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Abstract: Automated guided vehicles are widely used in warehousing environments for automated
pallet handling, which is one of the fundamental parts to construct intelligent logistics systems. Pallet
detection is a critical technology for automated guided vehicles, which directly affects production
efficiency. A novel pallet detection method for automated guided vehicles based on point cloud data
is proposed, which consists of five modules including point cloud preprocessing, key point extraction,
feature description, surface matching and point cloud registration. The proposed method combines
the color with the geometric features of the pallet point cloud and constructs a new Adaptive Color
Fast Point Feature Histogram (ACFPFH) feature descriptor by selecting the optimal neighborhood
adaptively. In addition, a new surface matching method called the Bidirectional Nearest Neighbor
Distance Ratio-Approximate Congruent Triangle Neighborhood (BNNDR-ACTN) is proposed. The
proposed method overcomes the problems of current methods such as low efficiency, poor robustness,
random parameter selection, and being time-consuming. To verify the performance, the proposed
method is compared with the traditional and modified Iterative Closest Point (ICP) methods in two
real-world cases. The results show that the Root Mean Square Error (RMSE) is reduced to 0.009 and
the running time is reduced to 0.989 s, which demonstrates that the proposed method has faster
registration speed while maintaining higher registration accuracy.

Keywords: point cloud data; pallet detection; 3D vision sensor; object recognition; automated
guided vehicles

1. Introduction

Under the background of “Industry 4.0”, the logistics industry is facing challenges,
including structural adjustment, industrial optimization, cost reduction and efficiency
improvement, and also has ushered in development opportunities such as information tech-
nology, intelligent logistics and machine vision [1]. As an important part of an intelligent
logistics system, automated guided vehicles are widely used in warehousing, production,
service, aerial work and other scenarios, which can establish a human–machine friendly
interactive environment and reduce the incidence of safety accidents [2]. However, in the
actual storage environment, due to the influence of many factors such as excessive obstacles,
uneven illumination, accumulated handling errors and manual intervention, automated
guided vehicles have problems of low efficiency and repeated handling in the process of
pallet handling [3]. With the help of a 3D vision sensor, automated guidance vehicles can
detect the scene pallet, which can effectively solve these problems. Pallet detection for
automated guided vehicles is widely used in various scenarios including storage shelves,
the production workshop, drug transport and blast furnace conditions, which are shown in
Figure 1. The applications of automated guided vehicles in these scenarios can establish
a human–machine friendly interactive environment, improve production efficiency and
reduce the incidence of safety accidents.
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Figure 1. The specific pallet detection scene for automated guided vehicles. (a) Storage shelves, (b) 
the production workshop, (c) drug transport and (d) blast furnace conditions. 

The existing vision-based object detection methods are mainly divided into two cat-
egories: the image-based method [4] and the point cloud-based method [5,6]. There has 
been a large amount of research on the object detection method based on images [7–11]. 
Specific to pallet detection, Li et al. [12] applied the Region Growing algorithm to extract 
the whole target region, and the pallet was located by the Progressive Probabilistic Hough 
Transform (PPHT) method, which solved the problem of difficult target detection under 
unstable light conditions. Syu et al. [13] used the monocular vision system on the forklift 
and combined the Adaptive Structure Feature (ASF) and Direction Weighted Overlapping 
(DWO) ratio to detect the pallet, which removes most of the non-stationary background 
and significantly increases the processing efficiency. Li et al. [14] established the pallet 
dataset and applied the improved deep learning object detection algorithm to obtain de-
tection results, which improved the efficiency and accuracy of the pallet detection. The 
above methods of object detection based on 2D images have been intensively investigated, 
which is currently a relatively mature research area. However, the imaging process of 2D 
images involves mapping from 3D space to 2D space, which loses a lot of useful infor-
mation during the mapping process. Therefore, object detection based on 2D images can 
no longer satisfy the needs of current industrial production. 

With the rapid development of low-cost depth sensors, object detection has con-
verted from traditional single point and segment measurement to dense point cloud and 
full profile measurement [15–17]. Compared with 2D images, 3D point cloud data provide 
more information about color, texture, geometric feature and space distribution [18], 
which makes pallet detection based on the 3D point cloud an active research topic. Firstly, 
the methods based on artificial features were attached to the pallets. Seelinger et al. [19] 
presented a vision-based approach to identify the fiducials which were placed on each 
pallet, which provides automated guided vehicle systems with the capability of perform-
ing pallet detection tasks. Two reflectors were fixed left and right on the short side of the 
pallet in the study by Lecking [20] to realize pallet detection. Although these artificial fea-
tures simplify pallet detection, it takes effort to label all of the pallets in advance, thereby 

Figure 1. The specific pallet detection scene for automated guided vehicles. (a) Storage shelves,
(b) the production workshop, (c) drug transport and (d) blast furnace conditions.

The existing vision-based object detection methods are mainly divided into two cate-
gories: the image-based method [4] and the point cloud-based method [5,6]. There has been
a large amount of research on the object detection method based on images [7–11]. Specific
to pallet detection, Li et al. [12] applied the Region Growing algorithm to extract the whole
target region, and the pallet was located by the Progressive Probabilistic Hough Transform
(PPHT) method, which solved the problem of difficult target detection under unstable light
conditions. Syu et al. [13] used the monocular vision system on the forklift and combined
the Adaptive Structure Feature (ASF) and Direction Weighted Overlapping (DWO) ratio to
detect the pallet, which removes most of the non-stationary background and significantly
increases the processing efficiency. Li et al. [14] established the pallet dataset and applied
the improved deep learning object detection algorithm to obtain detection results, which
improved the efficiency and accuracy of the pallet detection. The above methods of object
detection based on 2D images have been intensively investigated, which is currently a
relatively mature research area. However, the imaging process of 2D images involves
mapping from 3D space to 2D space, which loses a lot of useful information during the
mapping process. Therefore, object detection based on 2D images can no longer satisfy the
needs of current industrial production.

