
Citation: Feng, Y.; Zhang, X.; Jiang,

H.; Li, J. Compound Fault Diagnosis

of a Wind Turbine Gearbox Based on

MOMEDA and Parallel Parameter

Optimized Resonant Sparse

Decomposition. Sensors 2022, 22,

8017. https://doi.org/10.3390/

s22208017

Academic Editor: Yolanda Vidal

Received: 21 September 2022

Accepted: 17 October 2022

Published: 20 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Compound Fault Diagnosis of a Wind Turbine Gearbox Based
on MOMEDA and Parallel Parameter Optimized Resonant
Sparse Decomposition
Yang Feng , Xiangfeng Zhang *, Hong Jiang and Jun Li

College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
* Correspondence: xjuzxf@xju.edu.cn

Abstract: Wind turbines usually operate in harsh environments. The gearbox, the key component
of the transmission chain in wind turbines, can easily be affected by multiple factors during the
operation process and develop compound faults. Different types of faults can occur, coupled with
each other and staggered interference. Thus, a challenge is to extract the fault characteristics from
the composite fault signal to improve the reliability and the accuracy of compound fault diagnosis.
To address the above problems, we propose a compound fault diagnosis method for wind turbine
gearboxes based on multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) and
parallel parameter optimized resonant sparse decomposition (RSSD). Firstly, the MOMEDA is applied
to the preprocess, setting the deconvolution period with different fault frequency types to eliminate
the interference of the transmission path and environmental noise, while decoupling and separating
the different types of single faults. Then, the RSSD method with parallel parameter optimization is
applied for decomposing the preprocessed signal to obtain the low resonance components, further
suppressing the interference components and enhancing the periodic fault characteristics. Finally,
envelope demodulation of the enhanced signal is applied to extract the fault features and identify the
different fault types. The effectiveness of the proposed method was verified using the actual data
from the wind turbine gearbox. In addition, a comparison with some existing methods demonstrates
the superiority of this method for decoupling composite fault characteristics.

Keywords: compound fault diagnosis; feature extraction; gearbox; sparse representation

1. Introduction

Wind turbines, gas turbines and other advanced equipment are used widely in modern
industry. The gearbox, a key component in these devices, is prone to failure when running
under severe operating conditions such as heavy loads, large temperature differences,
corrosive media, and alternating loads [1,2]. As the structure of machinery and equipment
tends to be large and complex, the actual operation of the weak single fault will also have a
chain reaction with the components of the transmission chain, resulting in various faults
occurring in successive cascades to form a compound fault. Therefore, it is important to
accurately and reliably extract fault features from vibration signals to achieve a composite
fault diagnosis. In addition, this current problem is rarely covered in existing research,
which mostly focuses on the compound failure caused by the local failure of the bearing
and does not consider the compound failure caused by the bearing failure through the
transmission path. The abovementioned situation is the starting point for this study and
the basis for this paper.

Feature extraction aims at extracting feature information from the vibration sig-
nal to describe the operational status of the mechanical equipment. Over the past two
decades, many scholars have explored the rotating machinery fault diagnosis field and
introduced many diagnostic theories and methods. For example, empirical mode decom-
position (EMD) [3,4], wavelet transform (WT) [5,6], variational mode decomposition fault
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(VMD) [7,8], and so on. Although these methods and their combination perform well
on single faults, there are some limitations: for example, the existence of modal mixing
in EMD [9,10], the diagnosis effectiveness of wavelet transform, which depends on the
constant quality factor, and the choice of wavelet basis [11,12]. The lack of adaptiveness to
complex signals and good separation and decoupling performance makes it impossible to
effectively extract fault components from complex, random, and variable vibration signals.

