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Abstract: Although the performance of 3D human pose and shape estimation methods has improved
considerably in recent years, existing approaches typically generate 3D poses defined in a camera
or human-centered coordinate system. This makes it difficult to estimate a person’s pure pose and
motion in a world coordinate system for a video captured using a moving camera. To address this
issue, this paper presents a camera motion agnostic approach for predicting 3D human pose and
mesh defined in the world coordinate system. The core idea of the proposed approach is to estimate
the difference between two adjacent global poses (i.e., global motion) that is invariant to selecting
the coordinate system, instead of the global pose coupled to the camera motion. To this end, we
propose a network based on bidirectional gated recurrent units (GRUs) that predicts the global motion
sequence from the local pose sequence consisting of relative rotations of joints called global motion
regressor (GMR). We use 3DPW and synthetic datasets, which are constructed in a moving-camera
environment, for evaluation. We conduct extensive experiments and prove the effectiveness of the
proposed method empirically.

Keywords: 3D human pose estimation; 3D human shape reconstruction; statistical shape model

1. Introduction

3D human pose estimation [1–11] is an important topic in computer vision that can be
applied to many applications, such as virtual/augmented reality, human action recognition,
and human behavior understanding. Various sensors, such as multi-view cameras with
markers [12,13], depth cameras [14], and inertial measurement units (IMUs) [15], can be
used for 3D human pose estimation. Despite its high accuracy, the marker-based method
using multi-view cameras has disadvantages in that its hardware is expensive and setup is
complicated. Also, the depth camera-based method generally does not work well outdoors,
and the IMUs-based method suffers from heading drift. On the other hand, 3D human pose
estimation based on a monocular color camera does not require markers, is relatively low-
cost, has high flexibility, and thus has recently received much attention. The performance of
3D human pose estimation based on a monocular camera has improved thanks to advances
in deep learning remarkably.

The majority of 3D human pose estimation methods reconstruct 3D poses defined
in the camera or human-centered coordinate system. The estimated 3D human pose is
coupled to the camera pose. Therefore, reconstructing intrinsic human poses for a video
sequence captured by a moving camera is challenging. Our paper addresses this problem
and proposes a method to estimate the intrinsic human pose independent of camera motion.
Figure 1 shows the difference between 3D human pose sequences reconstructed using the
proposed and existing methods.
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Figure 1. Given a runner video (first row), the proposed framework correctly reconstructs 3D running
path (second and third rows), while VIBE-CAM, the combination of state-of-the-art human pose
estimation methods [11,16,17], fails to reconstruct the 3D global pose of the runner (fourth row). The
global pose represents the orientation and location of the entire body. The visualized reference frame
is defined as being aligned with the person in the first frame. VIBE-CAM is detailed in Section 4.5.

In the kinematic chain model for human body or the statistical human shape model,
such as SMPL [18], 3D human poses can be decomposed into a local pose that represents the
orientation of rigid body parts and a global pose that represents the orientation and location
of the entire body, as shown in Figure 2. The local pose is represented hierarchically through
relative rotations of rigid body parts from the rest pose (i.e., zero pose) and defined in the
generic coordinate system [18]. Therefore, the local pose is independent of the selection of
the reference coordinate system. However, the global pose is dependent on the selection
of the reference coordinate system. The global pose is generally defined on the basis of
the camera coordinate system in existing methods [5,6,11,19,20]; thus, the estimated 3D
human pose is coupled to the camera motion. Our basic idea is to estimate the difference
in the global pose in adjacent frames (i.e., global motion) invariant to the selection of the
reference coordinate system instead of the global pose coupled to the camera motion.

So, how can we estimate the global motion decoupled from the camera motion? We
speculate that the global motion (i.e., global pose displacement between neighboring frames)
can be predicted from the local pose sequence, as shown in Figure 2. Suppose a person
makes a jump to the left. We can easily infer that the person jumps to the left, as shown in
Figure 2 (bottom row) from the local pose sequence in Figure 2 (top row). Therefore, this
study aims to design a deep network that estimates the global human motion sequence
from the local human pose sequence. Specifically, the local pose sequence is reconstructed
from a video using an existing 3D human pose estimation method, such as VIBE [11]. We
model the mapping function from the input local pose sequence to the output global motion
sequence through a temporal network called global motion regressor (GMR) and train the
network using the large-scale motion capture dataset AMASS [21].

We evaluate the proposed method using the 3DPW dataset [15]. We also synthesize
an animated 3D human pose dataset using CMU sequences in the AMASS dataset to
allow camera movement in the synthetic video. Both datasets are used for qualitative and
quantitative evaluations of the proposed method.

Figure 2. The top row shows the image sequence rendered using only the local pose without the
global pose. Here, the relative orientations between rigid body parts (i.e., local pose) change, but the
entire body’s orientation and location (i.e., global pose) remain unchanged. The bottom row shows
the rendering result for the case where the global pose is further included. Please note that the main
purpose of the paper is to estimate the global pose sequence from the local pose sequence.
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The main contributions of this paper are presented as follows:

• We propose a deep learning-based framework for predicting a pure human pose
independent of camera motion. We demonstrate that it is possible to estimate the
human pose sequence in the world coordinate system without camera calibration
from a video including camera motion.

• We propose a model based on gated recurrent units (GRUs) [22] that transforms the
local human pose sequence into the global motion sequence invariant to the selection
of the reference coordinate system. The proposed model can be combined with any
human pose estimation method that predicts local human poses.

