

growth
prediction hydroponic ANN NS NS NS NS NS

ANN: Accuracy (%) =
98.3235, F-measure (%)
= 97.5413, Training time

(sec) = 121.78

[100]

SVM

SVM: Accuracy (%) =
96.0886, F-measure(%)

= 93.4589, Training time
(sec) = 202.48

growth
prediction hydroponic Mask R-CNN ResNet-50

flipping,
cropping and

rotation
NS 600 images NS mAP = 76.9%,

AP = 92.6% [101]
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Figure 3. Article inclusion and exclusion process flowchart.

3. Deep Learning in CEA

RQ.1: What are the most often utilized DL models in CEA and their benefits and
drawbacks?

In CEA, DL models have been applied to a variety of tasks, such as crop phenotyping,
disease and small insect detection, growth monitoring, nutrient status and stress level moni-
toring, microclimatic condition prediction, and robotic harvesting, all of which require large
amounts of data for the machine to learn from. The architectures have been implemented in
various ways, including deep belief network (DBN), convolutional neural network (CNN),
recurrent neural networks (RNN), stacked auto-encoders, long short-term memory (LSTM),
and hybrid approaches. CNN, which has three primary benefits including parameter
sharing, sparse interactions, and equivalent representations, is a popular and commonly
used approach in deep learning. CNN’s feature mapping includes k filters that have been
spatially divided into several channels [102]. The feature map’s width and height are
reduced using the pooling technique. CNNs use filters to capture the semantic correlations
through convolution operations in multiple-dimensional data as well as pooling layers for
scaling and shared weights for memory reduction to evaluate hidden patterns. As a result,
the CNN architecture has a significant advantage in comprehending spatial data, and the
network’s accuracy improves as the number of convolutional layers rises.

RNN and LSTM are very useful in processing time-series data, which are frequently
utilized in CEA. The most well-known RNN variations include Neural Turing Machines
(NTM), Gated Recurrent Units (GRU), and Long-Short Term Memory (LSTM), with LSTM
being the most popular for CEA applications. Typically for data dimensionality reduction,
compression, and fusion, autoencoders (AE) are used to automatically learn and represent
the unlabeled input data. Encode and decode are two of the autoencoder’s operations.
Encoding input images yields a code, which is subsequently decoded to get an output.
The back-propagation technique is used to train the network so that the output is equal
to the input. A DBN is created by stacking a number of distinct unsupervised networks,
such as RBMs (restricted Boltzmann machines), so that each layer can be connected to
both previous and subsequent layers. As a result, DBNs are often constructed by stacking
two or more RBMs. It is significant to demonstrate that DBNs have been used in CEA
applications [74]. The benefits and drawbacks of various DL models are listed in Table 5.
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Table 5 reveals that the identified drawbacks of DL methods prevent them from becoming
canonical approaches in CEA. Each DL approach has the features that make it better suited
than the others to a certain application in the CEA. Hybrid models are said to address
the shortcomings of some of the single DL methods. The hybrid approach demonstrates
the integration of several deep learning techniques. In the publications we reviewed,
we discovered some studies that made use of the hybrid approach. Figure 4. shows a
visual breakdown of the most often used CEA approaches along with how frequently they
are applied.

Table 5. Common DL architectures with their benefits and drawbacks.

Model Ref. Advantages Disadvantages

AE [69,75]

• Excellent performance for depth fea-
ture extractions

• Do not need labeled data for training
• Saves a significant amount of time by

avoiding labeling in the case of large
datasets

• Lengthy processing time and fine tuning
• Training may be hampered by errors that van-

ishes

DBN [74]

• Unsupervised training
• High efficiency in handling hyperspec-

tral data at high dimensions
• Can simplify characteristics that are

redundant and complex through train-
ing network layer by layer

• Disable to process multi-dimensional
• Training can be prolonged and inefficient

LSTM [31,61]

• Able to capture abstract temporal fea-
tures

• Alleviate the diminishing gradient
problems

• Poor spatial features representation resulting
in classification errors

• Difficult implementation

ANN [30,32]

• Excellent for obtaining significant find-
ings from complex nonlinear data

• Can make highly accurate approxima-
tions of a vast class of functions.