The vibration signal collected by the sensor is regarded as a convolutional mixture of
different excitation sources, fault sources and transmission channels, so the recovery of the
fault signal can be considered a deconvolution process. In 2007, Endo et al. [13] successfully
applied the minimum entropy deconvolution (MED) algorithm to the fault detection of
rotating motors for the first time. MED can only highlight a small number of single pulses
with high amplitude and cannot extract periodic pulses. In turn, the weak components in
the composite fault cannot be extracted, while the filter after the MED iterative solution
is not the optimal filter. Subsequently, McDonald et al. [14] developed a method named
the maximum correlated kurtosis deconvolution (MCKD) algorithm, using the maximum
value of correlated kurtosis as the iteration termination condition of the optimal filter.
MCKD extracts periodic pulses while suppressing noise interference. He et al. [15] used
MCKD to significantly enhance the periodic pulse component of the fault signal, which
allowed the fault characteristics to be more prominent. Yang et al. [16] utilized MCKD
as a pre-processing operation to highlight the continuous pulse component of the bear-
ing. The noise interference is reduced while effectively improving the ability to represent
the fault characteristics. However, the performance of the MCKD algorithm depends on
three parameters: filter length, fault period, and shift number [17]. In addition, the fault
period also needs to be rounded after resampling if it is not an integer. To overcome the
shortcomings of MED and MCKD, McDonald and Zhao proposed Multipoint optimal
minimum entropy deconvolution adjusted (MOMEDA) [18]. MOMEDA determines the
period of fault occurrence by multipoint cliff values. At the same time, a non-iterative
approach to obtaining the optimal filter enables the analysis of a non-integer number of
fault cycles without resampling. Ma and Feng [19] redesigned the objective function of
the MOMEDA algorithm based on the planetary bearing vibration signal characteristics
and verified the effectiveness of the proposed method by numerical simulation and ex-
perimental analysis. Wang et al. [20] improved the ability of the MOMEDA algorithm
to capture fault features by constructing an autoregressive mean shift model to improve
noise immunity. Xiang et al. [21] combined MOMEDA and 1.5-dimensional Teager kurtosis
spectrum analysis to effectively achieve feature extraction of composite bearing faults. Due
to the coupling relationship between different fault characteristics, MOMEDA alone is not
immune and thus leads to diagnostic failure when dealing with multiple faults.

In 2011, Selesnick proposed resonance-based sparse signal decomposition (RSSD) [22].
It is different from the traditional signal decomposition methods based on band division.
The quality factor Q and redundancy degree r are flexibly selected to determine the basis
function, which can effectively extract the periodic pulse characteristics in the fault signal
without losing important information by waveform distortion. It solves the difficulty of
separating fault features in traditional methods due to the similarity of decomposition
frequencies. RSSD obtains a bank of base functions for high- and low-quality factors
by the Tunable Q-Factor Wavelet Transform (TQWT) [23] according to the differences in
oscillation properties of the signals (i.e., differences in the quality factor Q). Morphological
Component Analysis (MCA) [24] is employed to decouple the signal into high and low
resonance components with different quality factors. Thus, it realizes the separation
effectively of the different elements in the unsteady signal. Traditional resonant sparse
decomposition methods in which the quality factor Q and the redundancy factor r are
defined by human selection [25,26] make the parameters more subjective and contingent. It
will lead to the corresponding basis functions not being optimally matched to the transient
shock components and harmonic elements, further reducing the decoupling effect. To
address this issue, a parallel parameter optimized RSSD approach is proposed in this article.
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The compound indicator KHE serves as the objective function, such that the algorithm
adaptively determines the values of the quality factor Q and the redundancy degree r based
on the signal properties.

Motivated by the above discussion, a novel approach to wind turbine gearbox compos-
ite fault diagnosis based on MOMEDA and parallel parameter optimized RSSD is proposed
in this article. Firstly, MOMEDA is used to deconvolute the signal to extract multiple
periodic faults in the composite fault vibration signal. While achieving decoupling separa-
tion of the multi-fault, it effectively eliminates the influence of the transmission channels
and external excitation sources. Secondly, the RSSD with parallel parameter optimized
constructs the wavelet basis function bank to match the fault characteristics, which enables
the interference components to be efficiently suppressed in the decoupled fault signal and
the weak fault pulse to be enhanced. The superiority and effectiveness of the proposed
approach are verified using the measured signals of the wind turbine gearbox.

The main structure of this article is composed as follows: Section 2 describes the
theories of MOMEDA. Section 3 introduces the parallel parameter optimized RSSD based
on WOA. Section 4 presents the detailed steps for extracting multi-fault characteristics with
the proposed method. In Section 5, the actual composite fault signals are collected from
wind turbine gearboxes to verify the proposed method and introduce a quantitative index
to evaluate the performance between our approach and two comparison approaches to
prove the superiority of the method in this article. Finally, the conclusions of this study are
summarized in Section 6.

2. Multipoint Optimal Minimum Entropy Deconvolution Adjusted

MOMEDA utilizes a target vector to define the position and weight of the pulse
sequence to be solved and applies multi-point kurtosis values to determine the period of
fault occurrence. Multiple pulse target identification and deconvolution algorithms are
implemented at determined locations to obtain continuous periodic pulse components.