With the rapid development of low-cost depth sensors, object detection has converted
from traditional single point and segment measurement to dense point cloud and full
profile measurement [15–17]. Compared with 2D images, 3D point cloud data provide
more information about color, texture, geometric feature and space distribution [18], which
makes pallet detection based on the 3D point cloud an active research topic. Firstly, the
methods based on artificial features were attached to the pallets. Seelinger et al. [19]
presented a vision-based approach to identify the fiducials which were placed on each
pallet, which provides automated guided vehicle systems with the capability of performing
pallet detection tasks. Two reflectors were fixed left and right on the short side of the
pallet in the study by Lecking [20] to realize pallet detection. Although these artificial
features simplify pallet detection, it takes effort to label all of the pallets in advance,
thereby identifying the above approaches as unfeasible. Guo et al. [21] summarized the
existing local feature detection methods and concluded that the contradiction between
descriptiveness and computational efficiency of the local feature descriptor was a major
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challenge faced in feature extraction. Hence, it was essential to construct a robust and
descriptive feature descriptor. The Fast Point Feature Histogram (FPFH) is a commonly
used local feature descriptor which can perform well in descriptiveness, robustness and
efficiency [22]. Additionally, FPFH employed the geometric feature of the pallet to build a
descriptor without adding any artificial marks. Tao et al. [23] combined SVM classification
and the FPFH descriptor to achieve object detection, which improved the robot detection
ability and perception in three-dimensional space. A new point registration algorithm that
combines FPFH and greedy projection triangulation was presented by Liu et al. [24], which
improved the accuracy of registration. Li et al. [25] proposed a novel method of point
registration called the Four Initial Point Pairs (FIPP) algorithm based on the FPFH feature
descriptor, and the accuracy of FIPP could reach a better level, but it had low efficiency in
mass data. However, few studies considered the color information and the criteria for the
selection of the neighborhood radius in the FPFH descriptor. Most researchers adjusted the
neighborhood radius manually based on prior knowledge, with certain randomness, low
efficiency and high complexity.

In response to the above problems, a novel pallet detection method for automated
guided vehicles based on point cloud data is proposed, including point cloud preprocess-
ing, key point extraction, feature description, surface matching and point cloud registration.
The main contributions can be summarized as: (1) the proposed method considers the HSV
color feature, which improves the detection accuracy; (2) an ACFPFH feature descriptor is
proposed and the criteria for adaptive selection of the optimal neighborhood radius are
established; (3) a new surface matching method called the Bidirectional Nearest Neigh-
bor Distance Ratio-Approximate Congruent Triangle Neighborhood (BNNDR-ACTN) is
proposed, which increases the efficiency and accuracy. The proposed method not only
overcomes the drawback of randomness and inefficiency of neighborhood selection in tra-
ditional feature extraction but also improves the accuracy and efficiency of pallet detection.
Moreover, the proposed method can be well adapted to a variety of complex scenes such as
the ground and the shelf.

The rest of the paper is organized as follows: In Section 2, the proposed pallet detection
method based on the ACFPFH feature descriptor is described. Section 3 outlines two
specific case studies and further comparison analysis for verifying the proposed method in
engineering applications. Finally, Section 4 concludes this paper.

2. The Proposed Method
2.1. Overview of the Proposed Method

This section describes an overview of the proposed method. It consists of five modules:
point cloud preprocessing, key point extraction, feature description, surface matching and
point cloud registration. The framework of the proposed method is shown in Figure 2. The
procedure involves the following steps.

Step 1: Point cloud preprocessing. The Percipio FM851-E2 3D vision sensor is used to
acquire the point cloud data which represent the whole scene, including the pallet. Outliers
are eliminated and the redundant information, such as walls and grounds, is removed
using Random Sample Consensus (RANSAC) algorithm.

Step 2: Key point detection. The key points with rich information are extracted from
scene point clouds by the Intrinsic Shape Signatures (ISS) algorithm.

Step 3: Feature description. The optimal neighborhood radius of each point is obtained
based on the minimum criterion of the neighborhood feature entropy function. The color
components and the geometric information based the optimal neighborhood of the key
point are encoded into a representative feature descriptor called the Adaptive Color Fast
Point Feature Histogram. The pallet template point cloud and its corresponding library of
feature descriptors are obtained by performing the above three steps.

Step 4: Surface matching. The matching method based on the Bidirectional Nearest
Neighbor Distance Ratio (BNNDR) is employed to complete feature matching between the
pallet template point cloud and the scene point cloud. Considering that there are some
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incorrect matching point pairs which will reduce the registration accuracy, it is essential to
eliminate them by the Approximate Congruent Triangle Neighborhood (ACTN).

Step 5: Point cloud registration. The RANSAC algorithm is applied for performing
point cloud coarse registration, which can obtain the relationship between the template
point cloud and the scene point cloud and provide an ideal initial position for fine registra-
tion. The fine registration works to obtain a final optimal transformation matrix using the
Iterative Closest Point (ICP) algorithm.
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2.2. Point Cloud Preprocessing
2.2.1. Outliers Elimination

Due to the hardware design of the Percipio FM851-E2 3D vision sensor, external
environmental interference and other factors, point cloud outliers are inevitable in the
measurement. The pallet detection results will have errors if the outliers in the original
scene point cloud Qso are not eliminated.