• Quite robust to noise in the training
data.

• Weak stability in heavily interconnected and
complex systems

• Require many training sets

CNN [45,62]

• Ability to learn robust discriminative
features

• Ability to capture spatial correlations
• High generalization potential

• High computational cost
• Difficult parameter tuning

The following subsection classifies CEA into two categories: (1) Greenhouse, (2) Indoor
farm.

3.1. Deep Learning in Greenhouses

RQ.2: What are the main application domains of DL in CEA?
In this subsection, we present the DL models in greenhouse production for diverse

applications. Table 3 present the application domain, tasks, DL model, network, opti-
mizer, datasets, pre-processing augmentation, imaging method, growing medium and
performance of DL in greenhouse.
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Figure 4. Visual illustration of the deep learning techniques applied to controlled environment
agriculture in 2019–2022 (Focusing on the reviewed papers).

3.1.1. Microclimate Condition Prediction

Maintaining the greenhouse at its ideal operating conditions throughout all phases of
plant growth requires an understanding of the microclimate and its characteristics. The
greenhouse can increase crop yield by operating at the optimal temperature, humidity,
carbon dioxide (CO2) concentrations, and other microclimate parameters at each stage of
the plant growth. For instance, greater indoor air temperatures—which can be achieved
by preserving the greenhouse effect or using the right heating technology—are necessary
for the maximum plant growth in cold climates. On the other hand, the greenhouse effect
is only necessary in very hot areas for a brief period of around 2–3 months while other
suitable cooling systems are needed [103]. Accurate prediction of a greenhouse’s internal
environmental factors using DL approaches is one of the recent trends in CEA. In our
survey, we found 5 studies [30–34] that mentioned microclimate conditions prediction in
the greenhouse.

3.1.2. Yield Estimation

Crop detection, one of the most important topics in smart agriculture, especially in
greenhouse production, is critical for matching crop supply and demand and crop man-
agement to boost productivity. Many of the surveyed articles demonstrate the application
of DL models for crop yield estimation. The Single Shot MultiBox detector (SSD) method
was used in the studies [37,43,51,53] to estimate tomato crops in the greenhouse envi-
ronment followed by robotic harvesting. Other applications of SSD include detecting
oyster mushrooms in [39] and sweet pepper in [49]. Another DL model called You Only
Look Once (YOLO) with different modifications has been utilized in some of the reviewed
papers for crop yield estimation as demonstrated in [36,41,46,47,51–53]. As described
in [40,42,45,48,50,61], R-CNN models such as Mask-RCNN and Faster-RCNN, two of the
most widely used DL models, are used in crop yield prediction applications, especially for
tomato and strawberry. Other custom DL models for detecting crops have been proposed
in the studies of [35,38,44,54].

3.1.3. Disease Detection and Classification

Disease control in greenhouse environments is one of the most pressing issues in
agriculture. Spraying pesticides/insecticides equally over the agricultural area is the
most common disease control method. Although effective, this approach comes at a
tremendous financial cost. Techniques for image recognition using DL can dramatically
increase efficiency and speed while reducing recognition cost. As indicated in Table 3, we
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only identified various diseases of tomato and cucumber based on our assessments of the
evaluated publications. As indicated in Table 3, we identified various diseases of tomato
such as powdery mildew (PM) in [55,58,62], early blight in [55,58,63], leaf mold in [59,62,63],
yellow leaf curl [59,63], gray mold in [62,63], spider mite in [60] and virus disease in [56].
Similarly, the diseases of cucumber such as powdery mildew (PM) in [55,57,58], downy
mildew (DM) in [55,57,58,61] and virus disease in [58] are the sole diseases discussed based
on our assessments of the evaluated publications. The wheat disease stated in [64] is
another disease reported in the examined articles.

3.1.4. Growth Monitoring

Plant growth monitoring is one of the applications where DL techniques have been
applied to greenhouse production. Plant growth monitoring encompasses various areas
such as length estimation at all crop growth stages as demonstrated in [76,77], and anoma-
lies in plant growth in [78,82]. Other areas where plant growth monitoring is applied are in
the prediction of Phyto-morphological descriptors as demonstrated in [79], seedling vigor
rating in [80], leaf-shape estimation [83], and spike detection and segmentation in [81].