When a rotating machine fails, the impulse signal x is modulated to s by the system
transmission path response h, and together with the noise q is collected by the sensor to
form the vibration signal y. The process is expressed as:

y = s + q = h ∗ x + q (1)

The impulse signal x is recovered from the vibration signal y by an optimal filter.
The MOMEDA solving process for the optimal filter can transform into a search for the
maximum value of the multipoint D-parameter, using the multipoint D-parameter to reflect
the shock characteristics of the filtered signal, and the related expressions are defined
as follows:

MDN(
→
y ,
→
t ) =

1

‖
→
t ‖

→
t

T→
y

‖→y ‖
(2)

MOMEDA : max
→
f
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→
y ,
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→
f
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t
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y

‖→y ‖
(3)

where the target vector
→
t is a constant that defines the position and weight of the pulse

sequence to be deconvoluted;
→
f denotes the filter coefficients.

The extreme value of Equation (3) is obtained by taking the derivative of the filter
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where, d
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be written in the following form:
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It can be further simplified as follows:
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Solving the extreme value with Equation (5) to zero, we can obtain:
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Since the multiples of
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t are also the solutions of MOMEDA. The advantage of this solution

is to avoid iterative operations, Thus, the MOMEDA filter and output solution can be
summarized as follows: →
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When performing target location and fault detection with MOMEDA, a chain of
impulses with fault period T as the step is added to the target vector.

tn = Pn(T) = δround(T) + δround(2T) + δround(3T) + . . . ,
→
t =

→
P(T)

(12)

where, δ denotes the pulse of sample n. The non-integer period T should be rounded to the
integer value closest to the fault pulse.

MOMEDA introduces Multipoint Kurtosis (MK) as a measure of fault characteristics

based on kurtosis. When the output result
→
y matches the multiple of

→
t , we obtain the

standardized MK equation as follows:

Multipoint Kurtosis =
(∑N−L

n=1 t2
n)

2

∑N−L
n=1 t8

n

∑N−L
n=1 (tnyn)

4

∑N−L
n=1 (y2

n)
2 (13)
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3. The Parallel Parameter Optimized RSSD Base on WOA
3.1. Tunable Q-Factor Wavelet Transform

TQWT breaks through the disadvantage of the constant quality factor of the traditional
wavelet transform and makes the selection of basis function more flexible by selecting
quality factor Q and redundancy factor r, which can better match the signals with different
vibration properties. TQWT uses a dual-channel filter bank to decompose the signal into
multiple scales and obtain the transform coefficients by layer-by-layer decomposition. Thus,
it obtains a sparse representation of the high and low resonance components. The TQWT
filter bank is clarified in Figure 1. LPS and HPS denote the low-pass scale transform and
high-pass scale transform, respectively. α and β are the low-pass scale factor and high-pass
scale factor.
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Figure 1. TQWT synthesis filter bank.

To achieve perfect reconstruction, the frequency response function H0(ω) of the low-
pass filter and the frequency response function H1(ω) of the high-pass filter are defined
as follows:

H0(ω) =


1 |ω| ≤ (1− β)π

θ
(

ω+(β−1)π
α+β−1

)
(1− β)π < |ω| < απ

0 απ ≤ |ω| ≤ π

(14)

H1(ω) =


1 |ω| ≤ (1− β)π

θ
(

απ−ω
α+β−1

)
(1− β)π < |ω| < απ

0 απ ≤ |ω| ≤ π

(15)

where, θ(ω) = 0.5(1 + cos ω)
√

2− cos ω, |ω| ≤ π 0 < α < 1, 0 < β ≤ 1, α + β > 1.
Equation (16) shows the relationship between the scale transformation factor (α, β) and the
TQWT parameters (Q, r), and Equation (17) provides the required number of decomposi-
tion layers.

β =
2

Q + 1
, α = 1− β

r
(16)

Jmax =

⌊
log(N/4(Q + 1))

log((Q + 1)/(Q + 1− 2)/r)

⌋
(17)

where: N is the signal length and b•c is the downward rounding sign.
The high resonance components x1 and low resonance components x2 are extracted

from the original vibration signal, and the relevant expressions are as follows:

y = x1 + x2 (18)
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Achieving sparse representation of different components of the signal by MCA. The
objective function of extracting the different components is expressed as follows:

argmin
ω1,ω2

∑
j1+1
j=1 λ1,j‖ω1,j‖1 + ∑

j2+1
j=1 λ2,j‖ω2,j‖1

x = TQWT−1
1 (ω1) + TQWT−1

2 (ω2)
(19)

where ωi,j is the sub-band j of TQWT(i= 1, 2). λ1, λ2 is the regular term parameters.
However, the vibration signal inevitably has interference by background noise in

actual works, and the signal separation will be transformed from Equation (19) as follow:

y = x1 + x2 + xnoise (20)

argmin
ω1,ω2

‖y−Φ1ω1 −Φ2ω2‖2
2 + ∑j1+1

j=1 λ1,j‖ω1,j‖1 + ∑j2+1
j=1 λ2,j‖ω2,j‖1 (21)

where Φ1 and Φ2 denote the inverse wavelet transform of high Q-factors and low Q-factors,
respectively. Then, the minimum value of the above Equation (21) is solved to obtain the
high and low resonance components according to Equation (22).