The distance from arbitrary point Pi in the point cloud to its neighborhood point
Pik(k = 1, 2, . . . , m) is approximately subject to Gaussian distribution, and the probability
density function of the average neighborhood distance is listed below:

f(di) =
1√
2πσ

exp(− (di − µ)2

2σ2 ) (1)

where i = 1, 2, . . . , n, n represents the number of points in the point cloud, di is the
average neighborhood distance of arbitrary point Pi, µ and σ are the expectation and
standard deviation of the average neighborhood distance di, respectively. Calculating the
average neighborhood distance di, the point Pi is considered as an outlier and removed if
µ− σ < di < µ+ σ.
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2.2.2. Plane Segmentation

In warehousing environments, the scene point cloud acquired by the Percipio FM851-
E2 3D vision sensor contains a lot of redundant information, such as the grounds and the
walls, which will decrease the calculation efficiency. Therefore, it is necessary to remove
the useless planes in the scene point cloud [26]. The specific segmentation procedures are
as follows:

Step 1: The plane equation in the three-dimensional point cloud is defined as:

Ax + By + Cz + D = 0 (2)

where A, B and C are plane parameters, and D is the distance from the plane to the point Pi.
Randomly select three points from the scene point cloud QSE after removing outliers and
obtain the parameters of the initial plane PI.

Step 2: Calculate the distance Di from the point Pi to the initial plane PI and the angle
βi between the point Pi and the normal vector of the initial plane PI. Set distance threshold
Dε and angle threshold βε; if both Di < Dε and βi < βε are satisfied, the point Pi belongs
to the plane PI.

Step 3: Repeat the above procedures until the number of the points in the plane reaches
the threshold t, and remove the final fitted plane model to obtain the preprocessed scene
point cloud Qs.

2.3. Key Point Extraction

The preprocessed scene point cloud Qs still contains a large number of points, which
leads to low efficiency of feature extraction and matching. Selecting key points to sim-
plify the point clouds can retain the features of the point clouds as much as possible
while reducing the number of the points. The Intrinsic Shape Signatures (ISS) is a widely
used algorithm with a fast calculation speed and high repeatability to realize key point
extraction [27]. The extraction procedures of the key points PFi are summarized as follows:

Step 1: The neighborhood points Pik(k = 1, 2, . . . , m) of Pi in the scene point cloud QS
are searched within a certain radius dp. dp is the average closest point distance of the point
cloud collected by the 3D vision sensor, which can be calculated as follows:

dp =
1
N∑ dm (3)

where N is the number of the points, and dm is the distance between each point and its
closest point.

Compute a weight parameter ωik for each point Pi inversely related to the distance
from Pik to Pi as follows:

ωik =
1

‖Pik − Pi‖
(4)

Step 2: The covariance matrix Ci of point Pi is generated as follows:

Ci =
∑m

k=1ωik(Pik −
−
Pi)(Pik −

−
Pi)

T

∑m
k=1ωik

(5)

where m is the number of the neighborhood points Pik, and
−
Pi is the center point of the

neighborhood points Pik and
−
Pi =

1
m

m
∑

k=1
Pik.

Step 3: Calculate the eigenvalues of the covariance matrix Ci and sort them from large
to small as

{
λi

1, λi
2, λi

3

}
.

Step 4: Set the thresholds k2 and k1; the points with the relation of λ2
λ1

< k1 ∩ λ3
λ2

< k2
are considered as the key point PFi.
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2.4. Feature Description

As for the traditional feature descriptors, the neighborhood radius for all the points is
a fixed value. Most studies select the appropriate radius based on empirical knowledge,
which has strong subjectivity and low efficiency. Besides, the color information is ignored,
which makes it difficult to fully and accurately characterize the objects. Therefore, a
novel feature descriptor called ACFPFH is defined, which adaptively selects the optimal
neighborhood radius and considers the color and geometric features. The flowchart of the
proposed feature description method is shown in Figure 3, and the detailed procedures are
described as follows.
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2.4.1. Adaptive Optimal Neighborhood Selection

The choice is preferred where the radius is more flexible and allowed to vary within a
dataset. The proper neighborhood radius obtained by adaptive selection can reduce the
runtime of feature extraction under the premise of ensuring precision. Therefore, a general
method for obtaining the adaptive optimal neighborhood radius ropt is proposed in this
paper, without the limit of prior knowledge. The detailed procedures about depriving the
adaptive optimal neighborhood radius ropt are described as follows.

Step 1: Set the radius range [rmin, rmax] and change interval ∆r of the neighborhood
search. Set the value of rmin equal to the average closest point distance dp, and rmax is the
maximal acceptable neighborhood radius for all the points of the scene point cloud Qs,
which can usually be set to a fixed value.
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Considering the radius of interest is usually closer to rmin than to rmax, the radius is
calculated as follows:

r1 = rmin, rj+1 =

{
rj + ∆r if rj+1 < rmid

rj + 2∆r else
(6)

where rmid = rmin+rmax
2 , j = 1, 2, 3, . . . until rj > rmax and ∆r is the adaptive neighborhood

radius value step. It results in more reasonable samples near the radius of interest and less
when reaching the maximal values.

Step 2: Calculate the covariance matrix Cj and eigenvalues λ1, λ2, λ3 of each neigh-
borhood radius rj, which can determine the dimensionality characteristics of the local
neighborhood. Table 1 shows the details about the dimensionality characteristics [28].
Construct the dimensionality features, including the 1D linearity feature Lλ, 2D planarity
feature Pλ and 3D scattering feature Sλ. They are represented as:

Lλ =
λ1 − λ2

λ1
, Pλ =

λ2 − λ3

λ1
, Sλ =

λ3

λ1
(7)

where Lλ + Pλ + Sλ = 1, and each of them can be regarded as the probability of the
point Pi being labeled as a 1D, 2D or 3D structure. Consequently, the task of searching
for an optimal neighborhood size can be converted to finding which radius favors the
corresponding dimensionality.

Table 1. Dimensional features judgment of local neighborhood of point cloud.