• We propose new metrics for the evaluation of the proposed method. Moreover,
we train the proposed model for various input/output rotation representations and
rotation loss functions and quantitatively compare them using the proposed evaluation
metrics to determine the optimal rotation representation and loss function.

2. Related Works

This section first reviews general methods for reconstructing 3D human poses and
shapes simultaneously, which are related but do not have the same goal as our study. Then,
an explanation of how existing methods can be utilized to achieve the goal of our study
is provided.

3D human pose and shape estimation from a single image. The method for estimat-
ing the 3D human pose and shape from a single image can be divided into model-based
and model-free approaches. Model-based approaches commonly use the statistical body
shape model SMPL [18] to reconstruct the human shape and allow the network to predict
parameters of the SMPL model. Meanwhile, the model-free approach performs 3D hu-
man shape reconstruction by directly estimating a 3D human mesh instead of predicting
SMPL parameters. [5,6,19,23,24] belong to the model-based approach. Kanazawa et al. [5]
introduced an adversarial training method to obtain an anthropometrically plausible
3D shape and proposed a discriminator network. Pavlakos et al. [19] used keypoints
and silhouettes as an intermediate representation for predicting SMPL parameters. Om-
ran et al. [23] utilized body part segmentation. Kolotouros et al. [6] proposed a method that
combines feedforward regression step and SMPLify-based optimization step [25] into a
loop structure to combine advantages of regression-based and optimization-based methods.
Kocabas et al. [24] estimated body-part-guided attention masks and used them for 3D hu-
man pose and shape estimation robust to occlusion. The following references [9,10,26–28]
belong to the model-free approach. Varol et al. [26] proposed a network that directly
predicts a 3D human mesh in volumetric space and used keypoints, segmentation, and
3D pose as the intermediate representation for this. Kolotouros et al. [9] proposed a graph
convolutional network for 3D human mesh reconstruction. Their network takes rest poses
and image features as inputs and directly regresses the 3D human mesh. Moon et al. [10]
proposed the image-to-lixel prediction network that predicts vertex coordinates of the 3D
human mesh through 1D heatmaps. Lin et al. [27] proposed a transformer-based network
that simultaneously reconstructs human pose and shape by modeling vertex-vertex and
vertex-joint interactions. Lin et al. [28] combined graph convolutional neural networks
with their existing transformer-based method to model both local and global interactions
simultaneously.

3D human pose and shape estimation from a video. Kanazawa et al. [29] proposed
a method for predicting not only 3D meshes that correspond to a single input image but
also those that correspond to frames in the past and future through learning using video
data. Arnab et al. [30] proposed a bundle-adjustment-based algorithm that temporally and
consistently refines initial per-frame SMPL estimates. Sun et al. [31] proposed a transformer-
based temporal model. In that study, in order for the network to learn temporal information
better, the order of shuffled frames can be predicted, and an unsupervised adversarial
training method for this was proposed. Kocabas et al. [11] proposed a temporal model
based on GRU. In that study, a motion discriminator network was proposed to allow the
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network to generate a plausible 3D human motion. Luo et al. [20] proposed a two-stage
model for human motion estimation. Overall coarse motion is predicted using variational
motion estimation in the first stage of the model and then further improved through motion
residual regressor in the second stage. Choi et al. [32] proposed a method that reconstructs
a temporally consistent human shape using temporal information of past and future frames.
Wan et al. [33] proposed a multi-level attention-based framework in which three intrinsic
relations (i.e., spatial, temporal, and human joint relations) are jointly modeled.

3D human pose estimation in the world coordinate system. All the methods re-
viewed above reconstruct 3D human pose and shape in the camera coordinate system. The
result reconstructed by these methods from a video captured by a fixed camera can be
considered to be defined in the world coordinate system. However, assuming the general
environment where no extrinsic camera parameters are given, it is difficult to convert
the reconstruction result from a video with camera motion into the pure 3D human pose
defined in the world coordinate system. One possible method is to extract camera motions
from the video using a structure-from-motion (SfM) method such as COLMAP [34], and
use them to transform the human pose in the camera coordinate system into the world
coordinate system. However, SfM methods often fail to achieve successful results in videos
containing dynamic objects. Although foreground-background segmentation can be used
for removal of dynamic foreground objects, a fully automated method for camera motion
estimation is still unavailable. Our goal is to obtain the pure 3D human pose sequence in
the world coordinate system without camera calibration from a video with any camera
motion. To achieve that goal, we propose a deep-learning-based method to reconstruct 3D
human poses in the world coordinate system from a video captured by a moving camera.
The baseline for evaluating the proposed method is constructed by combining the existing
2D human pose estimation [17] and 3D human pose estimation [11,16] methods, and the
detailed procedure for it is described in Section 4.5.

3. Proposed Method
3.1. Overall Approach

Figure 3 shows the overall framework of the proposed method. First, we use a human
pose estimation network to determine the local pose sequence L = {Li}T

i=1 given an input
video V = {Vi}T

i=1 with length T, where Li ∈ R92 represents the relative rotations of
23 joints in an unit-quaternion form. Second, bidirectional GRU-based temporal encoder
outputs a latent feature containing temporal information of this sequence from the local
pose sequence L. We obtain the global motion sequence ∆G = {∆Gi}T

i=1 from the latent
feature through the motion regression layer. A global motion ∆Gi consists of an orientation
motion ∆Ai ∈ R3 in an axis-angle form and a translation motion ∆Ti ∈ R3. Third, we
accumulate estimated global motions starting with an initial global pose to compute a global
pose sequence G = {Gi}T

i=1. Finally, the computed global pose sequence G and the input
local pose sequence L are converted into a global human mesh sequence Mg = {Mg

i }
T
i=1

defined in the world coordinate system through the SMPL model [18].