xn = TQWT−1(ωn), n = 1, 2 (22)

3.2. Whale Optimization Algorithm

Whale Optimization Algorithm (WOA) is a novel intelligent optimization algorithm
proposed by Mirjalili in 2016 [27]. The optimal solution is solved via imitating the predatory
behavior of whales. The algorithm consists of three processes.

(1) Surrounding the prey
Assuming that the population size is NP, and the dimension is D, the position of the

ith whale in the D-dimensional space is Xi = (x1
i , x2

i , . . . xD
i ), i = 1, 2, . . . NP. The algorithm

supposes that the desired problem is the optimal position of the whale, and the other
whales will be updated and adjusted oriented to this optimal position. The mathematical
model is expressed as follows:

X(t + 1) = X∗(t)− A·D (23)

D = |C·X∗(t)− X(t)| (24)

A = 2a·r1 − a (25)

C = 2·r (26)

a = 2(1− t/Tmax) (27)

where D denotes the distance between the individual position and the optimal position; A
is the convergence factor. X∗(t) is the optimal position at t iterations, X(t) is the individual
position at t iterations, r1 and r2 are random numbers between [0, 1], Tmax is the maximum
number of iterations, and a decreases linearly from 2 to 0 with the number of iterations.

(2) Bubbling net attack
Shrinkage encircling: The convergence factor A decreases linearly with a to achieve

position update. When the value of A is taken between [−1, 1], the position of each
individual is between X(t) and X∗(t) as a means to achieve prey bracketing.

Spiral updating position: whales spit out bubbles of different sizes for feeding while
swimming towards the best position in a spiral posture. The mathematical model is

X(t + 1) = D′·ebl · cos(2πl) + X∗(t) (28)

where: D′ denotes the distance between the individual of the t iterations and the current
optimal solution. l is a random number between [−1, 1], b is the spiral shape constant.
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During the process of prey encirclement, the whales shrink to surround and spiral
forward simultaneously, and the probability of occurrence is 50% for either mode of travel.

X(t + 1) =

{
X∗(t)− A·D if p < 0.5
D′·ebl · cos(2πl) + X∗(t) if p ≥ 0.5

(29)

(3) Searching for prey
The whales will stop approaching the best whale individual in this stage and instead

update their position by randomly searching a large area to approach any whale individual.
In this case, the value of A is taken as |A| > 1. This predation strategy will cause the
current individual to deviate from the target prey but will enhance the global search ability
and avoid falling into local optimum. The mathematical model as follow:

D = |C·Xrand(t)− X(t)| (30)

X(t + 1) = Xrand(t)− A·D (31)

where Xrand denotes the location of random individuals in the current population.

3.3. Design Objective Function

Kurtosis is a 4th order statistic that reflects the sharpness of the waveform for the
random variable and is sensitive to the impulse component of the signal, which is defined as:

K =
E(x− µ)

σ4 (32)

Information entropy represents the uncertainty of the source information and the
randomness of the event occurrence, and its value is only related to the probability distribu-
tion of the variables. Suppose a source X = {x1, x2, . . . , xN} consists of a discrete random

variable that the probability of occurrence is pi = P(xi)(i = 1, 2, · · ·N) and
N
∑

i=1
p = 1, then

the information entropy of the source X is expressed as:

H(X) = −
N

∑
i=1

pi ln pi (33)

where lim
p→0

p ln(p) = 0, the more balance the distribution of variables in the source, the

greater the value of information entropy. The envelope spectrum is combined with the
information entropy, i.e., the envelope spectrum entropy [28]. The fault signal is treated
as a signal source after envelope spectrum processing, and the frequency amplitude of
each point is regarded as a variable in the signal source. The formula for calculating the
envelope spectral entropy is as follows:

He = −
N

∑
i=1

pk ln pk (34)

where pk represents the envelope spectrum of the vibration signal. The envelope spectrum
entropy can measure the uniformity of frequency distribution in the envelope signal and
can express the complexity of the signal in the envelope domain.