Eigenvalue Relation Dimensionality Feature Eigenvalue Relation

λ1 � λ2 ≈ λ3 Linearity feature λ1 � λ2 ≈ λ3
λ1 ≈ λ2 � λ3 Planarity feature λ1 ≈ λ2 � λ3
λ1 ≈ λ2 ≈ λ3 Scattering feature λ1 ≈ λ2 ≈ λ3

Step 3: The entropy function of local neighborhood Eneiborhood is established as a
measure of unpredictability based on information entropy theory, and it is defined as [29]:

Eneighborhood = −Lλ ln(Lλ)− Pλ ln(Pλ)− Sλ ln(Sλ) (8)

The smaller the value of the information entropy, the smaller the uncertainty of the
variable, which is the core of the Shannon entropy theory [30]. Accordingly, it can be
concluded that the smaller the information entropy value of the local neighborhood, the
less the uncertainty of the dimensional feature of the points. That is, the greater the
probability that the point belongs to a certain dimensional feature, and the more similar the
spatial distribution characteristics of the local data points under the neighborhood radius,
then the neighborhood radius tends to be more optimal. More immediately, it is feasible to
obtain the adaptive optimal neighborhood radius re-opt according to the minimum criterion
of neighborhood entropy function.

re-opt = argmin(Eneighborhood) (9)

However, the optimal neighborhood radius re-opt obtained according to Equations (7)
and (8) is based on the assumption that obvious dimensionality characteristics exist in the
observed point cloud. When the dimensionality features of the point Pi are indistinguish-
able, the optimality of the estimated neighborhood cannot be determined.

In order to avoid the limitation of the above assumptions for the scene point cloud and
improve the estimation accuracy of the optimal neighborhood, a more general solution for
calculating the optimal neighborhood radius ropt is proposed in this paper. The eigenvalues
directly reflect the dimensional distribution characteristics of the neighborhood points.
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Consequently, the three eigenvalues are normalized by their sum ∑ λj for obtaining an
eigen entropy Ee that is defined as:

Ee = −e1 ln(e1)− e2 ln(e2)− e3 ln(e3) (10)

where the ej = λj/ ∑ λj for j ∈ {1, 2, 3} represents the normalized eigenvalues summing up
to 1. The optimal neighborhood radius ropt is obtained according to the minimum criterion
of eigen entropy Ee.

2.4.2. ACFPFH Feature Description

The ACFPFH feature descriptor consisting of a 3-dimensional HSV color feature and
the 33-dimensional FPFH geometric feature is proposed in this section, which is shown as
Equation (11):

ACFPFH(PFi) = HSV(PFi) + FPFH(PFi) (11)

where the PFi is the key points of the pallet point cloud. The specific calculation procedures
of color feature and geometric feature are as follows:

(1) Color feature calculation
The point cloud data acquired by the Percipio FM851-E2 3D vision sensor contain

information such as the color and coordinates of the object. Due to the high correlation
between components in RGB color space, color cognitive properties cannot be intuitively
expressed. Therefore, RGB color space is not suitable for feature similarity detection. Com-
pared with RGB color space, HSV color space is easier to distinguish and more consistent
with human visual characteristics. H represents the hue, S represents the saturation and V
represents the value. HSV color space is exploited to form a color feature descriptor of the
key point PFi, and it can be converted from the RGB color space [31].

V = max(R, G, B)

S =

{
0, if V = 0

max(R,G,B)−min(R,G,B)
max(R,G,B)

, otherwise

H =


0, if S = 0
60× (G− B)/(S×V), if S 6= 0 and V = R
60× (2 + (B− R)/(S×V)), if S 6= 0 and V = G
60× (4 + (R−G)/(S×V)), otherwise

if H < 0, H = H + 360

(12)

where the value range of R, G and B is [0,255], and the value ranges of H, S and V are
[0,360], [0,1] and [0,255], respectively.

(2) Geometric feature calculation
FPFH is an efficient local feature descriptor which reflects the normal relationship

between query points and neighborhood points of point cloud data. The detailed calculation
procedures are explained as follows:

Step 1: For each key point PFi (or query point Pq), select all of the neighborhood
points Pqj of the query point Pq that are enclosed in the sphere with an adaptive optimal
neighborhood ropt, as shown in Figure 4. The red point Pq in the middle of the figure is the
query point, and the colored points Pq1-Pq5 in the black circle are the neighborhood points
of Pq, and those blue points Pq6-Pq15 are the neighborhood points of the colored points
Pq1–Pq5.
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Figure 4. Neighborhood influence area of the point Pq for ACFPFH.

Step 2: The point pairs ps, pt are generated based on the query point Pq and the
neighborhood points Pqj. Estimate their corresponding normal ns and nt. The relative
relationship between the point pairs ps, pt is obtained by establishing a local frame, as
shown in Figure 5.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 23 
 

 

 
Figure 4. Neighborhood influence area of the point Pq for ACFPFH. 

Step 2: The point pairs s tp , p  are generated based on the query point qP  and the 
neighborhood points qjP . Estimate their corresponding normal sn  and tn . The relative 
relationship between the point pairs s tp , p  is obtained by establishing a local frame, as 
shown in Figure 5. 

 
Figure 5. Local coordinate system. 

Taking the point sp as the coordinate origin, the coordinate frame is set up with u , 
v  and w axes. The axis is defined as: 

s

t s(p p )=
= ×

−
=

×
u n
v u
w u v

 (13)

Step 3: The angles α , ϕ  and θ  are calculated for representing the deviation be-
tween the normal vectors sn  and tn , which forms the simplified point feature histo-
grams (SPFH). 

t

t

t t

arccos( )

arccos( )

arctan( , )

⋅
α =

⋅
ϕ =

θ = ⋅ ⋅

v n
v n
u p
u p

w n u n

 
(14)

where p  represents t s

t s 2

(p p )
p p

−
−

. 

Step 4: For each neighborhood point qjP  of iPF , the optr  is re-determined and the 
neighboring SPFH value is used to weight the final histograms of iPF , whose results are 
called FPFH. 

=
= +

ω k
i i qj

i 1

1 1FPFH(PF ) SPFH(PF ) SPFH(P )
k

 (15)

Figure 5. Local coordinate system.