3.1.5. Nutrient Detection and Estimation

It is crucial for crop management in greenhouses to accurately diagnose the nutritional
state of crops because both an excess and a lack of nutrients can result in severe damage
and decreased output. The goal of automatically identifying nutritional deficiencies is
comparable to that of automatically recognizing diseases in that both involve finding the
visual signs that characterize the disorder of concern. Based on our survey, we realized
that there are few works dedicated to DL for nutrient estimation compared to most works
utilizing DL for nutrient detection. The goal of nutritional detection is to identify one
of these pertinent deficiencies, therefore symptoms that do not seem to be connected to
the targeted disorders are disregarded. The studies [69,75] employed the autoencoders
approach to detect nutrient deficiencies and lead content, respectively. CNN models were
also frequently used in applications for nutrient detection. This was demonstrated in
soybean leaf defoliation in [70], nutrient concentration in [72], nutrient deficiencies in [75],
net photosynthesis modeling in [71] and calcium and magnesium deficiencies in [73]. As
shown in [74], the cadmium concentration of lettuce leaves was estimated using a different
DL model called DBN that was optimized using particle swarm optimization.

3.1.6. Small Insect Detection

The intricate nature of pest control in greenhouses calls for a methodical approach
to early and accurate pest detection. Using an automatic detection approach (i.e., DL) for
small insects in a greenhouse is even more critical for quickly and efficiently obtaining
trap counts. The most prevalent greenhouse insects discovered in the reviewed studies are
whiteflies and thrips [65–68]. Our survey mentioned four studies for applying DL models
(mostly CNN architectures) for tiny pest detection.

3.1.7. Robotic Harvesting

Robotics has evolved into a new “agricultural tool” in an era where smart agriculture
technology is so advanced. The development of agricultural robots has been hastened by
the integration of digital tools, sensors, and control technologies, exhibiting tremendous
potential and advantages in modern farming. These developments span from rapidly
digitizing plants with precise, detailed temporal and spatial information to completing
challenging nonlinear control tasks for robot navigation. High-value crops planted in CEA
(i.e., tomato, sweet pepper, cucumber, and strawberry) ripen heterogeneously and require
selective harvesting of only the ripe fruits. According to the reviewed papers, few works
have utilized DL for robotic harvesting applications, such as picking-point positioning in
grapes [85], obstacle separation using robots in tomato harvesting [84], 3D-pose detection
for tomato bunch [86] and lastly, target tomato positioning estimation [87].
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3.1.8. Others

Other applications related to DL in CEA applications include predicting low-density
polyethylene (LDPE) film life and mechanical properties in greenhouses using a hybrid
model integrating both SVM and CNN [88].

3.2. Deep Learning in Indoor Farms

This subsection presents the main applications of the reviewed works that utilized DL
in indoor farms (vertical farms, shipping containers, plant factories, etc.,). Table 4 present
the application domain, tasks, DL model, network, optimizer, datasets, preprocessing
augmentation, imaging method, growing medium, and performance of DL in indoor farms.

3.2.1. Stress-Level Monitoring

To reduce both acute and chronic productivity loss, early detection of plant stress is
crucial in CEA production. Rapid detection and decision-making are necessary when stress
manifests in plants in order to manage the stress and prevent economic loss. We discovered
that a few DL stress-level monitoring papers are reported for plant factories. Stress level
monitoring encompasses various areas such as water stress classification [92], tip-burn
stress detection [93], lettuce light stress grading [94], and abnormal leaves sorting [91].

3.2.2. Growth Monitoring

In an indoor farm, it is critical to maintain a climate that promotes crop development
through ongoing farm conditions monitoring. Crop states are critical for determining the
optimal cultivation environment, and by continuously monitoring crop statuses, a proper
crop-optimized farm environment can feasibly be maintained. In contrast to traditional
methods, which is time-consuming, DL models are required to automate the monitoring
system and increase measurement accuracy. We found several studies used DL models
for growth monitoring in indoor farms, including plant biomass monitoring [99], growth
prediction model in arabidopsis [97], growth prediction model in lettuce [95], vision based
plants phenotyping [98], plant growth prediction algorithm [96,101] and the development
of automatic plant factory control system [100].