3D Human Pose
Estimation Network

(VIBE)

Global Motion Regressor

Motion Regression 

Temporal EncoderINPUT 
VIDEO

SMPL 𝐌𝑔

Human Mesh 
Sequence

𝐺𝑖+1 = 𝐺𝑖∆𝐺𝑖

Inference Stage

Local Pose 
Sequence

𝐋 ∆𝐆

Global 
Motion 

Sequence

Global Pose 
Sequence

𝐕

Figure 3. Overall framework of the proposed method. Given an input video, the existing 3D human
pose estimation network outputs a local human pose sequence. The proposed global motion regressor
generates a global motion sequence from the local pose sequence. In the inference stage, the global
motion is accumulated into a global pose, and finally, the SMPL reconstructs a human mesh sequence
with the global pose defined in the world coordinate system.
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3.2. SMPL Representation

SMPL [18] represents human pose and shape using the pose parameter θ ∈ R72

and the shape parameter β ∈ R10. The pose parameter is parameterized by global 3D
rotation and the relative 3D rotations of 23 joints in an axis-angle representation. The
shape parameter is parameterized using the first 10 principal component coefficients of
the human shape space. SMPL provides a differentiable function that generates the 3D
human mesh M(θ, β) ∈ R6890×3 from the pose parameter θ and the shape parameter β.
Relative rotations of the 23 joints of the pose parameter that correspond to the local pose
become the input to GMR. However, since GMR uses the local pose represented in an unit
quaternion form as an input, the local pose represented in the unit quaternion form is first
transformed to an axis-angle form, which is then used as an input of the SMPL model.
Global rotation corresponds to the global pose’s orientation, which is the output of GMR.
The shape parameter in this study is obtained using the existing 3D human pose estimation
method [11]. Unlike existing methods [5,6,11,19,20], the proposed method generates a
global human mesh defined in the world coordinate system by adding the translation to
the 3D human mesh M as follows:

Mg(θ, β, T) = M(θ, β) + T, (1)

where T ∈ R3 denotes the global translation, which is one of the outputs of the pro-
posed method.

3.3. Global Motion Regressor (GMR)

The proposed network estimates the global motion sequence, that is, the deviation of
global poses between two adjacent frames from the local pose sequence L. Various temporal
neural architectures have been proposed to address these types of sequence data in recent
years. We model GMR using bidirectional GRU [22] to encode long-term information
effectively in this work. Figure 4 shows the architecture of the proposed GMR network.
First, the local pose sequence L = {Li}T

i=1 is fed into the temporal encoder that consists of
bidirectional GRUs and a linear projection layer. Each bidirectional GRU forwards the local
pose sequence to the GRU layer in forward and reverse directions and concatenates their
results to generate hidden states H = {Hi}T

i=1, where Hi ∈ R4096. Second, the dimension
of output hidden states H is reduced by the linear projection layer and the linear projection
layer then generates the latent feature F = {Fi}T

i=1, where Fi ∈ R2048. Finally, the motion
regression layer regresses the global motion sequence ∆G = {∆Gi}T

i=1 from the latent
feature F. The global motion ∆Gi = (∆Ai, ∆Ti) consists of orientation ∆Ai and translation
∆Ti motions between i-th and (i + 1)-th frames. ∆Ai represented in the axis-angle form is
transformed to a 3 × 3 rotation matrix ∆Ri through the Rodrigues’ rotation formula [35].
Then, the global motion ∆Gi ∈ SE(3) can be written using ∆Ri ∈ SO(3) and ∆Ti ∈ R3.
Moreover, the global pose Gi ∈ SE(3) can be represented using Ri ∈ SO(3) and Ti ∈ R3.
The following equations hold between the global pose Gi and the global motion ∆Gi:

Gi+1 = Gi∆Gi =

[
Ri Ti
0T 1

][
∆Ri ∆Ti
0T 1

]
, (2)

Ri+1 = Ri∆Ri, (3)

Ti+1 = Ri∆Ti + Ti. (4)

Finally, through the SMPL model [18], we reconstruct the global human mesh Mg
i =

Mg([Ai, Li], βi, Ti) defined in the world coordinate system from the obtained global poses
Gi and input local poses Li, where Ai is the axis-angle form of Ri and [·, ·] denotes the
concatenation.
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Figure 4. Architecture of Global Motion Regressor (GMR).