Taking the point ps as the coordinate origin, the coordinate frame is set up with u, v
and w axes. The axis is defined as:

u = ns
v = (pt − ps)× u
w = u× v

(13)

Step 3: The angles α, ϕ and θ are calculated for representing the deviation between
the normal vectors ns and nt, which forms the simplified point feature histograms (SPFH).

α = arccos( v·nt
|v||nt| )

ϕ = arccos( u·p
|u||p| )

θ = arctan(w · nt, u · nt)

(14)

where p represents (pt−ps)
‖pt−ps‖2

.
Step 4: For each neighborhood point Pqj of PFi, the ropt is re-determined and the

neighboring SPFH value is used to weight the final histograms of PFi, whose results are
called FPFH.

FPFH(PFi) = SPFH(PFi) +
1
k∑k

i=1
1
ω

SPFH(Pqj) (15)

where k represents the number of the neighborhood point Pqj, andω represents the weight,
which is the reciprocal of the distance between Ps and Pt. Figure 6 shows an example of the
ACFPFH of one point.
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2.5. Surface Matching

Accurate surface matching is an important prerequisite for point cloud registration,
which directly affects the performance of pallet detection. For the traditional surface match-
ing method, the one-way feature matching is performed and the method for eliminating
incorrect matching point pairs only considers the relationship between points, leading to too
many incorrect matching pairs. Therefore, a new surface matching method called BNNDR-
ACTN is proposed, which includes feature matching based on the Bidirectional Nearest
Neighbor Distance Ratio (BNNDR) and the incorrect matching point pairs’ elimination
based on the Approximate Congruent Triangle Neighborhood (ACTN). The architecture of
the proposed surface matching method is shown in Figure 7, and the detailed procedures
are described as follows.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 23 
 

 

where k represents the number of the neighborhood point Pqj, and ω  represents the 
weight, which is the reciprocal of the distance between Ps and Pt. Figure 6 shows an ex-
ample of the ACFPFH of one point. 

 
Figure 6. The ACFPFH of one point. 

2.5. Surface Matching 
Accurate surface matching is an important prerequisite for point cloud registration, 

which directly affects the performance of pallet detection. For the traditional surface 
matching method, the one-way feature matching is performed and the method for elimi-
nating incorrect matching point pairs only considers the relationship between points, 
leading to too many incorrect matching pairs. Therefore, a new surface matching method 
called BNNDR-ACTN is proposed, which includes feature matching based on the Bidi-
rectional Nearest Neighbor Distance Ratio (BNNDR) and the incorrect matching point 
pairs’ elimination based on the Approximate Congruent Triangle Neighborhood (ACTN). 
The architecture of the proposed surface matching method is shown in Figure 7, and the 
detailed procedures are described as follows. 

 
Figure 7. The flowchart the proposed surface matching method. Figure 7. The flowchart the proposed surface matching method.

Module 1: Feature matching
The purpose of point cloud feature matching is to establish the relationship between

the feature descriptors of the template point cloud and the scene point cloud, thereby
obtaining the initial matching point pair.

Step 1: Forward matching
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Define FM= {fi
M

}
and FS= {f

j
S

}
as the sets of ACFPFH descriptors of the pallet

template point cloud QM and the scene point cloud QS, respectively. For each ACFPFH
descriptor fj

S belonging to the scene point cloud, obtain the nearest ACFPFH descriptor
fi
M and the second-nearest ACFPFH descriptor fi

M
′ in the template point cloud, and their

Euclidean distances are represented by d(fj
S, fi

M) and d(fj
S, fi

M
′
). If the ratio of their distances

satisfies the Equation (16), (PFj
S, PFi

M) can be considered as a candidate matching key point

pair. That is, the key point PFj
S corresponds to fj

S, and the key point PFi
M corresponds to fi

M.

d(fj
S, fi

M)

d(fj
S, fi

M
′
)
< th (16)

where the threshold th is a constant between 0 and 1.
Step 2: Backward matching
For each ACFPFH descriptor fi

M belonging to the template point cloud, the nearest

ACFPFH descriptor fj
S
′ and the second-nearest ACFPFH descriptor fj′′

S are obtained in the

scene point cloud, and their Euclidean distances are represented by d(fi
M, fj′

S) and d(fi
M, fj′′

S ).

If the ratio of their distances satisfies the Equation (17), (PFj
S, PFi

M) is a matching key point
pair; otherwise, it is not a matching key point pair.

d(fi
M, fj′

S)

d(fi
M, fj′′

S )
< th (17)

If the key points PFj
S and PFj′

S are the same point, (PFj
S, PFi

M) can be considered as

a matching key point pair. The final matching key point pairs set MP =
{

Qi
S, Qi

M

}
is

obtained by repeating the above steps.
Module 2: Elimination of wrong matching point pairs
The surface of the object is rough and noisy, which leads to some mismatching point

pairs. Therefore, after obtaining initial matching pairs, the next step is to eliminate the
wrong matching point pairs.

Step 3: Triangle neighborhood generation
Select a query point pair (Q1

S, Q1
M) from the matching key point pairs set MP ={

Qj
S, Qi

M

}
and search for the nearest point pairs (Q2

S, Q2
M) and the second nearest point

pairs (Q3
S, Q3

M), which can generate triangle neighborhood TS = (Q1
S, Q2

S, Q3
S) and TM =

(Q1
M, Q2

M, Q3
M).

Step 4: Obtain the correct matching point pairs
The point pair (Q1

S, Q1
M) is considered as a correct matching point pair if the two trian-

gles TS = (Q1
S, Q2

S, Q3
S) and TM = (Q1

M, Q2
M, Q3

M) are approximately congruent; otherwise,
it will be regarded as a wrong matching point pair and should be eliminated. The Equation
(18) is used to determine whether the two triangles are approximately congruent.