3.2.3. Yield Estimation

Due to its advantages over traditional methods in terms of accuracy, speed, robustness,
and even resolving complicated agricultural scenarios, DL methods have been applied
to yield estimation and counting research applications in indoor farming systems. The
domains covered by yield estimation and counting from the examined publications include
the identification of rapeseed [89] and cherry tomatoes [90].

The application distribution of DL techniques in CEA is shown in Figure 5.
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Robotic harvesting
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Figure 5. Application distribution of deep learning in controlled environment agriculture.

4. Discussion
4.1. Summary of Reviewed Studies

We observed a rapid advancement in CEA using DL techniques between 2019 and
2022, as demonstrated in Figure 6. With rising work since 2019, this illustrates the relevance
of DL in CEA. In Figure 7, we showed the distribution of published articles by various
journals. The figure shows that the journal Computers and Electronics in Agriculture
published the most DL for CEA articles (19). We also presented the country-by-country
distribution of the evaluated articles, with China accounting for 40% of the total, indicating
the highest number of publications, as shown in Figure 8. Korea and the Netherlands each
contain 10% and 7% of the papers, respectively.

2019 (12%)

2020 (21%)

2021 (42%)

2022 (25%)

Figure 6. Year-wise distribution of the publication from 2019 to April 2022.
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Figure 8. Country-wise distribution of the reviewed papers in controlled environment agriculture.

4.2. Evaluation Parameters

Our survey found that various evaluation parameters were employed in the selected
publications (RQ.3). Precision, recall, intersection-over-union (IoU), root mean square
error (RMSE), mean average precision (mAP), F1-Score, root mean square error (RMSE),
R-Square, peak signal noise ratio (PSNR), Jaccard index, success rate, sensitivity, specificity,
accuracy, structural similarity index measure (SSIM), errors, standard error of prediction
(SEP), and inference time were the most commonly used evaluation parameters for the DL
analysis in CEA. Figure 9 depicts the frequency with which the assessment parameters are
used. With 29 times, accuracy was the most frequently utilized as an evaluation measure.
Precision, recall, mAP, F1-Score, and RMSE were used at least 10 times; IoU and R-Square
were used 5 times, while the rest were used fewer than 5 times. We noticed that RMSE and
R-Square were utilized as evaluation metrics in all microclimate prediction studies. Success
rate and accuracy were used as evaluation measures for robotic harvesting applications.
With the exception of a few cases of recall, precision, mAP, and F1-score, works related
to growth monitoring applications used accuracy, RMSE, R-Square, and accuracy. RMSE,
precision, recall, mAP, F1-Score, and accuracy were commonly utilized in other applications
in the examined studies.
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4.3. DL Backbone Networks

RQ.4: What are the DL backbone networks used in CEA applications?
There are many backbone networks, but this article will only focus on the backbone

networks used in the reviewed papers, which include ResNet, EfficientNet, DarkNet, Xcep-
tion, InceptionResNet, MobileNet, VGG, GoogleNet, PRPNet. These network structures
are fine-tuned or combined with other backbone structures.

ResNet was the most often utilized network in CEA applications, according to the
survey, as illustrated in Figure 10. The ResNet architecture can overcome the vanish-
ing/exploding gradient problem [104]. When using gradient-based learning and backprop-
agation to train a deep neural network, the number of n hidden layers is multiplied by the
n number of derivatives. The vanishing gradient problem occurs when the derivatives are
modest, and the gradient rapidly diminishes as it spreads throughout the model until it
vanishes. The gradient increases exponentially as the derivatives grow, resulting in the
exploding gradient problem. A skip connection strategy is utilized in the ResNet to skip
some training layers and connect directly to the output. The benefit of utilizing the skipping
approach is that if any layer degrades the performance of the network, regularization will
skip it, preventing exploding/vanishing gradient problems.
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Figure 10. Distribution of different deep learning training networks used in controlled environment
agriculture.