3.4. Loss Function

We train the proposed GMR using the following loss function:

Ltotal = woriLori + wtransLtrans

+wvertexLvertex + wsmoothLsmooth,
(5)

where Lori, Ltrans, Lvertex, and Lsmooth are orientation, translation, vertex, and smoothness
losses, respectively; and wori, wtrans, wvertex, and wsmooth denote weights of losses and are
set to 1, 1, 1, and 10−2, respectively. We must carefully define the loss function Lori to
supervise the predicted orientation motion ∆Ri because the 3D rotation belongs to SO(3),
not the Euclidean space. Hartley et al. [36] described various distance measures that can
be used for the elements of SO(3). Taking them into account, we test the angular loss
Langular, the chordal loss Lchordal , and the axis-angle loss Laxis-angle, which are based on the
commonly used distance measures for SO(3), defined as follows:

Langular =
T

∑
i=1
‖ log(∆Ri∆R∗i

T)‖
2
2, (6)

Lchordal =
T

∑
i=1
‖∆Ri − ∆R∗i ‖

2
F, (7)

Laxis-angle =
T

∑
i=1
‖log(∆Ri)− log(∆R∗i )‖

2
2, (8)

where ∆Ri∆R∗i
T , ∆Ri, and ∆R∗i are mapped to an axis-angle form through the logarithm

map, and ∗ indicates the ground-truth. We also define the translation loss Ltrans using
the Euclidean distance between the predicted translation motion ∆Ti and its ground-truth
as follows:

Ltrans =
T

∑
i=1
‖∆Ti − ∆T∗i ‖

2
2. (9)

For vertex-wise loss on the reconstructed 3D mesh surface, we further define the vertex
loss Lvertex on the basis of the L1 distance as follows:

Lvertex =
T

∑
i=1

N

∑
j=1
‖∆Mg

i [j]− ∆Mg
i
∗
[j]‖1, (10)



Sensors 2022, 22, 7975 7 of 18

where ∆Mg
i [j] denotes the j-th row vector of matrix ∆Mg

i , that is, the coordinates of the
j-th vertex, and N = 6890 is the total number of vertices. GMR predicts the global motion,
which is the temporal deviation of global poses between two adjacent frames. Therefore,
instead of directly supervising the global human mesh Mg

i , we apply the vertex loss to the
global human mesh offset ∆Mg

i = Mg([∆Ai, Li], βi, ∆Ti). Finally, we use the smoothness
loss Lsmooth to generate a smooth global motion:

Lsmooth =
T−1

∑
i=1
‖∆Ri − ∆Ri+1‖2

F, (11)

which is based on the Frobenius norm between orientation motions in adjacent frames and
helps to reconstruct temporally coherent global orientations.

3.5. Flip Augmentation

We use the large-scale motion capture dataset AMASS [21] to train the proposed
GMR. The AMASS dataset provides large amounts of sequence data from a wide range
of human actions. However, its diversity is still limited compared with the variation of
real human action. Therefore, we randomly flip sequences of the AMASS dataset in the
temporally reverse direction and use them for learning. The used data augmentation
process allows the network to utilize additional diverse training data. In this work, we call
it flip augmentation, which uses both original and flipped datasets for training.

3.6. Inference

Given an input video of the frame length T, we estimate the local pose sequence L
using the existing human pose estimation network [11]. GMR then estimates the global
motion sequence ∆G from L. We assume that a person moves from the origin of the world
coordinate system, and the orientation and the translation of the initial global pose G1 are
defined as an identity matrix and a 3D zero vector, respectively. Thus, the initial global
human pose is denoted G1 = I4×4. The global human pose sequence G = {G1, . . . , GT}
is subsequently calculated by repeatedly applying Equations (3) and (4) starting with the
initial global human pose G1. Finally, we place the global human pose sequence G and
the local pose sequence L into SMPL [18] and obtain the global human mesh sequence
Mg = {Mg

1 , . . . , Mg
T} defined in the world coordinate system using Equation (1).

4. Experimental Results

In this section, we present various experimental results to prove the effectiveness
of the proposed method. The evaluation of the proposed GMR requires the local pose
sequence for the input video, and in our experiment, it is obtained through VIBE, one of
the existing SMPL-based human pose estimation methods. VIBE requires bounding box
information for the target human subject. We assume that such bounding box information
is given, and utilize the information provided by the datasets used in our experiments. This
bounding box information can be obtained by various detectors [37,38] and trackers [39].

4.1. Implementation Details

We set the sequence length and frame rate of the input video to 64 and 10 fps, respec-
tively, to train GMR. However, GMR can work for input sequences of arbitrary length.
We use VIBE [11] in the test stage to obtain the local pose sequence. VIBE outputs SMPL
pose parameters consisting of global orientations and local poses. However, we only use
the local pose from the VIBE output, discard the global orientation, and reconstruct the
new global orientation using the proposed method. This is because the global orientation
generated by VIBE is defined in the camera coordinate system, so it fails to provide a 3D hu-
man pose in the world coordinate system. The bidirectional GRU of the temporal encoder
consists of four layers with 2048 neurons, and the linear projection layer consists of one
linear layer with 2048 neurons. The motion regression layer consists of one linear layer that
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outputs the global motion. The weights of GMR are initialized using a uniform distribution
U (−
√

k,
√

k), where k represents the size of the hidden feature and the size of the input
feature for the GRU and linear layers, respectively. We use the Adam optimizer [40] to
optimize the loss function and set the learning rate to 5× 10−5. We set the mini-batch
size to 32 and train the network using one Nvidia RTX3090 GPU. The number of epochs
is set to 100, and GMR training takes about 5 h. Figure 5 shows the curves for loss and
train/test errors in GMR training, which are the results for the best model found in ablation
experiments in Section 4.4. PyTorch [41] is used to implement our code.
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Figure 5. Curves for our loss and errors in the training process.