−t < dist(Q1
M,Q2

M)−dist(Q1
S,Q2

S)
W < t

−t < dist(Q1
M,Q3

M)−dist(Q1
S,Q3

S)
W < t

−t < dist(Q2
M,Q3

M)−dist(Q2
S,Q3

S)
W < t

(18)

where dist( · ) represents the distance between two points, W = max(dist), and t represents
the degree of approximation between the point pairs. Then, the final correct matching point
pairs set CP =

{
Qi

CS, Qi
CM

}
is obtained by repeating the above steps.

Considering the stability of the triangle, each point in the point cloud is expanded into
a triangular neighborhood. Therefore, the point-to-point matching problem is transformed
into the neighborhood matching problem, which can obtain more feature information and
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improve registration accuracy. In addition, each point in the point cloud is regarded as the
vertex of the triangle, which benefits the maintenance of the geometric characteristics of
the original point cloud.

2.6. Point Cloud Registration
2.6.1. Coarse Registration

The main task of point cloud coarse registration is to obtain the relationship between
the template point cloud QM and scene point cloud QS and provide an ideal initial position
for fine registration. This computation is based on the correct matching point pairs set
CP =

{
Qi

CS, Qi
CM

}
. The main steps are as follows:

Step 1: Three correspondences are randomly selected to estimate the rigid transforma-
tion matrix R0 and T0.

Step 2: Calculate the distance D(R0, T0) between the point Qi
CS and the transformed

point Qi
TCM based on the transformation matrix R0 and T0. Take the point in point set

QCS whose corresponding distance D(R0, T0) is less than threshold d0 as the inlier point;
otherwise, consider it as an exterior point.

D(R0, T0) = ‖Qi
CS − (R0 ×Qi

CM + T0)‖ (19)

Step 3: Repeat the above steps to obtain a different rigid transformation matrix and
count its corresponding number of inliers point until the maximum iteration number I0
is reached.

Step 4: Obtain the final rigid transformation matrix R0
′ and T0

′ with the most interior
points; the template point cloud QM is transformed into the coordinate system of the scene
point cloud QS to complete the coarse registration. Define the transformed template point
cloud QM as QMT.

2.6.2. Fine Registration

The Iterative Closest Point (ICP) algorithm is used to achieve point cloud fine registra-
tion. It is based on minimizing the error function to calculate the optimal rotation matrix
and translation matrix. The specific procedures of fine registration are as follows:

Step 1: For each point Qi
MT in the transformed template point cloud QMT, search

for its nearest neighbor point Qi
S in the scene point cloud QS, thereby generating the

corresponding points pairs set CF =
{

Qi
MT, Qi

S

}
.

Step 2: Use the least square method to solve the rotation matrix Rn and translation
matrix Tn with the smallest average distance en between the corresponding points.

en =
1
k

k

∑
i=1
‖Qi

S − (Qi
MT ×Rn + Tn)‖

2
(20)

where n is the number of iterations and k is the number of the corresponding points.
Step 3: Repeat the above steps and obtain the optimal rotation matrix Rf and translation

matrix Tf until en is smaller than distance threshold ef, or the maximum number of iterations
If is reached. The new template point cloud QMF is obtained by using the transformation
matrix Rf and Tf, and fine registration is completed.

3. Case Studies
3.1. Evaluation Index

In order to validate the performance of the proposed ACFPFH feature descriptor and
the overall registration method, two representative indicators are developed to evaluate
the experiment results, and the details of these indicators are briefly described as follows.
The experiment was performed using MATLAB Code on a desktop with 3.6 GHz inter®

Core™ i7-11700kf CPU and 16 G memory.
(1) Precision-recall curve
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The precision–recall curve (PRC) is used to evaluate the descriptiveness of a feature
descriptor. The precision is calculated as the number of correct matching point pairs with
respect to the total number of matching point pairs:

Precision =
NCP

NMP
(21)

where NCP represents the number of correct matching point pairs, and NMP represents the
number of matching point pairs.

The recall is calculated as the number of correct matching point pairs with respect to
the number of key points of the template point cloud:

Recall =
NCP

NPF
(22)

where NPF represents the number of key points of the template point cloud. The value of
the threshold th used for performing feature matching in Section 2.5 varies from 0 to 1 to
calculate the precision and recall under each threshold and obtain the PRC.

(2) Root mean square error
Root mean square error (RMSE) is the error evaluation index commonly used in point

cloud registration, which represents the average of the sum of squared distances between
the corresponding points of the two point clouds. It is defined as:

RMSE =

√√√√∑m
i=1

∣∣∣∣∣∣Pi −Qj

∣∣∣∣∣∣
m

(23)

where Pi and Qj are the corresponding points, and m is the number of the corresponding
point pairs. The smaller the value of RMSE, the better the fine registration result.

3.2. Experiment Preparation

In order to verify the effectiveness and feasibility of the proposed pallet detection
method, a widely used industrial camera called the Percipio FM851-E2 3D vision sensor
is adopted to acquire point cloud data for comparative analysis of the results. The vision
sensor shown in Figure 8 consists of an RGB camera and a depth sensor which is composed
of an infrared camera and structured light projector. Its length, width and height are 124.0
mm, 86.8 mm and 28.6 mm, respectively. The RGB camera captures the RGB image with a
resolution of 1280 × 960 and the depth sensor captures the depth image with a resolution
of 320 × 240. Percipio FM851-E2 3D vision sensor active binocular vision technology is
used for measuring the distance, and its operative range is from 0.7 m to 6.0 m.
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Figure 8. Structure of Percipio FM851-E2.