The main feature of MobileNet [105] is that it uses depth-wise separable convolutions
to replace the standard convolutions of traditional network structures. Its significant advan-
tages are high computational efficiency and small parameters of convolutional networks.
MobileNet v1 and v2 are used in the reviewed articles, with v2 performing faster than v1.
ResNet, on the other hand, adds a structure made up of multiple layers of networks that
feature a shortcut connection known as a residual block. ResNet and FPN are used by
Mask R-CNN to combine and extract multi-layer information. Many variants of ResNet
architecture were discovered in reviewed articles, i.e., the same concept but with a different
number of layers. A ResNeXt replicates a building block that combines a number of trans-
formations with the same topology. It exposes a new dimension in comparison to ResNet,
and requires minimal extra effort in designing each path.

Inception network [106] uses many tricks to push performance, both in terms of speed
and accuracy, such as in dimension reduction. The versions of the inception network
used in these reviewed papers are InceptionV2, InceptionV3, Inception-ResNetV2, and
SSD InceptionV2. Each version is an upgrade to increase the accuracy and reduce the
computational complexity. InceptionResNetV2 can achieve higher accuracies at a lower
epoch. With the advantage of expanding network depth while using a small convolution
filter size, VGG [107] can significantly boost model performance. VGGNet inherits some
of its framework from AlexNet [108]. GoogleNet [109] has an inception module inspired
by sparse matrices, which can be clustered into dense sub-matrices to boost computation
speed, which is in contrast to AlexNet and VGGNet, which increases the network depth to
improve training results. Contrary to VGG-nets, the Inception model family has shown that
correctly constructed topologies can produce compelling accuracy with minimal theoretical
complexity.

The backbone network for You Only Look Once (YOLO), DarkNet, has been enhanced
in its most recent edition. YOLOv2 and YOLOv3 introduce DarkNet19 and DarkNet53,
respectively, while YOLOv4 proposes CSPDarkNet [110]. CSPNet [111] is proposed to
mitigate the problem of heavy inference computations from the network architecture per-
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spective and has been seen to be used in the recent YOLO structure, i.e., SE-YOLOv5 [56].
Other backbone network structures include Xception [112] with different layers of 65 and
71, EfficientNet [113], and PRPNet [55].

4.4. Optimizer

RQ.5: What are the optimization methods used for CEA applications?
In contrast to the increasing complexity of neural network topologies [114], the training

methods remain very straightforward. In order to make a neural network efficient, it must
first be trained, as most neural networks produce random outputs without it. Optimizers,
which modify the properties of the neural network, such as weights and learning rate,
have long been recognized as a primordial component of DL, and a robust optimizer can
dramatically increase the performance of a given architecture.

Stochastic gradient descent (SGD) is an optimization approach and one of the variants
of gradient descent that is also commonly used in neural networks. It updates the param-
eters for each training one at a time, eliminating redundancy. As a hyper-parameter, the
learning rate of SGD is often difficult to tune because the magnitudes of multiple parameters
change greatly, and adjustment is required during the training process. Several adaptive
gradient descent variants have been created to address this problem, including Adaptive
Moment Estimation (Adam) [115], RMSprop [116], Ranger [117], Momentum [118], and
Nesterov [119]. These algorithms automatically adapt the learning rate to different parame-
ters, based on the statistics of gradient leading to faster convergence, simplifying learning
strategies, and have been seen in many neural networks applied to CEA applications, as
demonstrated in Figure 11.

53%

10%

2%

22%

10%

4%

Adam

RMSProp

Ranger

SGD

Momentum

Nesterov

Figure 11. Distribution of different deep learning optimizer used in controlled environment agriculture.

4.5. Growing Medium and Plant Distribution

RQ.6: What are the primary growing media and plants used for DL in the CEA?
We note that the most common growing medium used in the evaluated studies is

soil-based (78%), as shown in Figure 12. There are 14 publications on hydroponics, one
on aquaponics, and none on aeroponics for soil-less growing media. This insinuates that
these soilless growing media are still in their infancy. We also showed the distribution
of the plants used in the evaluated papers, with tomatoes representing 39% of all plants
grown in the CEA and corresponding to the highest number of publications, as shown in
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Figure 13. The percentages of papers that planted lettuce, pepper, and cucumber are 16%,
9%, and 8%, respectively. According to the reviewed publications, it was also discovered
that indoor farms used soil-less techniques (hydroponics and aquaponics) more frequently
than greenhouse systems, which frequently used soil-based growing medium.