In this article, we combine kurtosis and envelope spectral entropy, kurtosis as an
indicator of time-domain feature can describe the impulsiveness of the signal, and envelope
spectral entropy as an indicator of frequency-domain feature can represent the strength of
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periodic pulses. A composite indicator is constructed to reflect the time-frequency domain
properties and the expression is as follows:

KHE =
K
He

(35)

This indicator possesses the advantages of kurtosis and envelope spectral entropy,
and it can measure the impulsivity and periodicity of the signal at the same time. The
more prominent the impulsivity and periodicity of the signal, the larger the value of the
indicator.

Overall, the parallel parameter optimized RSSD based on WOA as proposed in this
article implements the process as follows:

(1) The parameters of the algorithm are determined: population size NP, population
dimension Dm, and the maximum number of iterations Tmax. For resonant sparse
decomposition, it is required to find the optimal four parameters: QH, QL, rH, rL, so
the dimension is set to Dm = 4, the population size set to NP = 30, Tmax = 50.

(2) Population initialization: The optimal parameters should be bounded, and the corre-
lation between quality factors should be as low as possible. The value range of Q1
takes as [8,15], the value range of Q2 takes as [1,3], and the value range of redundancy
factors r1 and r2 take as [2,5]. Then, to reduce the calculation, the accuracy of the four
parameters is reserved to one single decimal.

(3) The objective function value is calculated: the composite index constructed by kurtosis
and envelope spectral entropy serves as the objective function. The objective function
value of an individual is calculated and the current optimal individual is determined.

(4) The main loop of the algorithm is entered: if p < 0.5 and |A| < 1, the individual
updates the current position by Equation (23), otherwise the individual position
is updated by Equation (31). When p ≥ 0.5, the position is updated according to
Equation (29).

(5) Evaluating the whole whale population and iterative optimization until the algorithm
converges, it obtains the optimal objective function value KHE. Obtain the RSSD
parameters after parallel optimization: QH, QL, rH, rL.

4. The Procedure of Compound Fault Diagnosis

The method proposed in this article is suitable to separate and extract the compound
faults of the gear faults and the bearing faults from the wind turbine gearbox. Firstly, the
input vibration signal is pre-processed, the deconvolution period is set according to the
fault frequency of the damaged part, and the vibration signal is decoupled into a single
fault by MOMEDA. Secondly, the low resonance component is decomposed from the pre-
processed signal with optimized RSSD. Finally, the envelope analysis of the low-resonance
components is applied to extract the fault characteristic frequency. The flowchart of the
method is shown in Figure 2.
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Figure 2. The flow chart of the proposed paper.

5. Application of Proposed Method
5.1. Experiment Introduction

In this paper, 750 kW wind turbine gearbox data provided by The National Renewable
Energy Laboratory (NREL) [29] were used to verify the performance of the proposed
method. The gearbox first finished run-in in the NREL dynamometer facility and then
was sent to the wind plant for testing under actual operating conditions. The gearbox
high-speed shaft is operated at 1800 rpm during the test, and the sensors collect vibration
acceleration signals with a sampling frequency of 40 kHz. The gearbox consists of a low-
speed stage planetary gearbox and a parallel shaft gearbox and has an overall transmission
ratio of 1:81.491. Figure 3 gives the internal layout and nomenclature abbreviations of
the gearbox.
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Figure 3. Gearbox internal layout and nomenclature abbreviations.

The gearbox experienced two oil loss events during the actual test, where it damaged
its internal bearings and gear components. The damaged gearbox was disassembled for
fault analysis, and it was found that the large and small gears of the high-speed gear pair
in the gearbox were seriously scuffed, and the inner ring races of the bearings and the
two ends of the rolling bodies were overheated. The failure of each component is shown
in Figure 4.
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The configuration parameters of the gearbox are listed in Table 1. The experiment
takes the HSS pinion failure, the IMS large gear, and the HSS bearing C as the research
targets. The failed bearing for this experiment is SKF 3222 J2, and Table 2 describes its
structural parameters. Table 3 provides the results of the failure frequency calculations for
the damaged parts.

Table 1. Parallel shaft gearbox parameters.

Gear Element No. of Teeth Root Diameter (mm) Helix Angle Face Width (mm)

Intermediate gear 82 678 14R 170
Intermediate pinion 23 174 14L 186

High-speed gear 88 440 14R 110
High-speed pinion 22 100 14L 120

Table 2. High-speed shaft bearing parameters.

Bearing Pitch
diameter/mm

Large End of Rolling
diameter/mm

Small End of Rolling
diameter/mm

Number of
rollers/N

Contact Angle
(α/degree)

155.00 24.22 19.03 20 11.63

Table 3. Characteristic frequency of faulty parts.