The Percipio FM851-E2 3D vision sensor is mounted on the top of the carriage of a
real automated guided vehicle, which means the camera will move along with the forks,
as shown in Figure 9. Given that the length of the fork is 1150 mm, the distance between
the top of the fork and the front face of the pallet is set to 500 mm so that the automated
guided vehicle is able to adjust its position. Meanwhile, it is necessary to ensure that the
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fork is perpendicular to the front face of the pallet and that the center of the sensor is in
line with the center of the pallet. The specific placement of the pallet is shown in Figures 9
and 10. Considering the effect of illumination on point cloud data acquired by the sensor,
all experiments are carried out under normal daytime illumination. In this case, the size of
the pallet is 1200 mm × 1000 mm × 150 mm, and it is extracted from the scene point cloud
and considered as the template point cloud.
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3.3. Case Study I
3.3.1. Implementation Process

For the pallets on the ground, the color image of the scene is acquired by the Percipio
FM851-E2 3D vision sensor at the same distance of 500 mm, which is shown in Figure 11.
Figure 12 shows the pallet template point cloud and the scene point cloud. Then, the
outliers of the scene point cloud are eliminated. The normal of the ground and the wall
are [0, 1, 0] and [0, 0, 1], respectively. Set distance threshold Dε = 0.02 m and angle
threshold βε = 5◦; the plane segmentation is performed for the scene point cloud after
removing outliers, and the result is shown in Figure 13. The ISS algorithm is used to extract
key points with the search radius of 0.013 m and thresholds κ1= 0.6, κ2= 0.75, which can
guarantee the efficiency and accuracy of the method. The number of points in the pallet
template point cloud decreased from 2661 to 492, and the number of points in the scene
point cloud decreased from 41,351 to 576, as shown in Figure 14, and the red points in
Figure 14 represent the key points. The point cloud image shown below contains the RBG
information of the point cloud and therefore has different colors.
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It is necessary to determine the adaptive neighborhood radius for each point before
calculating the ACFPFH feature descriptor. Given that the interval between two sampling
points of point cloud data acquired by Percipio FM851-E2 3D vision sensor is 0.007 m, set
the radius range rmin = 0.007m, rmax = 0.015m, rmid = 0.011m and r∆ = 0.0005m. The
adaptive optimal neighborhood radius of each point is obtained with the minimum criterion
of neighborhood information entropy function. The adaptive optimal neighborhood radius
distribution of pallet template point cloud and scene point cloud is shown in Figure 15.
The horizontal axis represents the value of the neighborhood radius, and the vertical axis
represents the number of points corresponding to each neighborhood radius. Among
the 2661 points in the pallet template point cloud, there are 855 points with an optimal
neighborhood radius of 0.007 m. Among the 41,351 points in the ground scene point
cloud, there are 15,421 points with an optimal neighborhood radius of 0.007 m. It meets
where the optimal neighborhood radius of points is concentrated at the given minimum
neighborhood radius, which aids in improving the efficiency.
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distribution of ground scene point cloud.

Extract the HSV color components of the key points of the pallet template point cloud
and the scene point cloud, and calculate the geometric feature based on the adaptive optimal
neighborhood radius. The ACFPFH feature descriptor is obtained by superimposing the
color and geometric features. The feature matching is completed with the distance ratio
threshold of th = 0.75. The initial matching result is shown in Figure 16a. The green line
connects the corresponding points between the pallet template point cloud and the scene
point cloud. Obviously, there are some wrong matching point pairs. The wrong matching
point pairs are eliminated by using the wrong matching point pairs elimination algorithm
based on the ACTN, and the result is shown in Figure 16b. The RANSAC algorithm is
used for coarse registration to calculate the rough transformation matrix, and the ICP
algorithm is used to obtain a final transformation matrix and complete fine registration.
The parameters of the final transformation matrix are as follows:

R =

 0.9889 0.0067 −0.1487
−0.0099 0.9997 −0.0206
0.1485 0.0219 0.9887

T =

 0.4709
0.0312
0.0723

 (24)
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3.3.2. Performance Evaluation

The PRC is used to evaluate the descriptiveness of a feature descriptor. The ACFPFH
feature descriptor is compared with the classical feature descriptors including FPFH, CF-
PFH and Signature of Histogram of Orientation (SHOT) with the fixed neighborhood radius.

The set th = {0.2, 0.4, 0.6, 0.75, 0.85, 0.925, 0.95, 9.975, 1.0} is considered as the selected
distance ratio threshold set of the feature matching stage, and the PRC corresponding to
different feature descriptors is obtained, as shown in Figure 17. Take th = 0.75 to compare
the accuracy of different feature descriptors, as shown in Table 2. Table 3 lists the time
required for feature extraction of the scene point cloud of different feature descriptors, and
the bold characters are the experimental results of the proposed method.
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Traditional feature descriptors such as SHOT and FPFH only describe the geometric
feature of the pallet and ignore the color information, so the precision is lower. The CFPFH
feature descriptor considers the HSV color information, which improves the precision. The
neighborhood radiuses of the above three feature descriptors are obtained by complex and
inefficient manual debugging methods, which are not suitable for all points in the point
cloud. A large neighborhood radius leads to too many key points in the neighborhood,
which reduces the speed of feature extraction. The ACFPFH feature descriptor not only
contains color information but also adaptively selects the optimal neighborhood radius for
each key point, so that it performs better in terms of effectiveness and precision.
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Table 2. Precision and recall comparison of different feature descriptors.

Name Feature
Dimension

Neighborhood
Radius/m Recall Precision Accuracy Comparison of ACFPFH

with Other Feature Descriptors (%)

SHOT 352
0.011 0.0193 0.2481 29.40
0.013 0.0203 0.2798 20.38

FPFH 33
0.011 0.0183 0.2140

0.2712
39.10

0.013 0.0224 22.82

CFPFH 36
0.011 0.0219 0.2928 16.68
0.013 0.0264 0.3256 7.34

ACFPFH 36 Adaptive 0.0269 0.3514 /

Table 3. Feature extraction time comparison of different feature descriptors.