4.2. Datasets

We use the AMASS [21] dataset for training. The AMASS dataset consists of sequences
of publicly available datasets, such as CMU MoCap [42] and TotalCapture [43], and pro-
vides SMPL parameters extracted using MoSh++. We sample each sequence of the AMASS
dataset at a rate of 10 fps and use them for training. The AMASS dataset consists of
11,352 videos, and the total number of frames after sampling is about 145M.

We use three datasets for evaluation. The first dataset, Human3.6M [44], is widely
used in 3D human pose estimation research. The Human3.6M dataset provides 3.6M
video frames composed of images captured from fixed cameras. We use SMPL parameters
extracted via MoSh [12] for quantitative evaluation, and S9 and S11 of seven subjects are
used for evaluation. We use the Human3.6M for ablation experiments and utilize the
ground-truth local pose sequence as the input to GMR in this case.

The second dataset, 3DPW [15], contains 60 sequences captured outdoors. The 3DPW
dataset provides global human poses for evaluating the proposed method. However, the
provided global poses are difficult to use for evaluation due to severe drift. For evaluation
on the 3DPW dataset, we acquire camera poses from the 3DPW dataset using the existing
structure-from-motion method, COLMAP [34], and use them to generate pseudo-ground-
truth global human poses. The 3DPW dataset provides relatively accurate 3D human poses
defined in the camera coordinate system. Therefore, we convert the 3D human pose defined
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in the camera coordinate system into the world coordinate system using the camera pose
obtained through COLMAP as follows:[

Rw Tw
0T 1

]
=

[
Rcol Tcol
0T 1

][
Rc Tc
0T 1

]
, (12)

Rw = Rcol Rc, (13)

Tw = RcolTc + Tcol , (14)

where Rw and Tw denote the pseudo-ground-truth global human pose in the world coor-
dinate system, Rcol and Tcol denote the camera pose obtained through COLMAP, and Rc
and Tc denote the orientation and translation of the human subject defined in the camera
coordinate system. The 3DPW dataset provides intrinsic camera parameters, which can be
utilized for camera calibration. Since the 3DPW dataset contains dynamic objects, simply
applying COLMAP often fails to obtain successful results. Therefore, we mask out dynamic
objects using the existing segmentation method, Mask R-CNN [38], so that COLMAP ex-
tracts features only from static regions. After automatic reconstruction through COLMAP,
we manually filter out sequences that fail to reconstruct successful results. Also, frames
with severe drift in the reconstructed sequence are manually discarded. As a result, we
obtain global human poses for 17 sequences and perform evaluations on these sequences.
Table 1 shows the details of the processed 3DPW dataset. We divide the types of camera
motion into “Small”, “Linear”, and “Panning”. “Small” indicates a sequence with little
camera motion. “Linear” denotes the linear camera motion. And, “Panning” means that
the camera moves horizontally around a fixed position.

Table 1. Details of the processed 3DPW dataset.

Sequence Name Frame Range Camera Motion Type

courtyard_basketball_00 00000.jpg−00467.jpg Small
courtyard_basketball_01 00000.jpg−00957.jpg Small
courtyard_bodyScannerMotions_00 00000.jpg−01256.jpg Small
courtyard_box_00 00000.jpg−01040.jpg Small
courtyard_captureSelfies_00 00300.jpg−00696.jpg Small
courtyard_golf_00 00000.jpg−00603.jpg Small
courtyard_rangeOfMotions_00 00000.jpg−00600.jpg Small
courtyard_rangeOfMotions_01 00000.jpg−00586.jpg Small
downtown_arguing_00 00000.jpg−00897.jpg Small
downtown_crossStreets_00 00000.jpg−00587.jpg Panning
downtown_runForBus_00 00000.jpg−00207.jpg Linear
downtown_sitOnStairs_00 00000.jpg−00477.jpg Linear & Panning
downtown_walkBridge_01 00042.jpg−00234.jpg Panning
downtown_walkDownhill_00 00132.jpg−00435.jpg Panning
downtown_walkUphill_00 00000.jpg−00285.jpg Panning
downtown_windowShopping_00 00048.jpg−00327.jpg Panning
downtown_windowShopping_00 00972.jpg−01542.jpg Linear

Although the 3DPW dataset contains various scenes, the camera motion is limited.
Therefore, we additionally build an animated synthetic video dataset based on general
3D animation production methods and use them for evaluation. In the Blender tool
(https://www.blender.org/, accessed on 1 December 2021), we import the CMU motion
BVH data. We also import a 3D human model that can generate 3D human animation
sequences from the Adobe Mixamo character repository (https://www.mixamo.com/,
accessed on 1 December 2021). 3D animation sequences are created by the Blender tool.
Finally, we include the camera motion in animation sequences to obtain synthetic videos
with the camera motion. In addition to the camera motion in the 3DPW dataset, we adopt
circular camera motion to construct the synthetic dataset. We observed that it is more
challenging than “Linear” or “Panning” camera motions. We use CMU sequences of the

https://www.blender.org/
https://www.mixamo.com/
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AMASS to create these synthetic videos. The CMU dataset of AMASS consists of 106
subjects. We use 50 sequences for 16 subjects to create synthetic videos, and the remaining
sequences are included in the training set.