HSS Pinion
Frequency fr1

IMS Gear
Frequency fr2

Meshing Frequency
fm

Bearing Inner
Ring Fault fi

Bearing Rollers
Fault fb

30.00 7.50 660.00 345.30 93.51

5.2. Experiment Analysis

Figure 5 shows the results of the analysis of the raw vibration signal of the gearbox
compound fault. In Figure 5a, the pulse component triggered by faults has been completely
submerged in the noise and failed to detect the periodical components. As seen from
Figure 5b, the frequency components are mostly concentrated on the meshing frequency
fm and its multiplier 2 fm around, and the rotational frequency component fr1 is relatively
weak. In the amplified plots of the original signal spectrum in Figure 5c,d, the fault
characteristic information can see: centered on the meshing frequencies fm and 2 fm, with
fm ± fr1, 2 fm ± fr1, and 2 fm + 2 fr1 as the sidebands. Hence, it can be concluded that the
HSS pinion is faulty. In Figure 5c, the fault feature component centered on the meshing
frequency fm and with fm ± fr2 as the sidebands exist, but the spectrum is non-obvious.
Meanwhile, there is no fond of the feature components associated with the IMS gear in
Figure 5d. Therefore, it is considered a possibility that the fault is in the IMS gear. The
feature components reflect the gear failures and bearing failures uncovered in the envelope
spectrum shown in Figure 5e.

The deconvolution period Tr1 is set with the fault characteristics of the HSS pinion. The
RSSD optimized convergence curve is shown in Figure 6. When the number of iterations
reaches 14, the algorithm converges to 0.5755. The parameters obtained by optimization
are: QH = 4.1, QL = 1.0, rH = 5.0, rL = 3.5. The rest of the optimization process is similar
and will not be listed later. The periodic pulses are visible in Figure 7a, and the remarkable
fault frequency characteristics with fr1 as the interval can be seen in Figure 7b, but fr1,
3 fr1, and 4 fr1 fault frequencies are relatively low. The low resonance components obtained
by substituting the optimized parameters into RSSD are shown in Figure 7c. we can see
that the periodic pulse characteristics are enhanced and the interference is suppressed
effectively. From Figure 7d, we can see that the fr1–5 fr1 and 6 fr1–15 fr1 failure frequencies
provide evidence of degradation and decay of the high-speed shaft pinion, thus diagnosing
the presence of the HSS pinion faulty.
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Figure 5. Composite fault signal of wind turbine gearbox and its frequency spectrum. (a) Time
domain; (b) Fourier spectrum (c) 600–720 Hz spectrum amplification; (d) 1240–1400 Hz spectrum
amplification; (e) Envelope spectrum.
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Figure 7. The decoupled pinion vibration signal and its frequency spectrum: deconvolution results
of MOMEDA: filtered time domain waveforms and their frequency spectrum (a,b); Results obtained
by MOMEDA and optimized RSSD: time domain waveforms and their frequency spectrum (c,d).

The deconvolution period Tr2 is set with the fault characteristics of the IMS gear, and
the results as shown in Figure 8. Periodic pulses can be seen in Figure 8a, and the rest
of the fault characteristics are not apparent except for 4 fr2 in Figure 8b, but 4 fr2 is easily
confused with the HSS pinion fault characteristic frequency fr1, leading to misdiagnosis.
The optimized parameters are: QH = 4.0, QL = 1.2, rH = 5.0, rL = 3.5, and the low-resonance
components obtained by decomposition are shown in Figure 8c,d. The interference com-
ponents are reduced in the time domain diagram, and the IMS gear fault characteristic
frequency fr2 and its multiples 2 fr2–6 fr2 predominate in the envelope spectrum. The
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resonance decomposition suppresses the interference obviously, and further extracts and
enhances the weak fault features.
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Figure 8. The decoupled gear vibration signal and its frequency spectrum: deconvolution results of
MOMEDA: filtered time domain waveforms and their frequency spectrum (a,b); Results obtained by
MOMEDA and optimized RSSD: time domain waveforms and their frequency spectrum (c,d).

The deconvolution period Ti is set with the fault characteristic frequency of the bearing
inner ring, and the results as shown in Figure 9. From Figure 9b, we can see serious
interference around the fault signature frequencies 3 fi, 4 fi, and 5 fi, which is unable to
identify the fault signature. The optimized parameters are QH = 14.2, QL = 2.7, rH = 3.5,
rL = 3.5, and the low-resonance components obtained by decomposition as shown in
Figure 9c,d. The periodicity of the fault signal in the time domain is enhanced, the feature
frequency fi of the bearing inner ring fault and its multiplication frequency 2 fi–5 fi in the
envelope spectrum became more significant, and the interference components become
well suppressed.