Name Feature
Dimension

Neighborhood
Radius/m

Feature Extraction
Time/s

Time Comparison of ACFPFH with
Other Feature Descriptors (%)

SHOT 352
0.011 0.151 14.57
0.013 0.185 30.27

FPFH 33
0.011 0.145 11.03

25.860.013 0.174

CFPFH 36
0.011 0.159 18.87
0.013 0.193 33.16

ACFPFH 36 Adaptive 0.129 /

It is well known that the closer the curve is to the upper right, the better the per-
formance of the feature descriptor in the PRC graph. It can be seen from Figure 17 that
comparing with SHOT, FPFH and CFPFH feature descriptors with fixed radiuses, the ACF-
PFH feature descriptor has the best performance. It can be seen from Tables 2 and 3 that
when th = 0.75, compared with the SHOT feature descriptor with a neighborhood radius of
0.011 m, the precision is improved by 29.40%, and the time required for feature extraction
is reduced by 14.57%. Compared with the FPFH feature descriptor with a neighborhood
radius of 0.011 m, the precision is improved by 39.10%, and the time required for feature
extraction is reduced by 11.03%. Compared with the CFPFH feature descriptor with a
neighborhood radius of 0.011 m, the precision is improved by 16.68%, and the feature
extraction time is reduced by 18.87%.

The RMSE and runtime are used to evaluate the performance of the registration
algorithms. Popular algorithms including ICP, SHOT + ICP, FPFH + ICP and CFPFH
+ ICP are selected to compare with the proposed method in this paper. The number of
iterations, the RMSE and the runtime of the above methods are detailed in Table 4. The
initial position relationship of the pallet template point cloud and the scene point cloud
and the registration results of different methods are shown in Figure 18, and the red points
are the template point cloud.

Table 4. RMSE and elapsed time comparison of different feature descriptors.

Method The Number of
Iterations RMSE The Runtime/s

Traditional ICP 113 0.040344 27.256
SHOT + ICP 82 0.024791 0.986
FPFH + ICP 24 0.026589 0.948

CFPFH + ICP 44 0.021559 1.039
ACFPFH 26 0.009251 0.853
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The following conclusions can be drawn from Table 4 and Figure 18: The traditional
ICP algorithm has a large registration error due to the large initial pose difference. It
takes 27.256 s to realize registration, which cannot meet the real-time requirements in
intelligent manufacturing systems. The modified ICP registration methods such as SHOT +
ICP, FPFH + ICP and CFPFH + ICP perform coarse registration, providing a better initial
position for the fine registration by the ICP algorithm. Compared with the traditional ICP
algorithm, the RMSE and runtime are reduced. However, the feature descriptors used by
the above methods lack neighborhood selection criteria, which leads to an increase in the
overall registration runtime. The proposed method has minimal registration error and
the least runtime, which shows higher efficiency and proves that the proposed method
has a more significant improvement than other methods. Furthermore, the precision and
efficiency of the proposed method also meet the production requirement in intelligent
manufacturing systems.

3.4. Case Study II

Shelves are widely used in intelligent manufacturing systems, which can improve the
utilization rate of warehouse space and realize the rational allocation of resources while
ensuring the quality of goods. Hence, it is necessary to complete the pallet detection of the
shelf scene. The color image and the point cloud of the shelf scene are acquired with the
same distance from the ground scene, as shown in Figure 19. The same pallet template
point cloud is used to perform pallet detection of the shelf scene, and the parameters are
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consistent with the ground scene in Case Study I. After extracting the key points, the
number of points in the scene point cloud decreased from 30,469 to 658. The adaptive
optimal neighborhood radius distribution of the scene point cloud in the shelf scene is
shown in Figure 20. Figure 21 and Table 5 show the registration result.
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Table 5. RMSE and elapsed time comparison of different feature descriptors in the shelf scene.

Method The Number of
Iterations RMSE The Runtime/s

Traditional ICP 68 0.041553 29.523
SHOT + ICP 49 0.025987 1.174
FPFH + ICP 32 0.026751 1.118

CFPFH + ICP 36 0.018954 1.326
ACFPFH 23 0.009032 0.989
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Compared with the traditional ICP algorithm, the RMSE of the proposed method is
greatly reduced, and the runtime is reduced from 29.523 s to 0.989 s, which proves that the
efficiency and accuracy have been greatly improved. Compared with other modified ICP
registration methods, the RMSE of the proposed method is the smallest, and the runtime
is the shortest. In summary, the proposed method still achieves optimal performance in
the shelf scene, which shows its effectiveness in different scenes. Furthermore, the above
case studies demonstrate that the proposed method can be well applied in intelligent
manufacturing systems to realize accurate and efficient pallet detection. In addition,
feature descriptors can often determine the final performance in the process of point cloud
registration. Combining a good feature descriptor with a good matching strategy would
improve the efficiency of point cloud registration.

4. Conclusions

A novel pallet detection method for automated guided vehicles based on point cloud
data is proposed in this paper. The contributions of this paper can be concluded as follows:

1. A novel pallet detection method for automated guided vehicles based on point cloud
data is proposed, which can be used for automated guided vehicles to perform
automated and effective pallet handling, thereby promoting the transformation and
upgrading of the manufacturing industry.

2. A new Adaptive Color Fast Point Feature Histogram (ACFPFH) feature descriptor
has been built for the description of pallet features, which overcomes shortcomings
such as low efficiency, time-consumption, poor robustness, and random parameter
selection in feature description.

3. A new surface matching method called the Bidirectional Nearest Neighbor Dis-
tance Ratio-Approximate Congruent Triangle Neighborhood (BNNDR-ACTN) is
proposed, which transforms the point-to-point matching problem into the neighbor-
hood matching problem and can obtain more feature information and improve the
detection accuracy.

Due to the measurement accuracy of the 3D vision sensor being easily affected by
environmental factors such as illumination and obstacles, a more robust and efficient pallet
detection method will be researched, which is suitable for more complex scenarios.
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