78%

21%

1%

Soil-based

Hydroponics

Aquaponics

Figure 12. Growing medium distribution in controlled environment agriculture.

Figure 13. Plant distribution of papers for deep learning applications in controlled environment
agriculture.

4.6. Challenges and Future Directions

To the best of our knowledge, the paragraphs below provide a brief description of
some specific aspects on the challenges and potential directions of DL applications in CEA.

For DL models to be effective, learning typically needs a lot of data. Such huge
training datasets are difficult to gather, not publicly available for some CEA applications,
and may even be problematic owing to privacy laws. Even while data augmentation and
massive training datasets methods can somewhat make up for the shortage of huge labeled
datasets, it is difficult to completely meet the demand for hundreds or thousands, if not less,
high-quality data points. When utilized with validated data, DL models may not be able to
generalize in situations where the data is insufficient. However, we discovered a number of
studies that used smaller datasets and attained great accuracy, as shown in [40,45,56,59,82].
The studies demonstrated various strategies for handling this circumstance by carefully
choosing the features that ensure the method will perform at its peak. Additionally, in order
to ensure optimal performance and streamline the processing of the learning algorithms,
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the dimensionality of the input vectors for the classification and detection algorithms must
be reduced.

DL algorithms are also susceptible to the caliber of the data utilized to train them.
Overfitting can occur when an algorithm “learns” about noise and excessive details in
the input set, which has a detrimental effect on the created model’s ability to general-
ize. The model in this instance performs admirably on the training dataset but poorly
on new data. To combat the overfitting model, regularization techniques include weight
decay/regularization, altering the network’s complexity (i.e., the amount of weights and
their values), early halting, and activity regularization.

We expect in the future to see more combinations of two-time series models for tempo-
ral sequence processing as demonstrated in [31]. It is also anticipated that more methods
would use LSTM or other RNN models in the future, utilizing the time dimension to make
more accurate predictions, especially in climatic condition prediction.Additionally, it helps
to gauge the reliability of time series prediction by offering an explicable result. As a result,
improving interpretability will receive a lot of attention in the future [120].

The majority of the evaluated studies focused on supervised learning, while just a
small number used semi-supervised learning. Future works that include unsupervised
learning into CEA applications will be heavily reliant on tools like the generative adversar-
ial network (GAN). A generative modeling method known as GAN learns to replicate a
specific data distribution. The lack of data is a major barrier to creating effective deep neural
network models, but GANs are the solution [121]. In order to lessen model overfitting, the
realistic images created by GAN that differ from the original training data are appealing in
data augmentation of DL-computer vision.

Another area worth noting is the clear interest in the use of AI and computer vision in
CEA applications. With the use of DL-computer vision, a number of difficult CEA issues
are being resolved. However, DL-computer vision does face significant difficulties, one
of which is the enormous processing power. Adopting cloud-based solutions with auto
scaling, load balancing, and high availability characteristics is one way to deal with this
issue. Real-time video input analysis and real-time inferences are some of the limitations of
cloud solutions, but edge devices with features like GPU accelerators can do it. Utilizing
computer vision solutions on edge hardware helps lessen latency restrictions. Few works
have addressed the need for proper security to ensure data integrity and dependability in
the rapidly expanding field of computer vision in CEA; additional research into this area is
needed in subsequent works.