4.3. Evaluation Metrics

Our proposed method predicts global human motion to obtain the intrinsic 3D human
pose decoupled from camera motion. To the best of our knowledge, there is no metric for
quantitatively evaluating the estimated global motion by the proposed method. Therefore,
we newly propose the following metrics for evaluating the proposed method. The first
evaluation metric is the orientation motion error (OME) and is defined as follows:

Eorien =
1
T

T

∑
i=1
‖log(∆R∗i ∆RT

i )‖2, (15)

where ∆Ri ∈ SO(3) satisfies ∆RT
i ∆Ri = I3×3. If the network prediction is correct, ∆R∗i ∆RT

i =
I3×3 should hold. We transform ∆R∗i ∆RT

i to R3 through the logarithm map and apply L2
norm to its result to calculate the angular error. The second evaluation metric is the translation
motion error (TME) which is defined as follows:

Etrans =
1
T

T

∑
i=1
‖∆Ti − ∆T∗i ‖2. (16)

The translation motion error computes the Euclidean distance between the prediction and
its ground-truth for the translation motion in R3. The last evaluation metric is the vertex
motion error (VME) and is defined as follows:

Evertex =
1

TN

T

∑
i=1

N

∑
j=1
‖∆Mg

i [j]− ∆Mg
i
∗
[j]‖2. (17)

Since the network predicts human motion, we define the distance between the prediction
and its ground-truth for the global human mesh offset as the vertex motion error. The units
of orientation, translation, and vertex motion errors are degree, mm, and mm, respectively.
We quantitatively evaluate the proposed method using these three evaluation metrics.

4.4. Ablation Experiments

Analysis of GMR input and output representation. Table 2 presents the quantitative
comparison of nine possible combinations of 3D rotation representations for the input local
pose L and the output orientation motion ∆A. The number of layers and hidden units of
GRU are set to 2 and 512, respectively, in all ablation experiments for simplicity. In this ex-
periment, the network is trained using only the vertex loss Lvertex. We conduct experiments
using axis-angle, 6D [45], and unit-quaternion forms, which are widely used to represent
the 3D rotation in existing human pose estimation methods. Using the 6D rotation form
as the output of the network can achieve satisfactory performance due to its continuity in
angular representation [45]. In our GMR, however, the orientation motion has a small mag-
nitude and causes a relatively less continuity problem than other pose estimation cases. In
our experiments, the quaternion/axis-angle combination outperforms other combinations,
proving that the proposed method is relatively free from discontinuity problems.
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Table 2. Ablation results for GMR input and output representations on Human3.6M. The row and
the column correspond to the input local pose and the output orientation motion in GMR, respectively.
Numbers denote the VME. The best results are shown in bold.

In/Out Axis-Angle 6D Quaternion

Axis-angle 10.48 10.83 11.15
6D 9.83 10.07 10.14
Quaternion 9.46 9.48 9.91

Analysis of orientation losses. We attempt to find the optimal orientation loss from
three candidates in Section 3.4 to improve the GMR training. GMR is trained using the
final loss function in Equation (5) for fair comparison. Table 3 shows the quantitative
comparison results. We demonstrate that chordal loss Lchordal defined by the Frobenius
norm of the 3× 3 rotation matrix shows better performance than others. From these results,
we observe that applying a loss function to the rotation matrix produces a better global
motion in the proposed method. Similar to our observation, state-of-the-art human pose
estimation methods [6,11] also incorporate the chordal loss. We use the chordal loss as the
orientation loss according to the experimental results.

Table 3. Ablation results for orientation losses on Human3.6M. The best results are shown in bold.

Loss Type OME TME VME

Axis-angle 1.05 6.98 9.51
Angular 1.06 7.03 9.46
Chordal 1.01 6.82 9.28

Analysis of loss components. The effect of each loss component is presented in
Table 4. When the orientation loss is added to the vertex loss, the orientation motion
estimation performance is improved as we expected. When the smoothness loss is added,
the translation and the vertex motion errors are reduced, while the orientation motion error
increases. The smoothness loss forces the model to generate a smooth orientation motion,
but it also causes the orientation motion to be estimated in the wrong direction. Finally,
V+O+S+T outperforms V+O+S for all evaluation metrics. Although V+O+S+T shows lower
performance in the orientation motion error than V+O, the effect is trivial. Therefore, we
use V+O+S+T as the final loss function.

Table 4. Comparison results for adding loss components on Human3.6M. V: Vertex loss, O: Orien-
tation loss, S: Smoothness loss, T: Translation loss. The best results are shown in bold.

Losses OME TME VME

V 1.02 7.01 9.46
V+O 0.99 7.05 9.34
V+O+S 1.03 6.88 9.31
V+O+S+T 1.01 6.82 9.28

Analysis of GRU structure. In Table 5, we present ablation results for the GRU
structure. The deeper and wider the structure of the proposed network, the better its
performance without overfitting. GRU with 4 layers and 2048 hidden units shows the best
performance among the candidates, so we use it as the final model.
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Table 5. Ablation results for GRU structure on Human3.6M. The best results are shown in bold.