The deconvolution period Tb is set with the fault characteristic frequency of the bearing
rollers, and the results as shown in Figure 10. The envelope spectrum in Figure 10b shows
that the fault feature frequencies 2 fb, 3 fb, and 4 fb are not apparent and the bearing fault
characteristics cannot be identified. The optimized parameters are QH = 8.0, QL = 2.0,
rH = 3.5, rL = 3.5, and the low-resonance components obtained by decomposition as
shown in Figure 10c,d. Though some impulse components are missing in the time domain
diagram, the overall periodic characteristics are remarkably improved, and the interference
components effectively removed. The high-speed grade bearing rollers fault characteristic
frequency fb and its multiples 2 fb–10 fb dominate significantly in the envelope spectrum,
and the interference component restraining effect is obvious.
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Figure 9. The decoupled bearing inner ring vibration signal and its frequency spectrum: deconvo-
lution results of MOMEDA: filtered time domain waveforms and their frequency spectrum (a,b);
Results obtained by MOMEDA and optimized RSSD: time domain waveforms and their frequency
spectrum (c,d).
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Figure 10. The decoupled bearing rollers vibration signal and its frequency spectrum: deconvo-
lution results of MOMEDA: filtered time domain waveforms and their frequency spectrum (a,b);
results obtained by MOMEDA and optimized RSSD: time domain waveforms and their frequency
spectrum (c,d).
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In summary, the analysis results show that the proposed method can not only success-
fully decouple and separate various types of fault characteristics from the composite fault
signal, but also has a remarkable suppression effect for interferences, further highlighting
the periodicity and impulsiveness of fault characteristics, which helps to improve the
accuracy and reliability of wind turbine gearbox composite fault diagnosis.

5.3. Comparative Analysis

The superiority and effectiveness of the proposed method are verified through a
comparative analysis using the two methods. The MCKD algorithm in Reference [14]
and the improved MCKD algorithm in Reference [16] are used to analyze the composite
fault signals.

The two methods mentioned above are used to decouple the HSS pinion fault from
the composite fault signal and analyze and process it. The parameters are set as follows:
number M = 5 is shifted, length L = 500 is filtered, the above calculation results of the
fault frequency are introduced, and the analysis results are shown in Figure 11. From
the time domain plot in Figure 11a, the MCKD algorithm can extract only a limited set
of pulses because the result after deconvolution is not an iterative optimal solution. The
resonant sparse decomposition was used for further processing, the RSSD optimized
convergence curve is shown in Figure 12. When the number of iterations reach 5, the
algorithm converges to 1.434. The parameters obtained by optimization are: QH = 8.3,
QL = 3, rH = 5, and rL = 3.4. From the time domain plot in Figure 11c, though it removes
part of the noise interference, the continuous periodic pulse sequence cannot be extracted
subject to the algorithm performance of MCKD.
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Figure 11. The HSS pinion deconvolution results by MCKD: the filtered time domain waveform and
their spectrum (a,b); results obtained by MCKD + RSSD: time domain waveforms and their frequency
spectrum (c,d).
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Figure 12. The RSSD optimized convergence curve of comparative method.

The envelope spectrum analysis shown in Figure 11b, the fault characteristic frequency
fr1 and its multiples 4 fr1 do not prominent in the envelope spectrum. The fault feature fre-
quencies dominate in the frequency spectrum with the optimized resonance decomposition
from Figure 11d. The fault characteristics of the HSS pinion are accurately identified.

The same procedure is applied for the IMS gear, and the parameters obtained with the
optimized RSSD are: QH = 8.2, QL = 2.9, rH = 5, and rL = 3.5. Some of the disturbances are
removed in the time domain as shown in Figure 13. However, it failed to extract the fault
feature frequency of the IMS gear effectively due to the performance of MCKD.
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Figure 13. The IMS gear deconvolution results by MCKD: the filtered time domain waveform and
their spectrum (a,b); the results obtained by MCKD + RSSD: the filtered time domain waveform and
their spectrum (c,d).
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The bearing inner ring fault signals and bearing rollers fault signals are directly pro-
cessed with the optimized parameters of the method proposed in this paper, so as to imitate
the process of artificially selecting parameters in traditional resonance decomposition. The
results are shown in Figures 14 and 15. It can be seen from the spectrum that the traditional
resonance decomposition has subjectivity and randomness due to the artificial selection of
parameters, which means that the basis function cannot effectively match the fault pulse
components. The above comparative analysis further illustrates the validity and superiority
of the proposed method in this paper.
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Figure 14. The bearing inner ring deconvolution results by MCKD: the filtered time domain waveform
and their spectrum (a,b); results obtained by MCKD + RSSD: time domain waveforms and their
frequency spectrum (c,d).