There is an imperative need where deep learning needs to be applied in the next few
years such as developing more microclimate models for monitoring and maintaining the
microclimatic parameters to the desired range for optimal plant growth and development,
thus helping in irrigation and fertigation management of the crops. The need for AI,
particularly DL, to derive an empirical and non-linear “growth response function” that
maps microclimate conditions to crop growth stages is critical because, according to the
reviewed papers, this has not been extensively studied. This calls for the optimization of
microclimate control set points at various growth stages of crops. There are currently very
few publications that have developed prediction models for the microclimate parameters
in CEA. In addition to the microclimate prediction models, the need to also develop more
microclimate control systems such as (1) developing automatic shading system to prevent
crops from harsh sunlight in greenhouses, (2) developing pad-fan systems and fogging
systems based on vapor pressure deficit (VPD) control, which is an effective way to simul-
taneously maintain ideal ranges of temperature and relative humidity, thus significantly
enhancing plant photosynthesis and productivity in greenhouse production, (3) developing
photoperiod control systems based on light spectrum and intensity control. Despite the
paucity of studies on microclimate prediction and control, extensive research is needed
in the use of edge-AI systems for precise monitoring at various phases of crop growth.
Lastly, it is crucial to investigate the use of DL for nutrient solution management in soilless
cultures (influenced by both microclimate conditions and crop growth). We anticipate
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that further research that considers monitoring, predicting, controlling, and optimizing
microclimate factors in CEA will become available in the near future as advancements in
accuracy, efficiency, and architectures are put forth. Additionally, the labor availability
and associated costs, are a growing concern for the sustainability and profitability of CEA
industry. Some research has been reported for developing robotic systems, but majority of
it is focused on field production. However, the CEA is a unique production environment
and the indoor grown crops have different requirements for automation based on the
production technology employed (greenhouse, vertical tower, vertical tier, hydroponic,
dutch bucket, pot/tray, etc., ). Further, the CEA crops are more dense (plants per unit area),
which makes robotics applications more challenging. Thus, extensive efforts are required to
develop DL-driven automation and robotic systems for different production environments,
to address these challenges.

5. Conclusions

Today, it is evident that prediction and optimization procedures are essential in many
industries. This study has fully discussed a review of DL-based research efforts in CEA,
which were motivated by the most recent breakthroughs in computational neuroscience.
This study examined various application areas, described the tasks, listed technical details
such as DL models and networks, described the preprocessing augmentation, the optimizer
used, and performance of each method.

The results of this study demonstrate that the applications of DL models have attracted
a lot of interest recently as a result of their ability to recognize distinctive object features and
offer greater precision. There is no way to determine which DL model is the best. However,
we found that RNN-LSTM was frequently used for predicting microclimate conditions
in CEA due to its time series prediction. We noticed that prediction of the microclimate
conditions, a crucial issue in CEA, was the subject of relatively little of the reported research.
We can see that CNN models, the widely used DL model, have high applicability and
universality based on the reviewed papers. CNN and ResNet are most widely adopted DL
model and network, while other models and networks are also implemented in this domain.
In order to generate constructive discussions of the limitations of DL techniques in the CEA
domain, critical challenges and future research prospects were presented. We believe these
studies will serve as a roadmap for future studies towards creating an intelligent system
for various CEA applications.
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Abbreviations

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three letter acronym
LD Linear dichroism
AE Autoencoder
AI Artificial Intelligence
Adam Adaptive Moment Estimation
AGA Average Gripping Accuracy
ANN Artificial Neural Networks
AP Average Precision
CEA Controlled Environment Agriculture
CNN Convolutional Neural Networks
DBN Deep Belief Network
DCNN Deep Convolutional Neural Networks
DL Deep Learning
DM Downy Mildew
DNN Deep Neural Networks
FPN Feature Pyramid Networks
HSI Hue, Saturation, Intensity
HSV Hue, Saturation, Value
GRU Gated Recurrent Unit
IoU Intersection Over Union
LDPE Low-density Polyethylene
LiDAR Light Detection and Ranging
LiPo Lithium-ion Polymer
LSTM Long Short Term Memory
mAP Mean Average Precision
MAPE Mean Average Percent Error
NS Not Specified
NTM Neural Turing Machines
P Precision
PM Powdery Mildew
PSNR Peak Signal Noise Ratio
R Recall
R2 R-Square
RBM Restricted Boltzmann machine
R-CNN Region-Based Convolutional Neural Networks
ResNet Residual Networks
RMSE Root Mean Square Error
RNN Recurrent Neural Networks
RMSProp Root Mean Squared Propagation
RPN Region Proposal Network
RQ Research Questions
SGD Stochastic Gradient Descent
SEP Standard Error of Prediction
SSD Single Shot Multibox Detector
SSIM Structural Similarity Index Measure
SLR Systematic Literature Review
STN Spatial Transformer Network
SVM Support Vector Machine
TCN Temporal Convolutional Networks
VGG Visual Geometry Group
VPD Vapor Pressure Deficit
YOLO You Only Look Once
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