Layers/Hidden Units 512 1024 2048
OME TME VME OME TME VME OME TME VME

2 1.01 6.82 9.28 0.93 6.33 8.56 0.85 5.92 7.92
3 0.92 6.28 8.58 0.86 5.91 7.96 0.79 5.56 7.47
4 0.85 5.70 7.74 0.80 5.48 7.37 0.76 5.14 7.01

Effect of flip augmentation. The results of quantitative analysis on the effect of flip
augmentation are presented in Table 6. The flip augmentation can produce physically
impossible motions that can harm the performance of the proposed method. However,
according to Table 6, the flip augmentation enhances the performance of all quantitative
evaluation metrics. These results show that flipping many sequences in the AMASS dataset
is physically plausible and thus the use of flipped sequences helps the learning of GMR by
increasing the diversity of training data. Even a small number of non-reversible actions can
positively affect the performance by regularizing the model.

Table 6. Comparison result for flip augmentation on Human3.6M. The best results are shown in bold.

OME TME VME

w/o flip augmentation 0.76 5.14 7.01
w/ flip augmentation 0.70 4.78 6.47

Analysis of sampling rate. This paragraph provides an analysis of the sampling
rate. For the sampling rate experiments, the AMASS dataset is sampled at rates of 5 fps,
10 fps, and 15 fps. The sampled AMASS dataset is split into TotalCapture sequences for
evaluation and the remaining sequences for training. Ground-truth local and global pose
sequences are used for learning and evaluation of GMR. Figure 6 shows the results of the
reconstructed global pose over time. The reconstructed global pose is derived from the
accumulation and transformation of the global motion sequence, described in Section 3.6.
A higher sampling rate results in a smaller vertex error. Sequences with a higher sampling
rate provide more information per unit time, thus enabling more accurate global motion
estimation. However, a higher sampling rate requires a longer sequence, thus increasing
the amount of computation. This shows the tradeoff between estimation accuracy and
computational complexity by the sampling rate. Note that the sequence data used in all
experiments in this paper except for this paragraph is sampled at a rate of 10 fps.
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Figure 6. Vertex errors on training and test data acquired using different sampling rates. The
numbers in the graph represent the vertex error over time.



Sensors 2022, 22, 7975 13 of 18

Analysis of the sequential framework. The proposed framework can be considered
a sequential combination of the existing 3D human pose estimation network VIBE [11]
and the proposed GMR. To justify our sequential framework, we perform a quantitative
comparison between the non-sequential and proposed frameworks. The non-sequential
baseline can be simply constructed by reformulating VIBE to output both local pose and
global motion. Unlike the proposed sequential framework, it can be learned end-to-end,
which requires 2D videos and their corresponding ground-truth local poses and global
motions. AMASS [21] does not provide videos, and end-to-end learning is not feasible
with AMASS. For the end-to-end learning, we extracted pseudo-ground-truth human pose
parameters from Human3.6M [44] and MPI-INF-3DHP [46] datasets by fitting the SMPL
model to the ground-truth 3D joints in the world coordinate system using SMPLify-X [47].
Table 7 shows the quantitative comparison results on the 3DPW dataset. As a result, the
proposed sequential framework outperforms the non-sequential baseline for all metrics. We
believe that it is because local pose estimation and global motion estimation are not highly
correlated so jointly training them makes training harder, resulting in lower performance.

Table 7. Quantitative comparison between the non sequential framework and the proposed frame-
work on the 3DPW dataset. The best results are shown in bold.

Method OME TME VME

Non-sequential 3.90 45.48 126.83
Ours 3.67 38.55 120.37

4.5. Comparison with Existing Method

Baseline. Compared with existing pose estimation methods, we present quantitative
and qualitative evaluation results that show the advantages and limitations of our new
framework. Specifically, we combine existing methods [11,16,17]. We first reconstruct a 3D
human pose and shape sequence in the human-centered coordinate system from an input
video using VIBE [11]. We then obtain a 2D human pose sequence by applying the 2D
human pose tracking method STAF [17] to the input video. The global alignment module
in DeepCap [16] computes the translation of the subject through the alignment process
between 3D and 2D human poses from VIBE [11] and STAF [17], respectively. The overall
procedure provides a 3D human mesh sequence in the camera coordinate system. We call
this baseline VIBE-CAM and use the baseline for comparison.

Quantitative results. The quantitative comparison with VIBE-CAM for the 3DPW
dataset is presented in Table 8. The resultant global motion of VIBE-CAM is very different
from the ground-truth motion because it yields global human poses in the camera coor-
dinate system. Therefore, the proposed GMR significantly outperforms VIBE-CAM in all
metrics. The results are further improved when the ground-truth local pose is used as the
input of GMR. This shows that there remains a lot of room for performance improvement
through better local pose estimation. The quantitative comparison results for the synthetic
dataset are presented in Table 9. The proposed framework outperforms VIBE-CAM, except
for the orientation motion error, in the camera-motion-off case. However, when camera
moves, VIBE-CAM reconstructs 3D human poses in the camera coordinate system, resulting
in a global motion estimate significantly different from the ground-truth motion. Therefore,
the proposed GMR significantly outperforms VIBE-CAM in all metrics. All quantitative
results demonstrate that the proposed scheme provides an intrinsic global human motion
independent of any camera motion embedded in the input video.
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Table 8. Quantitative comparison between the proposed method and VIBE-CAM on the 3DPW
dataset. Ours (GT input) indicates that the ground-truth local pose is used as the input of GMR. The
best results are shown in bold.

Method OME TME VME

VIBE-CAM 3.88 49.83 127.07
Ours 3.67 38.55 120.37
Ours(GT input) 1.60 27.55 29.39

Table 9. Quantitative comparison between the proposed method and VIBE-CAM on the synthetic
dataset. Camera-motion-off indicates the synthetic video created without camera motion, while
Camera-motion-on means the synthetic video with camera motion. The best results are shown
in bold.