To evaluate the performance of extracting fault features quantitatively, the fault feature
coefficient (FFC) [30] is introduced as a quantitative index to select the fault components.
The larger the FFC value, the more adequate the periodic pulse information contained in
the fault frequency component. The FFC is defined as follows:

FFC =
∑ [A( f )]2

∑ [A( f )]2 + ∑ [A( f ′)]2
× 100% (36)

where f and f ′ denote the fault component and noise component, respectively, A( f ) and
A( f ′) denote their amplitudes in the frequency spectrum, respectively. The denominator
part is the sum of the envelope spectral amplitude for the time domain signal, and the
numerator part is the sum of the envelope spectral amplitude for the fault characteristic
frequency and its multiples.
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where f  and f   denote the fault component and noise component, respectively, ( )A f  

and ( )A f   denote their amplitudes in the frequency spectrum, respectively. The denom-

inator part is the sum of the envelope spectral amplitude for the time domain signal, and 
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istic frequency and its multiples. 

Table 4 shows the FFC values of the four methods, and the results demonstrate the 

superiority of the proposed method in this study. Table 5 shows the average CPU times 

of the four methods with 10 tests. 

Table 4. Performance indexes of the method in this paper and the comparative methods. 

Value MCKD MCKD + RSSD MOMEDA Proposed Method 

HSS pinion fault for FFC 9.34% 15.55% 11.10% 29.76% 

IMS gear fault for FFC 27.55% 48.12% 56.24% 65.47% 

Bearing inner ring fault for FFC 0.68% 1.35% 1.64% 5.83% 

Bearing rollers fault for FFC 1.20% 4.17% 3.40% 11.83% 

Table 5. Comparison of the average running time of different methods. 
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Figure 15. The bearing rollers deconvolution results by MCKD: the filtered time domain waveform
and their spectrum (a,b); results obtained by MCKD + RSSD: time domain waveforms and their
frequency spectrum (c,d).

Table 4 shows the FFC values of the four methods, and the results demonstrate the
superiority of the proposed method in this study. Table 5 shows the average CPU times of
the four methods with 10 tests.

Table 4. Performance indexes of the method in this paper and the comparative methods.

Value MCKD MCKD + RSSD MOMEDA Proposed Method

HSS pinion fault for FFC 9.34% 15.55% 11.10% 29.76%
IMS gear fault for FFC 27.55% 48.12% 56.24% 65.47%

Bearing inner ring fault for FFC 0.68% 1.35% 1.64% 5.83%
Bearing rollers fault for FFC 1.20% 4.17% 3.40% 11.83%

Table 5. Comparison of the average running time of different methods.

Method MCKD MCKD + RSSD MOMEDA Proposed Method

Time(s) 23.69 450.48 4.58 280.85

6. Conclusions

A compound fault diagnosis method for wind turbine gearboxes based on MOMEDA
and the parallel parameter optimized RSSD is proposed in this study. MOMEDA obtains the
deconvolution period based on the fault frequency and obtains periodic continuous pulses
in a non-iterative deconvolution manner, thus decoupling and separating the compound
fault vibration signals. However, some weak fault features are easily buried in transmission
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channels and background noise and using MOMEDA alone is not immune to dealing with
multiple faults. Therefore, its combination with RSSD for parallel parameter optimization is
applied to suppress disturbances and enhance the relevant fault characteristics. The parallel
parameter optimized RSSD takes the composite indicator with low resonance components
as the objective function and adaptively obtains the best quality factor Q and redundancy
r according to the signal properties. The composite indicator measures the periodicity of
the signal while measuring impulsivity, thus improving the signal sparse representation
performance of RSSD. A bank of base functions matching the fault characteristics with the
selected optimal parameters was constructed. RSSD adaptively decomposes the fault signal
into high-resonance components and low-resonance components. The feasibility of the
proposed method is verified by actual fault signals of wind turbine gearboxes. Compared
with MCKD and MCKD-RSSD methods, the proposed method not only possesses excellent
performance of decoupling separation and enhancing weak fault characteristics but also
clearly and accurately portrays the time-frequency domain characteristics of different fault
types, which is more suitable for composite fault diagnosis of wind turbine gearboxes.
However, the method also has some drawbacks, such as time-consuming computation time
during parameter optimization. In further studies, we will improve this problem to reduce
the computation time.
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