Camera-Motion-Off Camera-Motion-On
Method OME TME VME OME TME VME

VIBE-CAM 3.77 58.01 117.28 4.66 81.70 132.63
Ours 3.80 36.37 105.11 4.01 39.27 108.08

Analysis on accumulated motion. Figure 7 shows the comparison of our recon-
structed global pose with VIBE-CAM results over time. First, the vertex error (blue line) of
VIBE-CAM increases significantly because VIBE-CAM estimates the pose in the camera
coordinate system. In the case of proposed method, while the vertex error still increases
over time, however, the graph (green line) shows a relatively lower error than VIBE-CAM.
The error increase is unavoidable because the motion error is also accumulated in the
global pose reconstruction step. We believe that this error accumulation problem can be
alleviated through the use of constraints, such as loop closure in methods for simultaneous
localization and mapping [48]. The proposed method shows a significantly lower vertex
error graph (red line) when we use the ground-truth local pose in our GMR network. It
demonstrates that the proposed GMR model is well-trained and effectively regresses the
global motion sequence from the local pose sequence.

Results for Mannequin Challenge dataset. Figure 8 shows an interesting result on the
Mannequin Challenge dataset [49]. The dataset consists of videos that include static people
in a moving camera environment, as shown in Figure 8 (top row). Therefore, the 3D pose of
a person reconstructed through the proposed method should not change temporally in the
world coordinate system. In Figure 8 (middle row), VIBE-CAM predicts the human pose
in the camera coordinate system and shows unexpected human movement with respect
to the camera motion in the video. In Figure 8 (bottom row), however, the reconstructed
human pose in our framework shows no movements as the original Mannequin Challenge
scenario says. Therefore, the proposed framework effectively predicts the intrinsic human
pose regardless of camera movement.

Qualitative results. Figure 9 shows the qualitative results of the proposed method
and VIBE-CAM for the 3DPW dataset. In the input video, a person is walking down a hill,
and the camera is rotating to follow the person. The human pose sequence reconstructed
by VIBE-CAM is defined in the camera coordinate system. Therefore, the camera’s rotation
makes the result reconstructed by VIBE-CAM not represent the human walking motion.
On the other hand, the proposed method estimates global human motion independent of
camera motion. The human pose sequence reconstructed from the global motion sequence
correctly represents the walking motion of the person regardless of camera rotation. These
results show that the proposed method effectively reconstructs the intrinsic human pose
independent of camera motion. Additional results on the 3DPW, synthetic, and Mannequin
Challenge datasets are available in the Supplementary Material.
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Figure 7. Vertex error over time. The numbers in the graph represent the vertex error between the
predicted human mesh and its ground-truth in the world coordinate system.

Input

VIBE-CAM

Ours

Figure 8. Qualitative comparison on the Mannequin Challenge dataset. The proposed method
provides static human poses while VIBE-CAM reconstructs unexpected global human poses with
respect to the camera movement in the input video. Note that the reference coordinate systems of
VIBE-CAM is aligned with that of the proposed method for easy comparison.

Input

VIBE-CAM

Ours

Figure 9. Qualitative results on the 3DPW dataset. The downtown_walkDownhill_00 sequence is
used as input to VIBE-CAM and our method.



Sensors 2022, 22, 7975 16 of 18

4.6. Limitation of Proposed Method

We argued in this paper that the proposed method can generate global human poses
defined in the world coordinate system. However, strictly speaking, it is over-claiming.
For example, if a person moves inside a train running at a constant speed, then the global
human pose computed by the proposed method is defined based on the running train rather
than the ground on which the world coordinate system is usually based. Therefore, in the
proposed method, it can only be argued that the global human pose is computed in a single
coordinate system that is consistent with the overall motion of the entire sequence. Nevertheless,
3D human poses reconstructed in this coordinate system are still independent of camera
motion and can provide valuable information for various applications. We refer to this
coordinate system as the world coordinate system in this study for convenience.

In order to overcome the above limitation, the camera pose obtained by calibrating the
camera to the world should be utilized. For this, we have to rely on the existing SfM-based
camera motion estimation, which is fragile for videos containing dynamic foreground
objects, as mentioned in Section 2. We believe that human motion acquired through the
method proposed in our study can provide constraints for robust camera motion estimation.
Our future work is to combine the existing camera motion and 3D human pose estimation
approach with the method proposed in this study to investigate this idea further.

5. Conclusions

A camera motion agnostic method for estimating 3D human poses in the world
coordinate system is presented in this study. The majority of 3D human pose estimation
methods estimate 3D poses defined in the camera coordinate system, so it is difficult to
obtain a pure human pose from a video with camera motion. To address this issue, we
propose a network that generates the global motion sequence invariant to the selection of
the coordinate system from the local pose sequence. Our method can reconstruct the global
human mesh defined in the world coordinate system in the inference stage. We generate
a pseudo ground-truth global human pose dataset from 3DPW and construct a synthetic
video dataset to evaluate the proposed method. We conduct thorough experiments for
quantitative and qualitative evaluation, and prove the effectiveness of the proposed method.

Supplementary Materials: The supporting information is available online: https://zenodo.org/
record/7053434. The supplementary video shows the qualitative results of the proposed method.
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